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Abstract: Human milk oligosaccharides (HMOs) are complex sugars that occur naturally in human
breast milk and provide many beneficial functions. Most formula products lack HMOs or contain
only the most abundant HMO, 2′-fucosyllactose; however, benefits of HMOs come from multiple
sugars. We therefore developed a mixture of five HMOs (5HMO-Mix) mimicking the natural
concentrations of the top five HMOs (5.75 g/L total, comprising 52% 2′-fucosyllactose, 13% 3-
fucosyllactose, 26% lacto-N-tetraose, 4% 3′-sialyllactose, and 5% 6′-sialyllactose) representing the
groups of neutral, neutral-fucosylated, and sialylated HMOs. We conducted the first multicenter,
randomized, controlled, parallel-group clinical study assessing the safety, tolerability, and effect
on growth of formula containing the 5HMO-Mix in healthy infants. We enrolled 341 subjects aged
≤14 days; 225 were randomized into groups fed either with infant formula containing 5HMO-Mix
(5HMO-Mix) or infant formula without HMOs (IF) for 4 months, with the others exclusively breastfed.
There were no differences in weight, length, or head circumference gain between the two formula
groups. The 5HMO-Mix was well tolerated, with 5HMO-Mix and breastfed infants producing softer
stools at a higher stool frequency than the control formula group. Adverse events were equivalent in
all groups. We conclude that the 5HMO-Mix at 5.75 g/L in infant formula is safe and well tolerated
by healthy term infants during the first months of life.

Keywords: 5HMO-Mix; human milk oligosaccharides; clinical study; growth; tolerability;
2′-fucosyllactose; 3-fucosyllactose; lacto-N-tetraose; 3′-sialyllactose; 6′-sialyllactose; 2′-FL; 3-FL;
LNT; 3′-SL; 6′-SL

1. Introduction

Breastfeeding is the most effective way to ensure infant health because human breast
milk provides a nutritionally complete meal as well as all the bioactive components needed
for optimal development during the first months of life [1]. The World Health Organiza-
tion (WHO) thus recommends exclusive breastfeeding from the first hour after birth to
6 months of age, although this advice is followed for only 44% of infants worldwide and
an even lower proportion in industrialized countries because of clinical or social factors [2].
To compensate for the benefits from human breast milk, infant formula products have to
be developed containing ingredients that match human breast milk as closely as possible.
Human breast milk is mainly composed of water, lactose, lipids, and milk proteins, but hu-
man milk is particularly rich in complex carbohydrates, collectively known as human milk
oligosaccharides (HMOs), which are nondigestible for humans. Breast milk contains more
than 150 structurally distinct HMOs, which can be divided into three classes: neutral fuco-
sylated, neutral nonfucosylated, and acidic or sialylated HMOs [3]. HMOs are known to
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perform a range of beneficial physiological functions including the establishment and main-
tenance of a healthy gut microbiome [4–14], the development of the immune system and
modulation of inflammatory responses [1,15–17], the strengthening of the gastrointestinal
barrier [18,19], and the promotion of neuronal development and cognitive function [20–25].
These health-promoting effects have been extensively reviewed elsewhere [1,15,26,27].
The beneficial functions of HMOs have been shown to depend on the structure of each
specific HMO. As an example, sialylated HMOs and 2′-fucosyllactose (2′-FL) have been
reported to impact brain development and learning capacities [22,23,25], nonfucosylated
HMOs are a preferred substrate for specific bifidobacteria [8], and HMOs from different
classes act as decoys to prevent adhesion of specific viral or bacterial pathogens to recep-
tors on human cells [28]. Navidat et al. [19] recently showed that a blend of six HMOs
representing all three classes of HMOs could decrease inflammation-mediated gut barrier
disruption by 60%, with 2′-FL being the most effective HMO in the blend. More research
and clinical application is necessary to explore defined functions of specific HMOs and to
investigate synergistic effects of HMOs in blends.

The concentration and relative abundance of HMOs varies throughout the course of
lactation and also varies widely among women due to diverse factors such as geographic
location, maternal diet and physiological status, the individual genetics of the mother, gesta-
tional age, mode of delivery, and even seasonal influences [29–36]. There are major genetic
differences determined by the Secretor (Se) and Lewis (Le) blood group genes, which con-
trol the expression of the specific α (1,2), α (1,3), and α (1,4) fucosyltransferases responsible
for different fucosylation patterns of glycans. While fucosylated HMOs are the most abun-
dant HMOs in Se+ women (50%; 35% in Se− women), nonfucosylated HMOs represent
the most abundant class in Se− women (55%) compared to Se+ (42%). Sialylated HMOs
are more equally distributed between Se+ (12%) and Se− women (14%) [37]. Se+ women
account for 70–90% of all women [31] and produce large quantities of α (1,2)-fucosylated
HMOs such as 2′-FL and lacto-N-fucopentaose I. 2′-FL is by far the most abundant HMO
found in milk of Se+ women, ranging in concentration from 1.28 to 4.13 g/L over the
course of lactation. The most abundant α (1,3)-fucosylated HMO is 3-fucosyllactose (3-FL),
ranging in concentrations from 0.06 to more than 2.4 g/L, increasing in concentration
postpartum. 3-FL represents the most common neutral fucosylated HMO in Se− breast
milk, where 2′FL is lacking. The most abundant sialylated HMOs are 3′-sialyllactose (3′-SL)
and 6′-sialyllactose (6′-SL), with concentration ranges of 0.09–0.35 g/L and 0.06–1.3 g/L,
respectively. Among the nonfucosylated neutral HMOs, lacto-N-tetraose (LNT) is the most
abundant, with a concentration range of 0.2–1.7 g/L. These data were compiled by compar-
ing reported HMO concentrations explored in longitudinal studies that analyzed breast
milk of mothers that delivered term infants [29,34,36,38–41]. To provide infant formulae
that match the HMO profile of natural breast milk as closely as possible, we developed a
mixture of five HMOs (5HMO-Mix) that combines the five most abundant HMOs across all
three structural classes, aiming for synergistical and complementary beneficial effects for
the infant’s development. The reconstituted 5HMO-Mix comprises 2.99 g/L 2′-FL, 0.75 g/L
3-FL, 1.5 g/L LNT, 0.23 g/L 3′-SL, and 0.28 g/L 6′-SL, reflecting proportions of 52%, 13%,
26%, 4%, and 5%, respectively. As described before, HMO concentrations vary widely
among women and during the lactation period. Thus, in this study, we chose concentra-
tions of HMOs that reflected an average of reported physiological HMO concentrations
in human breast milk, with a slightly increased proportion of LNT to promote growth of
beneficial intestinal bacteria. Thus far, clinical studies have been carried out with 2′-FL
or mixtures of two HMOs [42–46], but to the best of our knowledge there have been no
clinical studies published on the tolerance and safety of HMO mixtures containing multiple
HMOs from all three classes.

We present a multicenter, randomized, controlled, parallel-group clinical study de-
signed to evaluate the safety and tolerability of the 5HMO-Mix and its effect on growth
when applied over a 16-week period at a concentration resembling physiological concen-
trations in human milk. The 5HMO-Mix was well tolerated, resulting in no differences in
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weight, length, or head circumference gain between the 5HMO-Mix and control formula
groups and a stool consistency and frequency more similar to that of breastfed infants.

2. Materials and Methods
2.1. Clinical Study—General Aspects and Ethical Compliance

This study was a randomized, multicenter, controlled, parallel nutritional noninferior-
ity study performed at 12 sites across Germany, Italy, and Spain between December 2018
and November 2020. Subjects were recruited from two sites in Germany (Neonatologische
Intensivmedizin des Klinikum Südstadt, Rostock and Facharztpraxis für Kinder- und Ju-
gendmedizin, Mannheim), five sites in Italy (Ospedale San Raffaele, Milano; ASST Spedali
Civili di Brescia–Presidio Ospedale dei Bambini, Brescia; Azienda Ospedaliero Universi-
taria Consorziale Policlinico di Bari, Bari; Azienda Ospedaliera San Giovanni Addolorata
di Roma, Rome; and Instituto Giannina Gaslini di Genova, Genoa), and five sites in
Spain (Hospital Joan XXII de Tarragona, Tarragona; Hospital Universitario Sant Joan de
Reus, Reus; Hospital HM Puerta del Sur, Madrid; Hospital HM Nuevo Belen, Madrid;
and Hospital HM Montepríncipe, Madrid). The study was performed in accordance
with the principles of the Declaration of Helsinki and good clinical practice. All proce-
dures involving human subjects were approved by the relevant ethics committees for each
site. Written informed consent was obtained from all parents or legal guardians of the
subjects before any study-related procedures were initiated. The study was registered
on clinicaltrials.gov (ID = NCT03513744) (accessed on 5 June 2021) before enrolling the
first subject.

2.2. Participants

Eligible subjects were healthy female and male infants ≤14 days of age at visit 1 (V1),
born at full term (≥37 and ≤42 weeks of gestational age), singleton birth, with a birth
weight of 2500–4500 g and an APGAR score of 9 or 10 as assessed within the first 15 min
after birth. Infants were excluded from the study if they had (a) any congenital disorders
that could affect the study outcome or subject safety, (b) self-reported parental or sibling
allergy to cow’s milk protein, or (c) administration of antibiotics prior to V1 and concurrent
treatment with any medicine or natural health products unless medically indicated by a
professional healthcare provider. In addition, subjects were excluded if parents were not
prepared to feed the subject solely within the assigned study group. The subjects were not
allowed to participate in another clinical study that could influence the outcomes of this
study prior to V1 or during this study. A complete list of inclusion and exclusion criteria is
provided in Table S1.

2.3. Study Design

The multicenter study comprised three parallel arms consisting of two randomized,
double-blinded intervention groups receiving either 5HMO-Mix in infant formula (5HMO-
Mix) or infant formula without 5HMO-Mix (IF) and one group of breastfed infants as a
reference group (BM). Mothers independently and voluntarily chose to not breastfeed after
delivery and before enrollment to the study. The study comprised a 16-week intervention
period with six visits (V1–V6) followed by an 8-week voluntary follow-up, and if the
parents agreed to continue the follow-up period with the dispensed product, V7 was
scheduled at 6 months ± 7 days after V1 (Figure 1). During the intervention and follow-up
periods, the parents of the subjects completed a 3-day diary to assess the study outcomes
and report compliance with the study treatment.

After obtaining informed consent at V1, we collected demographic (infant and mother)
and anamnestic information, conducted a physical examination, and determined baseline
anthropometric data (weight, length, head circumference). Infants were allocated to the BM
group based on parental/legal guardian choice, and those not allocated to the BM group
were randomized to one of the intervention groups (5HMO-Mix or IF). Subsequent visits
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were scheduled at 14 ± 3 days (V2), 28 ± 3 days (V3), 56 ± 3 days (V4), 84 ± 3 days (V5),
and 112 ± 3 days (V6) after V1. Subjects in the BM groups ended the study at V6.

Figure 1. Study flowchart.

Efficacy was evaluated at all six visits. Safety and tolerability were assessed based
on diary entries on the first 3 days after V1 and the 3 days prior to each subsequent visit.
All adverse events (AEs), defined as any medical occurrence in a study subject during
the intervention period, and concomitant medication and medical treatment or healthcare
utilization were also recorded. All data collected during visits were entered by site staff
into an electronic case report form (eCRF). Parents were asked to collect stool samples
from infants at V1 and in the week prior to each subsequent visit. In the BM group,
mothers collecting stool samples were also asked to provide breast milk samples at V2,
V4, and V6, sampled either in the week before the visit or on site. The study products
were provided to the subjects at each visit, and unused packages had to be returned at the
following visit.

Packaging and labeling of study products were carried out by a clinical supplies
management company (CSM, Schwalbach, Germany). The randomization list was gen-
erated by a statistician at IZKS Mainz (not otherwise involved in the study) using SAS
v9.4 (SAS Institute). Randomization to the two intervention groups was performed in a 1:1
ratio in blocks of four and stratified by sex and site. Subject allocation was achieved using
a central interactive web-response system RandomiXer hosted by IZKS. All the subjects,
parents, investigators, CRO, and sponsor staff involved in the study were blinded until the
final database was locked.

2.4. Study Product

The 5HMO-Mix (2.99 g/L 2′-FL, 0.75 g/L 3-FL, 1.5 g/L LNT, 0.23 g/L 3′-SL, and 0.28 g/L
6′-SL) was produced by Chr. Hansen HMO GmbH, Rheinbreitbach, Germany. It was mixed
with a basic infant formula providing proteins, lipids, and other carbohydrates as well
as vitamins and other nutrients. The infant formula was manufactured by Töpfer (Di-
etmannsried) in Germany under GMP and HACCP procedures, ISF food higher level
approved using organic raw materials (besides 5HMO-Mix), and in compliance with
Regulation (EU) 2006/141, Regulation (EC) 609/2013, Regulation (EC) 1881/2006, and Reg-
ulation (EC) 2073/2005. The final concentration of 5HMO-Mix in the ready-to-use formula
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was 5.75 g/L and was achieved by partially replacing the carbohydrates (maltodextrin) in
the basic formula with the 5HMO-Mix powder (4.35 g/100 g formula powder), resulting in
insignificant change of the osmolarity of the formula. The control formula (IF) contained
the same quantities of proteins, lipids, vitamins, and other nutrients as the formulated
5HMO-Mix (Table 1, a complete list of ingredients of the formulae is provided in Table S2).
The study and control products had a similar appearance, taste, and smell and were pro-
vided in identical 300 g bags with identical labeling. Study products were labeled according
to the randomization lists and were identified only by the randomization number.

Table 1. Energy, macronutrients, and HMOs in 5HMO-Mix formula and the control IF (per 100 g formula powder and per
100 mL ready-to-drink). Nutritional values for micronutrients are provided in Table S2 in the Supplementary Materials.

5HMO-Mix IF

Unit Per 100 g Powder Per 100 mL
Ready to Drink Per 100 g Powder Per 100 mL

Ready to Drink

Energy 1,2 KJ 2129 280 2163 283
kcal 507 67 515 68

Fat g 27 3.6 27 3.6
Saturated g 9.3 1.2 9.3 1.2

Monounsaturated g 12.6 1.7 12.6 1.7
Polyunsaturated g 5.1 0.7 5.1 0.7
Carbohydrate 3 g 53 7.2 57 7.2

Lactose g 39 5.2 39 5.2
Maltodextrin g 11.65 4.8 16 5.4

HMO g 4.35 0.575 - -
2′FL g 2.26 0.299 - -
3-FL g 0.57 0.075 - -
LNT g 1.13 0.150 - -
3′-SL g 0.17 0.023 - -
6′-SL g 0.22 0.028 - -

Protein g 11 1.4 11 1.4
Salt 4 g 0.45 0.060 0.45 0.06

1 These variations were within natural and tolerable ranges and met the requirements of Regulation (EU) 1169/2011 regarding the tolerances
for nutritional values indicated on the label. 2 The energy of the blinded formulae was declared as 513 kcal/100 g formula powder. 3 The
amount of carbohydrates in the blinded formulae was declared as 55 g/100 g formula powder. 4 Salt content exclusively due to the presence
of naturally occurring sodium in the raw materials and minerals. HMO: Human milk oligosaccharides; 2′-FL: 2′-fucosyllactose; 3-FL:
3-fucosyllactose; LNT: lacto-N-tetraose; 3′-SL: 3′-sialyllactose; 6′-SL: 6′-sialyllactose

The infants were fed ad libitum with only the assigned study product during the
entire intervention period. Infants in the reference arm were fully breastfed fed ad libitum.
Study product intake was calculated from the weight of the delivered and returned pack-
ages. A subject was considered compliant with study product intake when they consumed
at least 80% of the anticipated quantity as calculated from the average intake by infants
aged 0–4 months.

2.5. Outcome Measures

The primary outcome was the mean daily body weight increment over a 4-month pe-
riod, calculated from the subject’s weight at baseline (V1) and at V6 divided by the number
of days between the visits. Secondary outcomes included other anthropometric data such as
(changes in) weight, length, and head circumference, their increments, and their respective
WHO growth standard z-scores (weight-for-age, length-for-age, head circumference-for-
age, and weight-for-length). Infant (naked) body weight was measured to the nearest
5 g using a calibrated electronic balance. Infant body length was measured to the nearest
0.1 cm using a length board. Head circumference (the largest occipitofrontal circumfer-
ence) was measured with a non-stretchable measuring tape. Measurements were carried
out twice per visit by the same person. If the difference between the two measurements
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exceeded 5%, a third measurement was taken, and all three measurements were used for
the statistical analysis.

A 3-day paper diary recounting the first 3 days after V1 and the last 3 days prior
to visits V2–V6 was used to collect information about tolerability endpoints (defined as
stool frequency and consistency), digestive tolerance parameters (regurgitation, vomiting,
and flatulence), and behavioral parameters (fussiness, crying, and awakening at night).
The total number of stools and stool consistency were assessed using the Amsterdam Stool
Form Chart [47]. Regurgitation was rated on a scale with the response options 0 (never),
1 (little, less than a teaspoon), 2 (much, 1–5 teaspoons), and 3 (very much, more than
5 teaspoons). Vomiting was assessed as the number of episodes per day, and flatulence was
rated on a scale with the response options 0 (never), 1 (sometimes), and 2 (often). Behav-
ioral parameters (fussiness without crying, crying, and awakening at night) were rated on
a scale with the response options 0 (never), 1 (sometimes), and 2 (often). Compliance and
estimated intake of the 5HMO-Mix and IF were assessed by parents recording the total
daily intake in the diary. Diaries were reviewed for completeness by the study personnel at
each visit.

AEs and concomitant medication and healthcare utilization were assessed at each
visit and documented in the eCRF. AEs were coded and grouped according to the Medical
Dictionary for Regulatory Activities (MedDRA) by primary system, organ, and class (SOC)
and preferred terms (PT) and categorized by seriousness, intensity, and causal relationship
to the study products. Concomitant medication was encoded and classified by interposed
verbatim terms using the WHO anatomical therapeutical chemical (ATC)/defined daily
dose (DDD) index.

2.6. Statistical Analysis

All statistical analyses were carried out using SAS v9.4. The safety dataset (SS)
consisted of all subjects who were randomized to one of the two intervention groups or
enrolled in the breastfed reference group and received at least one feeding (formula or
breast) for which there was any tolerability data available up to V6. The full-analysis dataset
(FAS) included all subjects of the safety dataset for whom there was at least one value of
the body weight at baseline and after baseline available. The per-protocol dataset (PPS)
included all subjects from the FAS without any major deviations. Major deviations included
noncompliance with the assigned group for ≥3 consecutive days, complementary foods
intake above ≥4 teaspoons of complementary foods in total per day for ≥3 consecutive
days, use of a calorie-containing product for medical reasons for ≥3 consecutive days,
no data on primary endpoint (body weight) available after baseline, and no availability of
diary data. The main goal of this study was to demonstrate the ability of IF containing five
different HMOs in their natural concentrations and ratios to support normal growth within
the first 4 months of life by showing its noninferiority compared to the standard formula in
terms of body weight increment from baseline to month 4. The 5HMO-Mix was considered
noninferior to IF given a body weight gain in the 5HMO-Mix group of more than -3 g/day
compared to the IF group [48]. In other words, noninferiority was achieved when the lower
limit of the one-sided 97.5% confidence interval (CI) for the body weight increment at
month 4 (5HMO-Mix vs. IF) was greater than -3 g/day. Assuming an expected difference in
means of 0 g/day and a common standard deviation (SD) in body weight gain of ~6 g/day
for male and female infants [49,50], a sample size of 64 subjects per group was needed for a
two-group t-test with a 2.5% one-side significance level to achieve 80% power as calculated
using nQuery Advisor v7.0 (Statsols). Considering a 40% dropout rate, the enrollment
of 108 subjects per study arm was planned to reach the number of 64 subjects in the PPS.
For the confirmatory analysis of the primary outcome, we used a statistical analysis of
covariance (ANCOVA) based on independent, normally-distributed random variables with
equal variances. The dependent variables were treatment group and stratification factor
(sex and site) as fixed effects and body weight at baseline as a covariate. The primary
endpoint was analyzed for the FAS and PPS. In addition to the absolute data on body
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weight, length, and head circumference, growth parameters were complemented by the
evaluation of age-specific and sex-specific WHO child growth standard z-scores that were
calculated using the WHO Anthro Survey Analyzer (2011). Secondary and exploratory
outcomes were analyzed using an ANCOVA model similar to that used for the primary
outcome variable at each visit of the FAS and PPS using original data or data after multiple
imputation (using the SAS procedures MI and MIANALYZE) if data points were missing.
The number of imputations was set to 100, and the covariates considered for inclusion
were the treatment group, site, sex, birth weight, age, and weight at all time points.

Due to the COVID-19 pandemic in spring/summer 2020, the assessments were carried
out in accordance with the relevant guidelines [51,52]. On-site visits and the on-site
assessment of anthropometric data were replaced with telephone consultations, and the
assessment of body weight, length, and head circumference were conducted by parents
or pediatricians. During each telephone consultation, a questionnaire was completed that
prompted for data and information about how measurements were taken. To evaluate
the quality of these off-site measurements, sensitivity analysis was applied to the primary
endpoint body weight, treating the off-site data as missing data and performing a multiple
imputation as described above.

3. Results
3.1. Subject Characteristics

We screened 341 term infants at two centers in Germany, five centers in Italy, and five cen-
ters in Spain. All 341 infants were enrolled. We allocated 116 infants (34.0%) to the BM
group based on requests from the parents or legal guardians and 225 (66.0%) to the formula
groups (5HMO-Mix or IF). Among the latter, 113 infants (33.1%) infants were randomized
to the 5HMO-Mix group and 112 (32.8%) to the IF group.

The number of infants that completed the study was 265 (77.7%): 86 (76.1%) in the
5HMO-Mix group, 91 (81.3%) in the IF group, and 88 (75.9%) in the BM group (Figure 2).
All subjects randomized to one of the two formula arms or enrolled in the BM group,
and who received at least one feed for which tolerability data were recorded up to V6,
were included in the safety data set (SS). Furthermore, 300 infants (88.0%) were included in
the FAS and 239 (70.1%) in the PPS. The primary endpoint was reported in both the FAS
and PPS because both datasets are equally important in a noninferiority trial. Growth pa-
rameters were presented for the FAS and tolerability parameters for the SS.

There were no significant differences among the three groups with respect to baseline
demographics (Table 2).

3.2. Growth Outcomes

The primary endpoint (mean daily body weight gain after 4 months intervention) was
assessed in the FAS and PPS. In the 5HMO-Mix group, the mean body weight increase
from V1 to V6 was 3347.7 ± 667.0 g (FAS) and 3329.8 ± 670.9 (PPS) with a daily mean body
weight increment of 29.9 ± 5.8 g/day (FAS) and 29.8 ± 6.0 g/day (PPS). The two-sided 95%
CI ranged from −0.7 to 2.4 g/day (FAS) and from −0.8 to 2.3 g/day (PPS), with the lower
bound above the noninferiority margin of −3 g/day in both populations. The primary
endpoint noninferiority of the 5HMO-Mix was therefore observed in the FAS (p < 0.001) and
the PPS (p < 0.001) versus IF, with respect to mean daily body weight gain. Average body
weight in the two intervention groups from V1 to V6 is shown in Table 3.

There were no significant differences in mean weight, length, or head circumferences
between the two intervention groups during the study (data for length and head circumfer-
ence not shown). At V6 we observed differences between the 5HMO-Mix and BM groups
(6578.8 vs. 6391.0 g, p = 0.0496) and between the IF and BM groups (6557.3 vs. 6391.0 g,
p = 0.0431) with respect to body weight, but there were no significant differences in body
weight between the intervention groups and BM group at other time points. At both V5 and
V6, we observed significant differences between the 5HMO-Mix and BM groups (p = 0.014
and p = 0.0019, respectively) and the IF and BM groups (p = 0.0383 and p = 0.0006, respec-
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tively) with respect to body length in the FAS population, but there were no significant
differences when comparing the 5HMO-Mix and IF groups at all time points. We observed
no significant differences in the change of head circumference measures among any of the
groups at any time point.

Figure 2. Consort diagram showing the disposition of subjects.

No significant differences in weight-for-age z-scores were observed between the
5HMO-Mix and IF groups at any time point between V2 and V6 in the FAS. Compared to
the BM group, the mean z-scores were slightly higher in both intervention groups at V6.
For the remaining time points, there were no significant differences between either of the
intervention groups and the BM group. The length-for-age z-score in the FAS differed
between the IF and BM groups at V2 (the value was slightly higher in the IF group), but no
significant differences were observed in the PPS. No significant differences in length-for-age
scores were observed between the two intervention groups in the FAS at any of the time
points between V2 and V6. Compared to the BM group, the mean z-scores were slightly
higher in the intervention groups at both V5 and V6. There were no significant differences
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in the head circumference-for-age scores among the study groups in the FAS. The infants
fed with the 5HMO-Mix maintained their weight-for-age z-score. The age-based weight,
length, and head circumference z-scores according to WHO standard growth curves are
shown in Figure 3.

Table 2. Demographic and clinical characteristics of infants (safety set, n = 311).

5HMO-Mix
n = 103

IF
n = 104

BM
n = 104

Total
n = 311

Sex, n (%)
Male 54 (52.4) 55 (52.9) 52 (50.0) 161 (51.8)

Female 49 (47.6) 49 (47.1) 52 (50.0) 150 (48.2)
Age at enrollment, days 4.8 ± 3.2 (1–16) 4.3 ± 2.7 (1–14) 5.2 ± 3.6 (1–14) 4.8 ± 3.2 (1–16)

Gestational age at birth, weeks 39.3 ± 1.1 39.3 ± 1.2 39.4 ± 1.1 39.3 ± 1.1
Ethnicity, n (%)

Caucasian 95 (92.2) 100 (96.2) 97 (93.3) 292 (93.9)
African 1 (1.0) 1 (1.0) - 2 (0.6)
Mixed 6 (5.8) 3 (2.9) 4 (3.8) 13 (4.2)
Other 1 (1.0) - 3 (2.9) 4 (1.3)

Mode of delivery, n (%)
Vaginal 56 (54.1) 64 (61.5) 73 (70.2) 193 62.1)

Cesarean section 32 (31.1) 33 (31.7) 24 (23.1)
Assisted vaginal 15 (14.6) 7 (6.7) 7 (6.7) 29 (9.3)
Birth weight, g 3321.8 ± 434.7 3351.1 ± 405.5 3412.0 ± 381.3 3361.8 ± 408.1

Birth length, cm 50.04 ± 2.01 50.44 ± 2.23 50.54 ± 1.97 50.34 ± 20.8
Birth head circumference, cm 34.65 ± 1.13 34.68 ± 1.23 34.65 ± 1.48 34.66 ± 1.29

APGAR score 1 10.0 ± 0.2 (9–10) 9.9 ± 0.3 (9–10) 9.9 ± 0.3 (9–10) 9.9 ± 0.3 (9–10)
Use of antibiotics by mother before or

during delivery, n (%) 15 (14.6) 20 (19.2) 22 (21.2)

Feeding history from birth up to
enrollment, n (%)
Breast milk fed 11 (10.7) 6 (5.8) 93 (92.3)

Infant formula fed 92 (89.3) 98 (94.2) 8 (7.7)
1 Mean ± SD (min–max)

Table 3. Average body weight (g) at V1, V2, V3, V4, V5, and V6 for the two intervention groups. Data shown for subjects
with values at V1 and at the actual visit were included in the analysis. ANCOVA with the fixed effect factors “treatment”,
“site”, and “sex” and body weight at V1 as covariate was used for the statistical analysis (observed cases, FAS).

5HMO-Mix IF

n Mean ± SD Min Max n Mean ± SD Min Max p-Value

V1 97 3236.5 ± 410.5 2480.0 4260.0 101 3274.4 ± 393.9 2510.0 4230.0 -
V2 97 3643.2 ± 433.0 2863.3 4690.0 100 3682.5 ± 444.1 2686.7 4790.0 0.8441
V3 91 4212.0 ± 477.5 3271.7 5710.0 97 4257.1 ± 468.8 3306.7 5316.7 0.9579
V4 88 5148.7 ± 537.1 3995.0 6540.0 93 5178.9 ± 542.8 3906.7 6280.0 0.8589
V5 86 5893.7 ± 623.9 4595.0 8000.0 88 5867.0 ± 600.4 4603.3 7490.0 0.4245
V6 84 6578.8 ± 697.6 5170.0 9195.0 89 6557.3 ± 672.8 5059.3 8280.0 0.5314

3.3. Infant Formula Intake

The mean daily volume intake of 5HMO-Mix and IF were similar in the two interven-
tion groups. Compliance was calculated based on the weight of the returned packages of
infant formula. An infant was considered compliant when at least 80% of the expected
amount of infant formula was used. Only three infants (3.1%) in the 5HMO-Mix group
and four (4.0%) in the IF group were considered noncompliant. The mean daily intake of
infant formula (mL) including mean daily kcal intake at the different time points is shown
in Table 4. The consumption and estimated energy intake appeared to be comparable.
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Figure 3. WHO growth standard z-scores weight-for-age (a), length-for-age (b), and head
circumference-for-age (c) per visit. Full analysis set. Explorative p-values: * p < 0.05, ** p < 0.01.
Abbreviations: 5HMO-Mix = 5HMO-Mix in infant formula, IF = infant formula without 5HMO-Mix,
BM = breastfed infants.
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Table 4. Average daily intake of infant formula (mL/day) and average kcal intake after V1 and before V2, V3, V4, V5,
and V6 (FAS).

5HMO-Mix IF

n Mean ± SD Median Min Max n Mean ± SD Median Min Max

V1 93 101
mL 459.7 ± 137.7 455.0 23.3 990.0 442.9 ± 135.4 440.0 150.0 811.7
Kcal 312.6 ± 93.6 309.4 15.9 673.2 301.2 ± 92.1 299.2 102.0 551.9
V2 95 100
mL 603.5 ± 134.5 605.0 70.0 900.0 617.3 ± 141.6 604.2 80.0 1196.7
Kcal 410.4 ± 91.5 411.4 47.6 612.0 419.7 ± 96.3 410.8 54.4 813.7
V3 89 97
mL 744.5 ± 163.2 713.3 453.3 1456.7 769.7 ± 161.6 766.7 410.0 1440.0
Kcal 506.3 ± 111.0 485.1 308.3 990.5 523.4 ± 109.9 521.3 278.8 979.2
V4 87 94
mL 802.4 ± 152.1 786.7 490.0 1290.0 832.7 ± 179.9 808.3 533.3 1910.0
Kcal 545.6 ± 103.4 534.9 333.2 877.2 566.2 ± 122.3 549.7 362.7 1298.8
V5 86 92
mL 857.6 ± 189.4‚ 835.8 466.7 1430.0 871.2 ± 185.4 855.0 556.7 1591.7
Kcal 583.2 ± 128.8 568.4 317.3 972.4‚ 592.4 ± 126.0 581.4 378.5 1082.3
V6 83 89
mL 902.5 ± 170.0 870.0 480.0 1580.0 928.2 ± 165.9 900.0 636.7 1576.7
Kcal 613.7 ± 115.6 591.6 326.4‚ 1074.4 631.2 ± 112.8 612.0 432.9 1072.1

Average intake of the 5HMO-Mix is presented in Figure S1 in the Supplementary Ma-
terials. The mean HMO intake per day was calculated to 2.64 ± 0.79 g (V1), 3.46 ± 0.77 g
(V2), 4.28 ± 0.94 g (V3), 4.62 ± 0.87 g (V4), 4.94 ± 1.09 g (V5), and 5.19 ± 0.97 g (V6).

3.4. Gastrointestinal and Behavioral Tolerance Parameters

Stool frequency of infants in the 5HMO-Mix and IF groups was an average of 3.9 ± 1.4
and 3.4 ± 1.6 stools per day, respectively, during the first week of intervention, which de-
clined throughout the study to 1.8± 1.0 and 1.6± 0.9 stools per day, respectively. Changes in
stool frequency followed the same pattern in both groups (Figure S2). The infants in the
BM group passed more stools per day during the first 28 days of intervention (p = 0.0000
at V2 and V3), thereafter following the same decline as observed in the 5HMO-Mix and
IF groups. No significant differences between 5HMO-Mix and BM groups were observed
from V4 to the end of the intervention. The IF group passed fewer stools per day than the
5HMO-Mix and BM groups at V6 (p = 0.0428 and p = 0.0136, respectively).

We observed no differences in stool consistency between the two formula groups,
but the breastfed infants passed more watery stools more frequently than both other groups.
Soft stools were observed significantly more frequently in the 5HMO-Mix group compared
to the IF group at V1–V4 (p = 0.023, p = 0.002, p = 0.004, and p = 0.045, respectively).
However, the number of soft stools in the BM group exceeded those of both intervention
groups at nearly all time points (Figure S3). The mean number of formed stools per
subject at each visit was similar in all three groups throughout the intervention (Figure S3).
The presence of blood stains in stool (hematochezia) was assessed from both the diary
and the AE records. Blood stains were observed in seven infants (6.8%) from the 5HMO-
Mix group, two (1.9%) from the IF group, and two (1.9%) from the BM group. For the
gastrointestinal tolerance parameters, we observed no differences among the three groups
in the frequency of flatulence. The mean total score for regurgitation was slightly higher in
the 5HMO-Mix group compared to the IF group at all visits except V2 and compared to
the BM group at V1. At all other time points, the 5HMO-Mix and BM groups appeared
comparable (Figure S4). Vomiting was similar in both formula groups at all time points but
was less frequent in the BM group at V1, V2, and V3 (Figure S4).

No difference in fussiness without crying was observed among the three groups during
the 4 months of intervention, but a slightly lower incidence at baseline was observed for
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the 5HMO-Mix group compared to the BM group (p = 0.0369). Crying was less frequent
in the 5HMO-Mix group compared to the IF group at V1 (p = 0.0350) but there were no
significant differences between these groups at other time points. Crying was also less
frequent in the 5HMO-Mix group compared to the BM group at V4 and V6 (p = 0.0132
and p = 0.0140, respectively), but there were no differences between the IF and BM groups.
Infants in the formula groups woke less frequently at night compared to breastfed infants
throughout the investigation period (Figure S5).

3.5. Adverse Events

The calculated two-sided 95% CIs for the total incidence of AEs and serious adverse
events (SAEs) were comparable in all three study groups. The total incidence of AEs was
similar in the 5HMO-Mix and IF groups, both being slightly higher compared to the BM
group. The total incidence of SAEs was similar in the 5HMO-Mix and BM groups, both be-
ing lower than in the IF group. The total number of reported AEs was 815, among which
50 were deemed related to the study product (relationship = possible, probable, definite,
or not assessable/missing), and these were equally distributed in the 5HMO-Mix and IF
groups. The incidence of AEs was similar in the 5HMO-Mix and IF groups: 335 AEs in
83 (80.6%) of the 5HMO-Mix infants and 289 AEs in 84 (80.8%) of the IF infants. In the BM
group, 191 AEs were recorded in 73 (70.2%) of the infants. Among the 815 AEs, 168 were
deemed mild, 64 moderate, and 8 severe. The number and intensity of the reported events
were similar among the three groups.

A slightly higher incidence of atopic dermatitis was reported in the IF group (n = 7)
compared to the 5HMO-Mix group (n = 0; p = 0.0141), whereas more genital fungal
infections were reported in the 5HMO-Mix group (n = 5) compared to the IF group (n = 0;
p = 0.0290). Hematochezia was more frequent in the 5HMO-Mix group compared to the
BM group, vomiting occurred more frequently in both intervention groups than the BM
group, and plagiocephaly occurred more frequently in the 5HMO-Mix group than the
BM group. Overall, no significant differences for specific AEs were observed between the
two intervention groups or when comparing either intervention group to the BM group.
The overall incidence and intensity of AEs potentially linked to the use of formula is
summarized in Table 5. For all AEs assessed during the study, please see Table S3.

Table 5. Number of infants in the safety set (n = 311) with the most abundant adverse events reported during the study
period (V1–V6) categorized by MedDRA v23.1. Primary SOC. Please see Table S3 for full overview of all AEs.

5HMO-Mix IF BM 5HMO-Mix
vs. IF

5HMO-Mix
vs. BM IF vs. BM

n n n p-Value p-Value p-Value

Gastrointestinal disorders 64 58 40 0.3975 0.0008 0.0180
Infections and infestations 32 28 34 0.5426 0.8817 0.4486

Skin and subcutaneous tissue disorders 14 21 7 0.2660 0.1129 0.0074
Respiratory, thoracic, and mediastinal disorders 10 10 7 1.0000 0.4603 0.6140

General disorders and administration
site conditions 6 8 15 0.7831 0.0635 0.1838

Metabolism and nutrition disorders 5 1 3 0.1187 0.4981 0.6214

n = number of subjects.

Sixteen SAEs were reported during the study, four of which (in four infants) were
deemed related to the investigational product. Three SAEs were reported in the 5HMO-
Mix group, representing 2.9% of the subjects, compared to nine (7.7%) in the IF group
and four (3.8%) in the BM group. Two SAEs each in the 5HMO-Mix and IF groups were
deemed related to the investigational product. One subject receiving the 5HMO-Mix was
hospitalized due to choking and gastroesophageal reflux but recovered. The formula was
not withdrawn, and the subject continued in the study. The second subject in the 5HMO-
Mix group experienced severe diarrhea; the formula was withdrawn, and the infant was
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treated with hydrolyzed milk before leaving the study. Both SAEs in the IF group resulted
in diagnosis with allergy to bovine milk protein. The subjects recovered after treatment
with saline and hydrolyzed milk but left the study prematurely.

Concomitant healthcare utilization was less frequent in the 5HMO-Mix group than
the IF group (p = 0.0117), but we observed no differences when comparing the intervention
groups to the BM group. Healthcare utilization following an AE was comparable between
the 5HMO-Mix and IF groups, and between the 5HMO-Mix and BM groups, but less
healthcare utilization was observed in the BM group compared to the IF group (p = 0.0254).

4. Discussion

Although breast milk provides the complete nutritional demands of a growing hu-
man infant, the majority (56% globally) of infants are fed on formula products because
of a range of clinical and/or social factors that prevent or discourage breastfeeding. Un-
til recently, such formula products provided nutritional sustenance but not the additional
beneficial functions attributed to HMOs, as the oligosaccharides in the milk of domestic
dairy animals such as cows, goats, and sheep are neither as diverse nor as complex as
those found in human breast milk [53]. Over the last two decades, efforts have been made
to synthesize HMOs and add them to formula products, but only a limited number of
HMOs not representing all structural classes have been tested in the clinic. These earlier
studies investigated the safety, tolerability, and effect on growth of 2′-FL [42–44], 2′-FL plus
LNnT [45,54], or 2′-FL plus 3′-galactosyllactose (3′-GL) [46], typically combined with other
prebiotics [42,43,46] such as galacto-oligosaccharides (GOS) and fructo-oligosaccharides
(FOS) or probiotics [46,54].

Given that the different natural benefits of HMOs are linked not to a single molecule
but rather to a collection of oligosaccharides with diverse chemical properties, we evaluated
the safety, tolerability, and effect on growth of a 5HMO-Mix. The mix provides the five
most abundant HMOs across all three major chemical categories and in proportions that
resemble their natural concentrations and ratios (5.75 g/L in total), without any other
prebiotic or probiotic ingredients. The main goal of the study was to investigate the
ability of the 5HMO-Mix as part of a basic infant formula to support normal growth in
healthy term infants (evaluated in terms of weight gain) compared to a standard formula
lacking HMOs. The trial was designed as a noninferiority comparison, defined as at least
equivalent performance between the 5HMO-Mix and IF groups.

The primary outcome was the mean daily body weight increment over a 4-month
period, calculated from the subject’s weight at baseline and final visit. We observed
no significant difference in weight gain between the 5HMO-Mix and IF groups, indicat-
ing that the 5HMO-Mix was noninferior to the IF lacking HMOs. The observed mean
values for daily weight gain of ~28.7 g/day were similar to those reported in studies
comparing IF with 2′-FL plus GOS [42], 2′-FL plus LNnT [45], or 2′-FL plus 3′-GL and
GOS/FOS [46]. When comparing the daily weight gain in the two formula groups to the
BM group, we observed a slightly higher increase from baseline to V6 for 5HMO-Mix vs.
BM (2.1 ± 0.9 g/day, p = 0.0199) compared to IF vs. BM (1.6 ± 0.9 g/day, p = 0.0674) in
the FAS (n = 300), but this effect was not seen in the PPS (n = 239). Faster weight gain has
previously been reported for infants bottle-fed with formula [46,55–57]. However, this may
be associated with loss of the infant’s self-regulation of energy intake due to early bottle
feeding and is also observed when human breast milk is fed by bottle [56–58]. Equiva-
lent weight gain was observed in infants fed with formula containing 2′-FL with a lower
caloric intake and breastfed infants [42]. The infant formula containing the 5HMO-Mix and
the infant formula without 5HMO-Mix used in this study had energy values of ~68 and
~69 kcal/dL, respectively, and therefore a slightly higher mean energy value than human
breast milk [59,60]. The slightly higher weight-to-age z-scores for the formula-fed subjects
are therefore in line with observations that bottle-fed infants gain weight more quickly.

The HMO intake ranged from 2.6 ± 0.79 g/day at V1 to 5.2 ± 0.7 g/day at V6,
showing only a slight increase after 4 weeks. The total HMO concentration and the ratio of
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the HMOs in the formula remained constant during the intervention period, whereas in
breast milk the concentration of several HMOs decreases within the first few months after
delivery [40], while a few HMOs, such as 3-FL, become more abundant [29,40]. The absolute
concentration of different HMOs is primarily influenced by the mother’s Secretor status
but also by her BMI and diet as well as several other factors described above [40,61].
The overall concentration of HMOs declines from 20–25 g/L in the colostrum to 10–15 g/L
in mature milk ([33,34] and references therein). Thus, supplying a formula with constant
HMO concentration and ratio of different HMOs could result in lower intake of specific
HMOs for very young infants and higher amounts of HMOs consumed in the later stage
of the study compared to breastfed infants. More personalized HMO compositions for
infants at different ages could bring formula products even closer to breast milk. However,
more research is needed to gain insight into the structure–function relationship of HMOs
and their specific effects in different stages on the infant’s development. The question of
whether the mother’s specific HMO profile is beneficial to the offspring is also still to be
answered. Breast milk samples from breastfeeding mothers in this study will be analyzed
to determine their HMO content and composition in order to find correlations between
HMO profiles and the developing infant gut microbiome in mother–child dataset pairs.

The safety of the 5HMO-Mix was confirmed by the similar frequency of AEs in the two
formula groups, which was slightly but not significantly higher than that for the BM group.
Our study did not intend to investigate specific health outcomes, so parents reported on
specific observations only for 3 days after V1 and 3 days before V2–V6, and AEs were
recorded at the visits. Earlier studies of formulae containing HMOs revealed a lower
incidence of respiratory tract infections and bronchitis, as well as the less frequent use of
antibiotics and antipyrenics [45,62]. We did not observe a lower incidence of infections
in our 5HMO-Mix group. We did observe slightly higher incidences of gastrointestinal
disorders and skin and subcutaneous tissue disorders in the two groups receiving formula
products. However, AEs causally linked to the formula products occurred at a similar
frequency in both groups. Gastrointestinal disorders are generally the most common
AEs in studies of infant formulae [46,63]. However, caregivers in the 5HMO-Mix group
were less likely to need healthcare interventions during the study than those in the IF
group. SAEs causally linked to the IF products were diagnosed as allergy to bovine
milk protein. Studies investigating the use of 2′-FL in a formula with partly or fully
hydrolyzed milk protein have already demonstrated that those formulae are safe and well
tolerated [44,46,64]. Although hematochezia was more frequently reported in the 5HMO-
Mix group, the overall frequency was still very low, and there were no specific safety
concern indicators. The hematochezia could be explained by anal fissures, transient firm
stool consistency, dyspepsia, gastroenteritis due to contact with pathogenic bacteria or
viruses, or allergy to bovine milk protein. We cannot therefore assume a relationship
between the frequency of hematochezia and HMO intake.

The mean total number of stools in the 5HMO-Mix group was somewhat higher than
that in the IF group for all study visits except V4 but was lower than that in the BM group
at V2 and V3. The mean number in the BM group was higher than that in the IF group
at all visits. The mean total number of watery stools was comparable in both formula
groups at all time points but was higher in the BM group. Infants in the 5HMO-Mix group
were more likely to produce soft stools from V1 to V4 compared to infants in the IF group,
but the breastfed infants produced softer stools than infants in the formula groups at all
time points. The mean total number of firm and hard stools was comparable in all three
groups at all time points, although the number of subjects with this stool type was lower
in the BM group. The more frequent and generally softer stools in the 5HMO-Mix vs. IF
group may reflect the greater similarity between the 5HMO-Mix formula and breast milk,
replicating the prebiotic effect. To investigate the effect of the HMOs on the development of
the gut microbiome, stool samples were collected from all three groups and will be subject
to deep sequencing to identify the dominant microbial communities.
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We observed no differences among the three groups in the incidence of regurgitation
or flatulence, but the breastfed infants showed a lower frequency of vomiting compared to
the other groups at V1–V3. In terms of behavioral parameters, we observed no differences
among the three groups for the parameter of fussiness without crying, but infants in the
5HMO-Mix group cried less than breastfed infants, and both groups of bottle-fed infants
woke less frequently at night compared to breastfed infants (with no significant difference
between the two types of formula). Bottle-fed infants have previously been shown to sleep
for longer periods at night than breastfed infants [63].

The study enrolled more than 300 subjects and therefore had sufficient strength to
test the 5HMO-Mix formula against a standard comparator with breastfed infants as a
reference. However, the study also had several limitations. Tolerability parameters were
documented for only 3 days after V1 and 3 days before each subsequent visit. The digestive
and behavioral parameters could have been recorded more frequently to provide a clearer
outcome. Because of the COVID-19 pandemic in spring/summer 2020, several subjects
(particularly those in Spain) were unable to attend on-site visits, and an emergency plan
was developed to replace these with telephone visits in accordance with guidelines issued
by the FDA and EMA. However, the responsibility for measuring anthropometric data
was transferred from professional personnel to the parents or pediatricians, not always
precisely in line with the prescribed visit times. We therefore treated the data as missing,
and sensitivity analysis was applied by multiple imputations. However, when comparing
the original and imputed data, we did not detect significant differences (data not shown).

By implementing the five most abundant HMOs in natural concentrations in an infant
formula, we took the next step toward bringing formula products closer to breast milk in
terms of carbohydrate diversity. Further studies are needed to investigate health-related
outcomes when using this blend of HMOs (5HMO-Mix); using fecal samples collected in
this study, we will investigate the effect on modulation of the microbiome. Future studies
should determine if even higher numbers of HMOs or specific symbiotic combinations
with HMOs have even more significant benefits on the infant’s development. In addition,
a multiplicity of in vitro studies support the knowledge on potential health benefits of
single HMOs in different areas such as microbiome development, immune modulation,
or intestinal barrier function.

5. Conclusions

We conclude that an infant formula fortified with a mixture of the five most abundant
HMOs (2′-FL, 3-FL, LNT, 3′-SL, and 6′-SL) at the concentrations and ratios resembling
those in breast milk supports normal infant growth and is safe and well tolerated for use in
healthy term infants.
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mdpi.com/article/10.3390/nu13082871/s1, Table S1: Inclusion and exclusion criteria, Table S2:
Energy, nutrients, and HMOs in 5HMO-Mix formula and the control IF, Table S3: Complete overview
of number of infants in the safety set with adverse events during the study period, Figure S1:
Average intake of the 5HMO-Mix at different timepoints, Figure S2: Average stool frequency per
day, Figure S3: Stool consistency, Figure S4: Score values for reguration, vomiting, and flatulence.
Figure S5: Score values for behavioral parameters.
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