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Oxidative stress plays a dominant role in inflammatory skin diseases. Emerging evidence
has shown that the close interaction occurred between oxidative stress and the gut
microbiome. Overall, in this review, we have summarized the impact of oxidative stress and
gut microbiome during the progression and treatment for inflammatory skin diseases, the
interactions between gut dysbiosis and redox imbalance, and discussed the potential
possible role of oxidative stress in the gut-skin axis. In addition, we have also elucidated the
promising gut microbiome/redox-targeted therapeutic strategies for inflammatory skin
diseases.
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INTRODUCTION

Oxidative stress acts as the essential regulator in the biological components, which has been noted
that it could mediate the pathological progression of inflammatory skin diseases. Several studies
showed that endogenous and exogenous modulatory factors such as amounts of biochemical
components (oxygen, nitrogen, and sulfur) might result in oxidative stress reactions.
Additionally, these active substances are called reactive species, mainly including reactive oxygen
species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS), which have made
stimulating effects on the progress of cell metabolism (Bourgonje et al., 2020). In detail, reactive
species participate in a variety of oxidative signaling pathways, such as MAPK/AP-1, NF-κB, JAK-
STAT, Nrf-2, PI3K/AKT, and TLR-mediated signaling, modifying cytochrome thiols, and then
regulate the function of enzymes, transcription factors, and other proteins (Sies and Jones, 2020;
Forman and Zhang, 2021). ROS and RNS can be produced in the skin during the procedure of
respiration exposed to pollutants, toxins, or ultraviolet irradiation (D’Autréaux and Toledano, 2007;
Willems et al., 2015; Zhang et al., 2016). 1O2 is the first ROS produced by the skin, rapidly
metabolized to produce superoxide radicals (O2·−), hydrogen peroxide (H2O2), and·OH.·NO is one
of the RNS produced by NO synthase (NOS) in UVB-irradiated or inflamed skin (Deliconstantinos
et al., 1996). RSS has consisted of hydrogen sulfide (H2S), persulfide (RSnSH, n ≥ 1), polysulfide
(H2Sn, n ≥ 2), sulfur dioxide (SO2), carbon disulfide et al. Endogenous H2S is produced by L-cysteine
catalyzed by cystathionine-γ-lyase (CSE) and cystathionine-β-synthase (CBS), while produced by β-
mercaptopyruvate pyruvic acid in the presence of 3-mercaptopyruvate sulfotransferase (3-MST) in
mitochondria(Kutz et al., 2015; Meng et al., 2018). At present, RSS is considered to participate in
various pathological and physiological processes of skin diseases(Kutz et al., 2015; Goren et al., 2019;
Yang et al., 2019; Xu et al., 2021; Zhou et al., 2022). Meanwhile, there have been cells have a variety of
antioxidant mechanisms in cells to combat oxidative stress. Long-term antioxidant responses, which
contain activation of pro-survival gene expression programs (e.g., Nrf2) and DNA damage repair
(e.g., ATM and p53) or cell death correlated program (e.g., NF-κB and p53), are the crucial part of cell
defense against stress (Martindale and Holbrook, 2002; Ray et al., 2012). The short-term antioxidant
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responses help to alleviate acute cell damage caused by oxidative
stress and stabilize cell redox potential. These responses are
activated by antioxidant cell systems that contain enzymes
(e.g., superoxide dismutase, catalase, and glutathione-
peroxidase) and non-enzymatic antioxidants such as vitamins
and reduced glutathione (GSH) (Finkel and Holbrook, 2000;
Chen et al., 2012; Kuehne et al., 2015).

The gut microbiome is presented in the gastrointestinal tract,
including bacteria, viruses, archaea, fungi, and genetic material
(Lederberg, 2001). Microbiome and related small molecule
metabolites play essential roles in host immune maturation
and dynamic balance (Brühl and Küstner, 1972; Dodd et al.,
2017). The abnormal gut microbiome changes are closely related
to the occurrence and development of inflammatory diseases
such as inflammatory bowel disease (Cohen et al., 2019). Recent
studies have shown that the gut microbiome, through their
production of metabolites, could induce local and systemic
inflammation, regulate the function of extra-intestinal organs
such as the brain (Morais et al., 2021), joint (Zaiss et al., 2021),
liver (Tranah et al., 2021) and skin et al.(Ni et al., 2020) by
modulating the production and catabolism of metabolites, and
participate in the occurrence and progression of diseases.
Respectively, the concepts of “gut-brain axis,” “gut-joint axis,”
“gut-liver axis,” and “gut-skin axis” were put forward.
Individually, several studies have made further investigation
and indicated that the indispensable interactions of oxidative
stress and gut microbiome suggested that the cross-talk between
redox imbalance and gut dysbiosis may display critical effects on
the gut-skin axis.

In this review, the dramatic role of oxidative stress and gut
microbiome in the progression of inflammatory skin diseases will
be summarized. Moreover, the close association between
oxidative stress and gut microbes will be delivered. All in all,
the significance of its relationship and promising therapeutic
strategies for inflammatory skin diseases by targeting gut
microbiome/redox will also be elucidated.

OXIDATIVE STRESS AND INFLAMMATORY
SKIN DISEASES

Role of Reactive Species in Skin
It is well known that several kinds of oxidative stress-induced
diseases and abnormal biological components could be
modulated by reactive species-associated inflammation and cell
death (Sies and Jones, 2020). Meanwhile, the reactive species in
the skin are in an unstable state to make it too ‘active.’ Among
different subtypes of ROS, O2·− is synthesized by NADPH
oxidase (NOX) and Xanthine oxidase (XO). Increased
NADPH oxidase activity of neutrophils and macrophages
subsequently produce large amounts of O2·−, which may
contribute to the cytotoxic reactions during inflammatory skin
diseases (Ryu et al., 2019). Moreover, amounts of O2·− mediated
by NOX could participate in modulating differentiation and
proliferation of epidermal keratinocyte and fibroblasts
(Martínez-Navarro et al., 2020). The XO could also be found
in epidermal keratinocytes and endothelial cells. ·NO is

synthesized by NOS existing in keratinocytes, fibroblasts, and
endothelial cells (Abbas et al., 2016). Active sulfur compounds
(RSS) have more robust antioxidant activity than mercaptan.
Three H2S synthases are identified in the skin, including CSE,
CBS, and 3-MST. It has been reported that CSE and 3-MST are
highly expressed in the human microvasculature (Kutz et al.,
2015). CSE is also expressed in hair follicle keratinocytes and
basal keratinocytes of the neo-epidermis at the wounded area.
Furthermore, CSE-derived H2S can enhance the expression of
early keratinocyte differentiation markers cytokeratin 10 (CK10)
and involucrin (IVN) in cultured human keratinocytes (Goren
et al., 2019). Yang et al. found that H2S attenuates NETosis and
primes diabetic wounds to heal through blockage of ROS-
mediated MAPK ERK1/2 and p38 activation (Yang et al.,
2019). Zhou et al. found that YB-1 (a DNA-binding protein)
promotes splicing of pri-miR-192 to mediate the proangiogenic
effects of H2S(Zhou et al., 2022). These studies suggested the
potential therapeutic effects of RSS on oxidative stress. Different
reactive species can interact with each other. O2·− forms ONOO-
in the presence of a large amount of ·NO, and then break down
into ·NO2 and ·OH. ·NO, ONOO-and ·NO2 nitrify the tyrosine
residues of proteins to form nitro-tyrosine, which inhibit
phosphorylation signaling (Bourgonje et al., 2020).

Role of Oxidative Stress in Inflammatory
Skin Diseases–Reactive Species as
Mediators
Oxidative stress plays a vital role in the pathophysiological
process of inflammatory skin diseases. Redox balance disorders
induced by sustained exposure to reactive species accelerate the
severe inflammation and cell death in the skin. The role of
oxidative stress in several inflammatory skin diseases will be
well discussed.

Atopic Dermatitis
Overproduction of ROS plays a crucial role in the pathogenesis of
atopic dermatitis (AD). A high level of ROS was observed in skin
biopsies from AD patients (Sapuntsova et al., 2011). Meanwhile,
up-regulated oxidative stress biomarkers, including NO,
malondialdehyde (MDA), and 8-hydroxydeoxyguanosine (8-
OHdG), have also been found in serum and urine of AD
patients (Tsuboi et al., 1998; Omata et al., 2001; Tsukahara
et al., 2003). A recent study from 56 children diagnosed with
atopic dermatitis showed significantly higher lipid hydroperoxide
andmyeloperoxidase levels. In comparison, a lower serum level of
the total antioxidant potential value indicates AD might be
associated with increased oxidative stress reactions and
decreased antioxidant defense (Simonetti et al., 2021). An
observational study recruiting 31 children with AD
demonstrated that the mean and total sulfhydryl
concentrations were lower than those in the control group
(p = 0.012; 0.047), while the average concentration of disulfide,
SS/SH, SS/total SH, SH/total SH were significantly higher than
those of healthy infants (p < 0.05), which suggested that the
higher antioxidant defense level of AD infants (Karacan et al.,
2020). The environment is a known source of oxidative stress.
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Many kinds of pollutants in the air may cause oxidative stress and
lead to skin barrier dysfunction, inflammation, and immune
disorders. Environmental pollutants, such as cigarette smoke
bind to aryl hydrocarbon receptor (AhR) and induce the
production of ROS and inflammatory factors. Previous studies
have shown increased levels of 8-OHdG, a DNA oxidation
marker, in AD children exposed to short-term ultrafine
particles (Song et al., 2013). Staphylococcus aureus is the
dermal colonization bacterium from AD patients. Notably,
bacterial-related enzymes can combine AhR and produce ROS
(Furue, 2020). Furthermore, evidence showed that oxidative
stress might induce the poor progression and development of
AD. One clue is that oxidative stress-related signal pathways such
as the NF-κb pathway can induce the production of many
inflammatory cytokines (such as IL-6, IL-8, IL-9, and IL-33)
(Yao et al., 2011) and aggravate skin inflammation. The other clue
is that current animal studies have proved that the oxidation-
reduction imbalance in AD skin enhanced Th2 polarization,
worsening the disease (Ahn, 2014).

Psoriasis
Up-regulated ROS were found in the keratinocyte, fibroblasts,
and neutrophils of the skin in psoriasis patients (Khmaladze et al.,
2014). It has been reported that NOX4, which is expressed in
dermal fibroblasts, is essential for keratinocytes proliferation
(Barygina et al., 2019b). Moreover, ROS was involved in the
neutrophil chemotaxis (Hoffmann et al., 2018; Aksoy and Kirmit,
2020). Vegfors et al. reported that ROS could induce the
expression of psoriasis-associated angiogenic factors, vascular
endothelial growth factor (VEGF), heparin-binding epidermal
growth factor-like growth factor, matrix metalloproteinase one,
and thrombospondin 1 (Vegfors et al., 2016). ROS-mediated
oxidative stress activates various redox signaling pathways in
psoriasis, including NF-κB and MAPK (Zhou et al., 2009), thus
activating Th1 and Th17 secreting cytokines, finally causing the
proliferation of keratinocytes. Barygina et al. also found that low
dose cytokines can reduce oxidative stress in primary lesional
fibroblasts of psoriasis (Barygina et al., 2016). Moreover, anti-
TNF-α is therapy probably associated with normalization of
NADPH oxidase activity in psoriasis patients (Barygina et al.,
2013). Furthermore, Sirtuin 1 (Sirt 1) can protect against
oxidative stress-induced apoptosis in fibroblasts via
modulation of MAPK signaling in psoriasis (Becatti et al.,
2018). As a complex disease with inflammation and oxidative
stress, oxidative stress in psoriasis may have complex cross-talk
mechanisms with metabolism and cytokines. Glycolytic
reprogramming is triggered in macrophages and dendritic cells
(DCs) following acute activation of pathogen-associated
molecular patterns (especially Toll-like receptor), and then
results in altered mitochondrial function, increased reactive
oxygen species (ROS) production, and elevated secretion of
proinflammatory cytokines (Tannahill et al., 2013;
Lampropoulou et al., 2016). Mogilenko et al. found that high-
fatty acids enhance Toll-like receptor-mediated innate activation
by inhibiting hexokinase, thus impairing glycolysis
reprogramming, leading to mitochondrial adaptation disorder,
and increasing the production of mitochondrial reactive oxygen

species (mtROS) (Mogilenko et al., 2019). The result accentuated
the unfolded protein response (UPR) and induced the production
of IL-23. Mizuguchi et al. also showed that mtROS-dependent IL-
1β is involved in exacerbating psoriatic inflammation(Mizuguchi
et al., 2021).

ROS also participates in lipid peroxidation in psoriasis.
Unsaturated fat oxidation induced by ROS causes the
production of MDA (Pietrzak et al., 2010). Some studies have
found elevated MDA and NO in serum, reduced SOD
(superoxide dismutase, a group of enzymes that catalyze the
dismutation of O2·− to O2 and H2O2), and total antioxidant
capacity (TAC) in serum of psoriasis patients. Furthermore,
Sorokin et al. found that assaying oxidation-modification of
lipids revealed a significant association with oxidized LDL and
oxHDL in psoriasis patients (Sorokin et al., 2018). ROS-mediated
lipid peroxidation in the skin of psoriasis induced oxidized LDL
(ox-LDL) (Honda and Kabashima, 2019) and caused the
activation of phospholipase A2, exacerbating local
inflammation. Meanwhile, lipid peroxidation also activated
cGMP, leading to excessive epidermal proliferation in psoriasis
(Aksoy and Kirmit, 2020). A recent study showed that ROS is
involved in cell death in psoriasis. The excessive activation of
PARP1 was responded to ROS-induced DNA damage and
resulted in parthanatos cell death (Martínez-Morcillo et al.,
2021).

Meanwhile, evidence suggested that RNS plays an essential
role in the pathogenesis of psoriasis. Researches confirmed that
CD11c (+) cells (a type of DCs), which are the major cell types in
the skin lesions of psoriasis, are the sites for the expression of
inducible NOS (Lowes et al., 2005). Moreover, it has been known
that the locus containing the inducible nitric oxide synthase
(NOS2) gene is associated with psoriasis susceptibility (Lowes
et al., 2005). Zhong et al. found that in the psoriasis mouse model,
pathogenic NO is produced by NOS2 within local macrophages,
and IL-1α is released in the NOS2-dependent manner (Zhong
et al., 2018). He et al. also has been reported that psoriasis was
characterized by higher levels of expression of innate immunity-
related (NOS2/inducible NOS and IL-17C) products (FDR <0.05)
(He et al., 2021).

Vitiligo
Oxidative stress is considered an initiated and mediated factor in
the pathogenesis of vitiligo. In vitiligo patients, Li et al. found
significant decreases in the levels of antioxidant enzymes (CAT
and SOD) and total antioxidant capacity (TAC), while increases
in the levels of MDA and 8-OHdG. Moreover, these abnormal
indexes about oxidative stress were correlated with activity and
disease severity (Li S. et al., 2021). The ROS generator 2,2′-
azobis(2-amidinopropane) dihydrochloride (AAPH) treated
keratinocyte is a model for studying oxidative stress-mediated
skin diseases(Barygina et al., 2019a). Elevated ROS in the skin
destroys melanocytes by damaging DNA and related cellular
structures, causing the formation of disorders of the melanin.
Furthermore, ROS changes the structure of melanocytes and
induces many kinds of oxidation products, including oxidated
protein products and glycation products (Mitra et al., 2017;
Vaccaro et al., 2017). It is believed that the mitochondrial
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dysfunction caused by oxidative stress is an important cause of
melanocyte death. Yi et al. showed that inhibition of peroxisome
proliferator-activated receptor-gamma coactivator 1-alpha
(PGC1-α) and enhanced carbonylation in melanocytes of
vitiligo could lead to dysregulation of nicotinamide adenine
dinucleotide (NAD+)-dependent deacetylase Sirtuin 3 (Sirt3,
an enzyme involved in suiting mitochondrial dynamics and
homeostasis), which led to mitochondrial severe dysfunction
and apoptosis of melanocyte (Yi et al., 2019).

Recent studies have shown that RIP1-mediated mitochondrial
ROS further triggers the production of necrotic bodies, leading to
programmed cell death in melanocytes (Li B. et al., 2021). It
suggests that oxidative stress induces various forms of cell death
in melanocytes. Moreover, the endoplasmic reticulum stress and
the UPR induced by ROS are essential factors causing melanocyte
death. The dilation of the endoplasmic reticulum in melanocytes
from vitiligo patients has been observed (Boissy et al., 1991). The
pathogenesis of endoplasmic reticulum stress in vitiligo remains
to be elucidated, but it is speculated that Ca2+ interference and
translocation of calreticulin (CRT) may be the main pathways
leading to melanocyte death. Other studies have shown that the
UPR is activated during keratinocyte differentiation (Celli et al.,
2011). UPR works in three branches, including PERK, ATF6, and
IRE1. The study found that IRE1α/sXBP1 in keratinocytes led to
elevated inflammatory factors such as CXCL16, which
subsequently mediated CD8+ T cell chemotaxis and
cytotoxicity. This study also suggests cross-talk between
oxidative stress and autoimmune-mediated melanocyte
cytotoxicity. Ahn et al. observed that ROS induced ATP
release in keratinocyte, and the elevated ATP concentrations
produced ROS in melanocytes and activated the ATP/
P2X7 receptor-dependent inflammasome. And this stimulated
the keratinocyte to produce CXCL9, which recruits CD8+ T cells
to kill melanocytes (Ahn et al., 2020).

GUT MICROBIOME AND INFLAMMATORY
SKIN DISEASES

Gut Microbiome and Gut-Skin Axis
Hypothesis
The gut microbiome is the sum of the microbes that contain 3.3
million eukaryotic genes. More than 99% are bacteria. They
participate in food digestion and nutrient intake in the human
body tomaintain human health (Kinross et al., 2011; Dominguez-
Bello et al., 2019). Microbiome development and changes are
influenced by many factors, including childbirth, diet, drugs, and
diseases (Dominianni et al., 2015; Patnode et al., 2019; Shao et al.,
2019; Zimmermann et al., 2019). Meanwhile, metabolites such as
acetate, propionate, and butyrate, which are fermentation
byproducts of the gut microbiota, were essential for intestinal
health like providing energy to epithelial cells, enhancing the
integrity of the epithelial barrier, carrying out immune regulation,
and preventing the invasion of pathogens (Dodd et al., 2017).
Growing studies confirm that the gut microbiome plays a crucial
role in many human diseases. Moreover, the mechanisms may

include intestinal barrier dysfunction leading to bacterial
translocation (“Leaky Gut”), gut dysbiosis, related metabolites,
induced inflammation, and immune disorders (Fan and
Pedersen, 2021).

The concept of the gut-skin axis was first proposed by John H.
Stokes and Donald M. Pillsbury in 1930 (John and Donald, 1930).
They hypothesized that negative emotional states such as
depression and anxiety might alter the gastrointestinal
function and normal gut microbiome, leading to increased
intestinal permeability and systemic inflammation. Studies
have shown that mice fed probiotics significantly improve
stress-induced neurogenic skin inflammation compared with
untreated mice (Guéniche et al., 2010; Lee J. et al., 2016).
Although the mechanism has not been elucidated, the authors
explain that the gut-skin axis exists because increased intestinal
epithelial permeability will activate T cells destroy the
immunosuppressive cytokines and Treg cells, leading to
systemic inflammation, which may destroy the skin
homeostasis. In addition, studies have shown that gut
microbes can use the production of neurotransmitters such as
acetylcholine, noradrenaline, and dopamine to communicate
with surrounding organs via neuronal pathways (Wang and
Kasper, 2014). It has also been suggested that changes in the
gut microbiome can lead to increased intestinal permeability,
allowing inflammation-related products in the gut to enter the
systemic circulation directly (Dodd et al., 2017).

Gut-Skin Axis in Inflammatory Skin
Diseases
Recent studies have shown that the aberrant gut-skin relation can
deliver a poor AD progression due to the imbalance of gut
microbiota and its signaling versus the skin. (Penders et al.,
2006; Lee E. et al., 2016). In AD mice, the related metabolites
in the intestinal were significantly decreased, and the levels of IL-
25, IL-33, and short-chain fatty acid levels were significantly
increased. Meanwhile, intestinal pathogenic colonization bacteria
can also cause T cells to transform into Th2-type cells in draining
lymph nodes and play an immune function (Nylund et al., 2015;
Seite and Bieber, 2015; Schwarz et al., 2017). In a study of a twin
cohort, gut dysbiosis was detected in allergic infants and
increased R gnavus was observed before the onset of allergic
manifestations and was associated with respiratory allergies
coexistent with atopic eczema (p < 0.001) (Chua et al., 2018).
Lee et al. also found differences in functional genes related to
immune development of AD infants via whole-metagenome
analysis (Lee et al., 2018). Recent studies also showed some
gut marker microbes in AD patients. A longitudinal study
measured the gut microbiome and metabolome functionality
of 63 eczema infants between ages 3 weeks and 12 months,
and an aberrant developmental trajectory was found in atopic
eczema (Ta et al., 2020). Meanwhile, a cross-sectional study
among 1,440 children showed that the α-diversity of fecal
microbiota was associated with a decreased risk of eczema
(odds ratio [OR], 0.98; 95% CI, 0.97, 1.00), and
Lachnospiraceae were associated with decreased risks of
eczema (OR range, 0.98: 95% CI, 0.97, 1.00) (Hu et al., 2021).
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Marrs et al. also observed that the SCORing AD index at age
12 months was significantly associated with the abundance of
Clostridium sensu stricto and Haemophilus at enrollment (Marrs
et al., 2021). Furthermore, scientists also focus on possible
mechanisms that link gut microbes to AD. Nowrouzian et al.
observed that gut colonization by S. aureus strains carrying a
certain combination of superantigen and adhesin genes was
negatively associated with subsequent development of atopic
eczema in a Swedish birth cohort and the FARMFLORA birth
cohort (Nowrouzian et al., 2017; Nowrouzian et al., 2019). A
study from Gachon University developed a murine model of AD
by the repeated epicutaneous exposure of tape-stripped skin to
ovalbumin. It revealed that the induction of oral tolerance
protects mice from AD-like dermatitis and inhibits the
increase in small intestinal eosinophils and dysregulated
alterations in the gut microbiome (Um et al., 2021).
Combining previous studies of AD mice, it may suggest that
gut bacterial strains can provide stimulation and promote
maturation of the infant immune system.

At the same time, the “gut-skin axis” may also be closely
related to the occurrence and development of psoriasis. In a study
involving 54 patients with psoriasis and 27 controls, bacterial
DNA was detected in the blood of 16 patients with plaque
psoriasis but not in any of the controls, levels of inflammatory
markers including IL-1β, IL-6, IL-12, TNF, and IFN-γ were also
significantly elevated in all 16 patients (Ramírez-Boscá et al.,
2015). According to the researchers, the bacterial DNA may
originate from the intestinal cavity, suggesting that the decline
of intestinal epithelial integrity is closely related to the
pathogenesis of psoriasis. Dellacecca et al.(Dellacecca et al.,
2020) reported that the vitiligo mouse model administered by
oral antibiotics changed the distribution of T cells in the gut and
skin and decreased the size of lesions. It strongly suggested that
changes in the gut microbiome were associated with vitiligo. Ni
et al. identified a significant imbalance in the gut dysbiosis of
vitiligo patients by 16 S sequencing (Ni et al., 2020). Bzioueche
et al. found that vitiligo patients with skin and gut dysbiosis might
be related to mitochondrial damage and autoimmune disorder
(Bzioueche et al., 2021). We may have a deeper understanding of
the interaction between the gut microbiome and inflammatory
skin diseases in the future.

MECHANISTIC INSIGHTS INTO ROLE OF
ROS-STRESSED GUT MICROBIOME IN
INFLAMMATORY SKIN DISEASES

Induced Gut Dysbiosis and Oxidative Stress
by Diet
Diet is an important determinant of human health. According to
an epidemiological survey, 11 million people die from the
improper diet every year (GBD, 2017). Early in life, diet (such
as human milk oligosaccharides (HMOs)) is involved in the
shaping and maturing of the human gut microbiome. Then
later in life, the intake of solid food gradually enriches the gut
microbiome (Galazzo et al., 2020). Recent high-quality clinical

evidence and animal model studies have confirmed the close
relationship and interactions between diet and gut microbiome
(Asnicar et al., 2021; Yap et al., 2021). It is known that enterotypes
(fecal communities cluster) were strongly associated with long-
term diets, such as protein and animal fat (Bacteroides) and
carbohydrates (Prevotella) (Wu et al., 2011). Based on emerging
evidence, particular gut microbes may predict the response to a
particular kind of diet (Kolodziejczyk et al., 2019). Dao et al.
found that Akkermansia muciniphila was considerably associated
with a more remarkable improvement in insulin sensitivity and
lipid metabolism of obese adults on the calorie-restricted diet
(Dao et al., 2016). Moreover, intermittent fasting (voluntarily
abstained from drinking and eating for specific periods) also
showed positive effects on metabolic diseases (Li et al., 2017) and
multiple sclerosis (Cignarella et al., 2018) via gut microbiome.

It has been known that high-fat diets (HFDs) can impair the
gut barrier (Bisanz et al., 2019), change gut microbial community
structure, and produce related metabolites, which can finally
induce cardiovascular disease (Yoo et al., 2021), colon tumor
(Yang et al., 2022). Yoo et al. found that a high-fat diet impaired
the bioenergetics of mitochondria in the colonic epithelium,
enhanced respiration-dependent choline catabolism of E. coli,
and finally increased levels of circulating trimethylamine
N-oxide, which is a potentially harmful metabolite produced
by the gut microbiome (Yoo et al., 2021). In return, a
randomized human intervention study using a very-low-
calorie diet showed that caloric restrict-diet associated with
impaired nutrient absorption and enrichment in Clostridioides
difficile (von Schwartzenberg et al., 2021). Moreover, a healthy
Mediterranean-style dietary pattern is associated with a specific
gut microbial community, and the protective effect of the
Mediterranean diet was significantly associated with decreased
abundance of Prevotella copri and might improve health (Ghosh
et al., 2020; Asnicar et al., 2021). A recent study showed that the
ketogenic diet also could alter the human and mouse gut
microbiota in a manner distinct from high-fat diets (HFDs)
and reduce the levels of intestinal pro-inflammatory Th17 cells
(Ang et al., 2020). More on diet, gut microbes, and health may
have far-reaching implications.

As the organ in direct contact with the diet, the primary stress
in intestinal (mainly intestinal epithelial cells (IECs)) (Awada
et al., 2012; Tirosh et al., 2015) is closely related to diet (Wellen
and Thompson, 2010; Bourgonje et al., 2020). It has been found
that many foods can disturb the redox balance in the gut increase
the level of localized/systemic ROS. Eventually, redox balance
may initiate redox signal transduction in cells and cause the
disease. Rajendran et al. found that high doses of iron can lead to
oxidative stress in the body (Rajendran et al., 2020). It has been
confirmed that a high-fat, high-sugar diet can induce systemic
oxidative stress, mainly related to the imbalance of gut
microbiome and endoplasmic reticulum stress (Carmody et al.,
2015;Wu et al., 2015). A study by Vandemoortele et al. has shown
that the highly active molecule free malondialdehyde, an Omega-
3 and Omega-6 fatty acid-rich lipid peroxidation biomarker
(Ayala et al., 2014), is highly reactive with proteins and DNA
and produces a variety of adducts. Meanwhile, it had little effect
on its reactivity in vivo after ingestion through the digestive tract
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(Uchida et al., 1997; Vandemoortele et al., 2017). Zhang et al.
found that the levels of oxidative stress in the blood and carbonyl
group increased significantly in the prooxidant diet group (p <
0.05) (Zhang et al., 2011). Ge et al. also found that mice fed with
hyperoxic pork showed increased serum lipopolysaccharide
(LPS) levels, down-regulation of tight junction-related genes in
the mucosa, and disturbance of cecal microbiota, indicating that
particular diet increased not only oxidative stress levels in the
body but also caused mucosal barrier damage and gut dysbiosis
(Ge et al., 2020).

Although there is no evidence that diet plays a vital role in
developing and treating skin diseases, some in vivo and in vitro
studies have developed reliable dietary recommendations based
on the fundamental mechanisms, such as abnormal activation of
autoimmune, oxidative stress, and gut dysbiosis. In vitiligo, for
example, a disorder of redox balance (an increase in hydrogen
peroxide) enhances the process by which phenolic chemicals
compete with tyrosine to produces reactive quinones. The
reactive quinone acts as a covalent binding center of
incomplete antigens to tyrosinase and produce new antigens.
The micromole (non-cytotoxic) O-quinone also gains
immunogenicity to induce an immune response (Westerhof
and d’Ischia, 2007). Compounds containing naturally
occurring plant phenols or polyphenols may contribute to the
progression of vitiligo through these mechanisms. Therefore, we
can speculate that antioxidant foods may have an inhibitory effect
on the development of inflammatory skin diseases. Recent
research suggests that dietary regulation, which targets gut
dysbiosis, may also have the potential to treat inflammatory
skin diseases. A study showed that P. copri (significantly
decreased in AD children) had been attributed mainly to the
high consumption of complex carbohydrates. Furthermore, AD
children with high sugar content in their diet had a significantly
lower P. copri (mean ± SD ratio of 1.04 ± 3.32 vs 0.43 ± 0.52; p <
0.0001 in children with lower and higher than median sugar
intake respectively), suggested the protection role of diet-related
gut microbes(Mahdavinia et al., 2019). Flohr et al. showed a 54%
lower risk of flexural eczema on skin examination in the
breastfeeding intervention compared with the control group
(odds ratio [OR], 0.46; 95% CI, 0.25 to 0.86) (Flohr et al.,
2018). The role of the gut microbiome in mediating the
particular diet on inflammatory skin diseases warrants further
investigation.

Regulation of GutMicrobiome and Systemic
Oxidative Stress
Local oxidative stress in the gut can cause damage to the intestinal
barrier structure. Mitochondrial DNA damage in intestinal
epithelial cells can lead to excessive ROS production, and the
increase of 8-OHdG level can lead to mitochondrial dysfunction,
and finally aggravate ROS increase and related oxidative damage,
the decrease of tight junctions protein (Claudin-1, Ocudin, and
ZO-1) expression and the death of intestinal epithelial cells (Hu
et al., 2018). As mentioned in the previous section, an important
pathogenic role of gut microbes is bacterial translocation due to
structural damage of the intestinal barrier. LPS response is a vital

marker signal in this progress. Studies have shown that
translocation bacteria and their related products can activate
abnormal immune signals in lymph nodes or peripheral blood
through LPS, binding to the TLR-24 complex and increasing
proinflammatory cytokine and ROS/RNS production (Berg and
Garlington, 1979; Wiest and Garcia-Tsao, 2005). Increased ROS/
RNS also produced DAMPs (damage-related molecular patterns),
which increased inflammation in the body (Lucas and Maes,
2013). Moreover, LPS also increased the expression of oxidative
stress-related enzymes. For example, LPS can increase the
expression of inducible nitric oxide synthase and form RNS
(Iovine et al., 2008). LPS also induces NOX activation,
excessive ROS production, and activation of downstream NF-
κB pathway (Check et al., 2010; Lin et al., 2011). This high level of
oxidative stress in the body, in turn, exacerbates the damage to the
intestinal barrier, leading to increased levels of inflammation,
which eventually leads to the development of disease.

Also, the specific gut microbe can induce ROS production in
intestinal epithelial cells. Jones et al. have found that intestinal
symbiotic bacteria genus Lactobacillus can induce intestinal
phagocytes to produce ROS, dependent on NADPH oxidase
1(NOX1) (Jones et al., 2013). Lee et al. also demonstrated that
gut bacteria induce ROS production by their hosts, which leads to
gut inflammation. They found that URA+ autochthonous
bacteria, such as G. Morbifer and L. Brevis, can activate the
PLC β-duoxros pathway by continuously releasing uracil,
which leads to the increase of ROS level and the apoptosis of
intestinal epithelial cells (Jones et al., 2013). Local ROS in the gut
leads to solid antioxidant activity in gut microbes, mediated by
metabolites such as SCFA that inhibit peroxisome and activate
the Nrf2 pathway. In summary, gut microbes play a critical role in
the redox balance of the gut, which is critical to the health of the
gut and even the whole body.

ROS-Stressed Gut Microbiome and
Inflammatory Skin Diseases
We defined the gut microbiome as a ROS-stressed gut
microbiome, which exists in oxidative stress. As previously
described, local excess of ROS in the gut can be caused by diet
ingestion or gut-specific bacteria. There are preliminary findings
in the microbiome and inflammatory skin diseases. For example,
the detection of intestinal bacterial DNA in the blood of patients
with psoriasis may indicate the presence of intestinal barrier
dysfunction and bacterial translocation. Further study requires
whether patients with other inflammatory skin diseases have
similar intestinal characteristics.

As we mentioned above, diet is associated with inflammatory
skin diseases. A specific diet can lead to localized oxidative stress
in the gut, which disrupts gut barrier function. It can also cause
bacterial translocation in the ROS-stressed gut microbiome or
induce further ROS production in intestinal epithelial cells,
intestinal injury, disturbance of redox balance, and
inflammation activation. It is well known that many
inflammatory skin diseases are often associated with
inflammatory bowel disease. For example, some intestinal
diseases such as vitiligo, inflammatory bowel disease (IBD),
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and celiac disease (CD) are complications (Shahmoradi et al.,
2013; Hadi et al., 2020). A 10-years retrospective study of the
American population showed that IBD incidence in vitiligo
patients was 2.13 times higher than normal IBD (p = 0.002)
(Hadi et al., 2020). CD is an autoimmune disease that affects the
small intestine and is characterized by an autoimmune response
to gluten intolerance. The ingestion of gluten can lead to localized
inflammation of the small intestine and the progressive
development of chronic intestinal malabsorption (Green and
Cellier, 2007). In a study of 64 vitiligo patients and 64
controls (Shahmoradi et al., 2013), a case-control study
immunoglobulin an (IG) anti endodermal antibody and IgA
anti glutaminase antibody, a diagnostic marker for CD, were
tested, and two women with vitiligo were found to be seropositive.
Some reports also suggest psoriasis (Cohen et al., 2009) atopic
dermatitis (Soh et al., 2021) in patients with a higher risk of
intestinal disease. In summary, the ROS-stressed gut microbiome
may hold the key to pathogenesis in inflammatory skin diseases.

NOVEL THERAPEUTIC APPROACHES FOR
INFLAMMATORY SKIN DISEASES

Gut Microbiome-Targeted Therapies
The most important driving force in the study of microbial-
disease interactions is clinical translation. Current strategies for
regulating gut microbes include dietary interventions, prebiotic,
bacteriophages, small molecules, drugs, fecal bacteria
transplantation (FMT), and live biological agents (LBPs), et al.
(Mahdavinia et al., 2019; Sorbara and Pamer, 2022). Many
microbiome-based clinical trials are underway, such as the
phase three clinical trial of fecal microbiota transplantation of
Clostridioides difficile infection (Langdon et al., 2021).

Studies have shown that improving the status of the gut
microbiome is beneficial for the treatment of skin diseases. In
gut inflammation-related mouse model studies, the skin
thickened, hair follicle formation improved, and sebaceous cell
production increased in mice through feeding with
Bifidobacterium longum HK003(Lam et al., 2022). In clinical
studies, a lower incidence of skin lesions was also observed in
IBD patients receiving probiotic supplementation (Satta et al.,
2019). The risk of atopic dermatitis is much lower in children who
received probiotics during the neonatal period, and infants who
received antibiotics during pregnancy are more likely to develop
atopic dermatitis and eczema (Kalliomäki et al., 2001).
Manzhalii et al. in a clinical study of patients with acne,
papules, pustular rosacea, and seborrheic dermatitis treated
with NISSLE therapy (E. coli). 89% of the patients in the
treatment group showed significant improvement or
complete recovery of their skin lesions (Manzhalii et al.,
2016). Dellacecca et al. reported the results of the study of
the vitiligo mouse model microbiome, in which oral antibiotics
were given to vitiligo mice, and changes in the leukoplakia area
and distribution of T cells in the intestinal tract and skin were
monitored; the results showed that the leukoplakia area of
vitiligo mice decreased significantly after oral administration
of antibiotics (Dellacecca et al., 2020).

Evidence of targeted gut dysbiosis treatments for AD is
emerging. A meta-analysis of synbiotics for prevention and
treatment in atopic dermatitis showed that synbiotics were
beneficial for treating AD, particularly synbiotics with hybrid
strains of bacteria and for children aged 1 year or older (Chang
et al., 2016). Probiotics supplementation is an effective method
for treating pathological intestinal microbe colonization, which
can significantly improve the intestinal barrier, regulate the
immune system’s anti-inflammatory response, and promote
the synthesis of anti-inflammatory metabolites. However,
another meta-analysis found no evidence suggesting that
probiotics make a difference in QoL for patients with eczema
(six studies; 552 participants; the standardized mean difference
(SMD) 0.03, 95% CI -0.36 to 0.42; low-quality evidence), and
probiotics slightly reduced investigator-rated eczema severity
scores (24 trials; 1,596 participants) (Makrgeorgou et al.,
2018). Boutin et al. suggested that supplementation with an
LBP, which comprises multiple bacterial genera, might inverse
allergic disease manifestations (Boutin et al., 2020). Kwon et al.
observed that oral administration of L. sakei WIKIM30
ameliorated lesion of AD mice and increased the relative
abundance of intestinal bacteria through modulation of Th2
response (Kwon et al., 2018). Lactobacillus paracasei KBL382
isolated from the feces of healthy Koreans also showed the
therapeutic potential for AD (Kim et al., 2020). In sum, it is
believed that there will be more and more evidence of gut
microbiome-targeted therapies for inflammatory skin diseases
in the future.

Redox-Targeted Therapies
With the development of oxidative stress-related research in
inflammatory skin diseases, antioxidant therapy is widely
studied. Traditional antioxidant therapy studies include oral or
topical treatment of plant/animal biologically active components
(polyphenol compounds (Moayyedi et al., 2015; Sangaraju et al.,
2021), flavonoid (Ding et al., 2021), et al.), macromolecular
organic compounds (simvastatin, aspirin (Chen et al., 2021),
vitamins (A, D, E), et al.(Ponce et al., 2012), and inorganic
compounds (molecular hydrogen, palladium, and platinum,
et al.). More related antioxidants are still being studied. For
example, it has recently been found that Haplopine, a
biologically active component of plants, increases the
expression of SOD, CAT, HO-1 in a concentration-dependent
manner in vitro and has excellent therapeutic potential in AD
mouse models (Kim et al., 2021). Many inorganic substances have
strong antioxidant properties, such as the previously mentioned
H2S (one of the RSS). However, the treatment of some inorganic
compounds needs specific drug delivery conditions to ensure the
stability of drugs and the therapeutic effect.

NAHS and GYY4137, two common H2S donors, can increase
the expression of induced nitric oxide synthase and NO secretion
by Akt activation, thus inhibiting ERK activation and reducing
vascular endothelial-derived growth factor (VEGF) production
(Qabazard et al., 2020; Xu et al., 2021). Yang et al. designed a new
controlled H2S releasing molecule based on the solid anti-
oxidation property of H2S and used the controlled release of
H2S for anti-oxidation treatment (Yang et al., 2014). Lin et al.
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designed microparticles (NaHS@MPs) and in situ comprising
phase-change material that could sustainably release a
gasotransmitter H2S for therapeutic effects (Lin et al., 2017).
Scientists have also successfully designed some drugs for the
stable release of H2S, including H2S-NSAIDs, Acetyl
decylasadisulfide (ADA), organic isothiocyanates, et al. (De
Cicco et al., 2016; De Cicco et al., 2017; Martelli et al., 2020;
Glanville et al., 2021). It indicates that H2S, as a new therapeutic
method for inflammatory skin diseases, can further application
(Xu et al., 2021). Recent studies have shown that topical
hypochlorous acid (HOCl) also can treat inflammatory skin
diseases. Jandova et al. found that short-term local HOCl
exposure can block UVB-induced skin redox-related gene
expression, and the specific mechanism of redox regulation
remains to be further studied, may involve genes such as
TXNRD2, GSS, SOD3, PRDX5, NQO1, GPX2, HMOX1, and
SOD3 (Jandova et al., 2021).

Some endogenous hormones can also be antioxidants to treat
diseases, notably melatonin. Melatonin, an endogenous hormone,
stimulates necessary antioxidant enzymes such as superoxide
dismutase, glutathione peroxidase, and glutathione reductase,
protects cell membranes from lipid peroxidation and
neutralizes toxic free radicals. There have been many positive
discoveries about the antioxidant effects of melatonin (Mauriz
et al., 2013; Xia et al., 2020). Furthermore, Verena et al. found
in vitro that oxytocin (OXT), a neuropeptide, reduced the
proliferation of dermal fibroblasts and keratinocytes in a dose-
dependent manner. Moreover, the OXTR knock induced ROS
levels and decreases in glutathione (Deing et al., 2013).

The innovative delivery strategy of antioxidant drugs is a novel
area. Local treatment of skin is critical in clinic. Targeting local
oxidative stress of skin is a challenge for scientists to construct
precise blocking of related signal transmission. As mentioned
above, scientists have developed various new methods for stably
releasing small-molecule compounds for antioxidant therapy.
Nano-drug delivery system is also one of the most effective

methods for therapy (Quispe et al., 2021). Some studies have
shown that the drug-carrying liposomes, for example, the
liposome astaxanthin treatment of AD, are better than free
astaxanthin (Lee et al., 2020). Guo et al. reported a
constructed curcumin (a kind of flavonoid)-loaded GA-TPGS-
modified multifunctional compounds (Cur@GA-TPGS-ES),
percutaneous administration to treat psoriasis, solved the
problem of low transdermal permeability of curcumin alone
(Guo et al., 2021).

Emerging antioxidant therapies include stem cell therapies,
biological agents, and polymeric materials. Sah et al. used
superoxide dismutase 3 (SOD3) transduced mesenchymal stem
cells (MSCs) to treat AD mice. Moreover, they found this
approach effectively inhibits the inflammatory response
subcutaneously (Sah et al., 2018). Phosphodiesterase-4(PDE4)
inhibitors are currently approved for the treatment of psoriasis.
Brittany et al. have found that PDE4 inhibitors can reduce
oxidative stress through the inactivation of the NADPH
oxidase (Woodby et al., 2020). Recently, Liang et al. also
found that PDE4 inhibitors can improve the redox imbalance
by reducing ROS and MDA production (Liang et al., 2021).
Polymermaterials are also a new research direction of antioxidant
therapy. Recent work by Zhai et al. (Zhai et al., 2021)showed that
the Cold Atmospheric Plasma Activated Hydrogel was able to
increase the expression of Nrf2 and decrease the activity of Nitric
oxide synthase in a mouse model of vitiligo to increase the
resistance of the cell to oxidative stress and immune
overreaction. The method has been shown to work well in
randomized controlled trials.

CONCLUSION

In inflammatory skin diseases, various redox-related signaling
pathways mediated by reactive species are involved in cells
inducing inflammation and cell death. Research of gut

FIGURE 1 | The cross-talk between oxidative stress and gut microbiome in inflammatory skin diseases.
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microbiome and skin diseases is still at an early exploration
stage. Meanwhile, there is no conclusive evidence for the
specific mechanisms between oxidative stress and gut
microbiome in inflammatory skin diseases. Our review
suggests that the complex microbial-host cross-talk, which
occurs through the gut-skin axis, may affect the local/
systemic redox status through reactive species, activating
local/systemic inflammation, eventually leading to
inflammatory skin diseases (Figure 1). The gut-skin axis
mediated by the ROS-stressed gut microbiome also provides
novel therapies for inflammatory skin diseases.
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