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Extending Expressed RNA Genomics From Surgical 
Decision Making for Cytologically Indeterminate Thyroid 
Nodules to Targeting Therapies for Metastatic Thyroid 

Cancer

Syed Z. Ali, MD, FRCPath, FIAC1,2; Allan Siperstein, MD3; Peter M. Sadow, MD, PhD4;  

Allan C. Golding, MD, ECNU5; Giulia C. Kennedy, PhD6,7,8; Richard T. Kloos, MD 7;  

and Paul W. Ladenson, MD9

INTRODUCTION

Challenges in the management of thyroid nodules and cancers include: 1) differentiating benign from malig-
nant thyroid disease when cytopathology is indeterminate; 2) defining the extent of initial thyroid surgery; and 
3) identifying targeted treatments for patients with thyroid cancers that are refractory to standard treatment.

For patients with thyroid nodules, clinical findings and serology (thyroid-stimulating hormone with 
or without calcitonin) are rarely sufficient to exclude malignancy. Although noninvasive follicular thyroid 
neoplasms with papillary-like nuclear features (NIFTP) are considered to have a low risk of malignant  
behavior after surgical excision, we group them with malignant nodules to indicate their recommended sur-
gical treatment in contrast to benign nodules.1 Neck ultrasound and thyroid fine-needle aspiration biopsy 
(FNAB) to acquire samples for cytological assessment are required for most nodules measuring >1.0 to 1.5 cm 
to differentiate the benign majority from the malignant minority. Various ultrasound scoring systems define 
features that identify approximately 17% to 53% of nodules as being reliably benign,2 but for the remainder 
that demonstrate imaging characteristics associated with a cancer risk of ≥5%, FNAB typically is performed. 
Definitive benign cytological findings (Bethesda category II) are found in approximately 60% to 75% of nod-
ules and findings of suspicious for malignancy (Bethesda category V) or malignant (Bethesda category VI) 
are found in <10%,3,4 but at least 15% of nodules are deemed cytologically indeterminate, portending a risk 
of malignancy/NIFTP of 11% to 29% based on surgical pathology.3 Consequently, even with ultrasound and 
cytological examination, the character of thyroid nodules remains uncertain in approximately 1 in 7 thyroid 
patients. When a cytologically indeterminate nodule has been identified by an expert cytopathologist, doubt 
exists that the risk of cancer can be sufficiently reduced to avoid surgery through repeat biopsy,5-9 review by 
a second cytopathologist,10,11 further subclassification of the indeterminate category,12 or correlation with 
thyroid nodule ultrasound classification.12-16
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Historically, the majority of patients with cyto-
logically indeterminate thyroid nodules were advised to  
undergo surgical resection given their cancer risk. However, 
approximately 80% of these operated nodules proved to be 
histologically benign.17,18 Consequently, most of these sur-
geries generated unnecessary direct and indirect medical 
costs, patient anxiety and diminished productivity during 
recovery, and complications. Although high-volume  
thyroid surgeons report relatively low surgical complica-
tion rates of 1% to 3%, approximately 26% to 81% of  
patients undergo surgery with low-volume surgeons whose  
complication rates generally are much higher,19-22 includ-
ing hypothyroidism,23 clinically severe hypocalcemia/ 
hypoparathyroidism,24,25 recurrent laryngeal nerve 
injury,26,27 and, less commonly, infection and bleed-
ing.23,28-30 Higher surgical complication rates have been  
reported among the elderly,31,32 who are heavily represented 
in the thyroid nodule population. These findings high-
light the burden of diagnostic surgery among patients with  
cytologically indeterminate nodules and the need for change.

Gene Expression Classifier Development, 
Validation, and Real-World Performance

The traditional practice of observing cytologically benign 
nodules, despite recognition that approximately 1% to  
5% were malignant,33 helped to set the acceptable 
threshold for a rule-out test to avoid diagnostic sur-
gery at a negative predictive value (NPV) of 95% (ie, 
a cancer risk of 5% when the test was negative). The 
first rule-out test to meet this threshold was the Afirma 
Gene Expression Classifier (GEC) (Veracyte, South San 
Francisco, California). The GEC quantified messenger 
RNA (mRNA) expression among 167 genes for the main 
benign versus suspicious classifier, and 6 specialized 
mRNA expression cassettes, including one designed to 
strictly limit false-negative results among patients with 
Hurthle neoplasms, and others for the specific identifi-
cation of medullary thyroid carcinoma, parathyroid tis-
sue, renal cell carcinoma, breast cancer, and malignant 
melanoma.

Promising results from a small GEC validation 
study34 led to classifier finalization and clinical vali-
dation in a pivotal 49-center prospective and blinded 
study. The performance of GEC testing in 210 nodules 
categorized as atypia of undetermined significance/
follicular lesion of undetermined significance (AUS/
FLUS; Bethesda category III) or suspicious for follicular 

neoplasm (SFN; Bethesda category IV), all of which 
subsequently had definitive surgical pathology diagno-
ses, demonstrated a test sensitivity of 90%, specificity of 
52%, NPV of 94%, and positive predictive value (PPV) 
of 37% at a cancer prevalence of 24%.18 Subsequently, 28 
real-world clinical experience studies have cumulatively 
reported that only 13% of nodules with GEC benign 
results underwent surgical resection,6,7,35-59 a marked 
reduction compared with the historical treatment of 
patients with cytologically indeterminate thyroid nod-
ules.17,60 In 26 of these studies, only 3% of nodules (50 of 
1934 nodules) with GEC benign results were found to be 
malignant.6,7,18,35,38-42,44,45,47-54,56-59,61 Investigators who 
assessed GEC test performance only in operated cases 
with surgical histology systematically underestimated 
test specificity and NPV by excluding many unoperated 
GEC benign nodules that were very likely true-negative 
results.62 The broader clinical impact of GEC testing 
can be concluded from the observation that among the 
first 90,140 consecutive adequate nodule samples ana-
lyzed, approximately 44% received a benign result.63 In  
addition, the routine collection of material for molec-
ular testing at the time of the initial FNAB may avoid 
the need for repeat biopsy along with its inconvenience 
and discomfort for the patient and additional health care 
costs.64

Genomic Sequencing Classifier Development, 
Validation, and Real-World Performance

Advances in genomic analysis and machine-learning  
techniques presented the opportunity to migrate 
Afirma to a more comprehensive whole RNA transcrip-
tome sequencing platform and to enhance the test’s per-
formance (Fig. 1A). The Afirma Genomic Sequencing 
Classifier (GSC) interrogates >10,000 nuclear and  
mitochondrial genes for the measurement of gene expres-
sion counts, sequence variants, and changes in genomic 
copy number, including loss of heterozygosity.65 GSC 
architecture includes a set of initial classifiers to identify 
parathyroid tissue, medullary thyroid cancer, and on-
cogenic mutations strongly linked to papillary thyroid 
cancer, BRAF V600E variant, and RET/PTC1 and RET/
PTC3 fusions. Samples with negative results in these 
initial classifiers then are tested with a follicular cell 
content adequacy classifier in anticipation of the sub-
sequent benign versus suspicious categorization by the 
core GSC classifier.
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Two additional specialized classifiers coordinate 
with the core GSC classifier to preserve high test sensi-
tivity and improve test specificity among Hurthle cell–
dominant samples. First, all adequate samples are tested 
with the Hurthle cell index (HI) classifier to detect  
molecularly those samples with Hurthle cell features. 
HI-negative samples are assessed by the core GSC classi-
fier, whereas HI-positive samples are subjected to further 
analysis. To permit the application of distinct criteria 
for benignancy to nonneoplastic and neoplastic Hurthle 
cell–dominant FNAB samples, HI-positive samples are 
evaluated further with a Hurthle cell neoplasm index 
(NI) classifier to identify samples that are neoplastic. 
NI-positive samples (ie, neoplastic samples) are scored by 
the core GSC classifier using the same threshold as that 
for HI-negative samples. However, NI-negative samples 
(ie, those deemed nonneoplastic) are scored by the core 
GSC classifier using a less stringent cutoff value to per-
mit more of these samples to be accurately characterized 
as GSC benign.66

A total of 634 FNAB samples were used to build 
the GSC core ensemble model, consisting of 12 in-
dependent classifiers.65 To minimize overfitting and  

accurately reflect classifier performance incorporat-
ing random noise, hyperparameter tuning and model  
selections were performed using repeated nested cross- 
validation.67 Hyperparameter tuning was performed 
within the inner layer of the cross-validation, and the 
classifier performance was summarized using the outer 
layer of the 5-fold cross-validation repeated 40 times.  
For each classifier, the decision boundary was chosen 
to optimize specificity with a minimum requirement of 
90% sensitivity to detect malignancy.

The locked Afirma GSC system was validated 
using independent FNAB samples with sufficient  
remaining RNA from the pivotal GEC validation study 
(among patients aged ≥21 years and with nodules mea-
suring ≥1 cm).18 This cohort was unbiased by the cur-
rent widespread use of molecular testing to avoid surgery 
and allowed for a direct comparison of the GSC with its 
predecessor, the GEC. The use of a locked, multicenter, 
blinded, and prospectively collected cohort enrolled prior 
to FNAB fulfills the key goal sought in an ideal pro-
spective validation design: the minimization of bias. This 
validation strategy should not be diminished by equating 
it with a retrospective study design. Clinical validation 

Figure 1. Clinical use flow diagram of the Afirma Genomic Sequencing Classifier (GSC) and Xpression Atlas (XA) in (A) thyroid 
nodules and (B) thyroid cancer warranting systemic therapy. *Malignancy classifiers include the medullary thyroid cancer 
classifier, BRAF V600E classifier, parathyroid classifier, and RET/PTC1 plus RET/PTC3 fusion detection. †Malignancy classifiers 
are included with XA. FNA indicates fine-needle aspiration.
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for the GSC in 190 AUS/FLUS and SFN nodules with 
blinded consensus surgical histology diagnoses demon-
strated 91% sensitivity, 68% specificity, 47% PPV, and 
96% NPV in a cohort with a 24% cancer prevalence.65 
Among the subgroup of Hurthle cell histologies, specific-
ity was markedly improved from 12% with GEC to 59% 
with GSC, and sensitivity was maintained at 89%.65 
Overall, these pivotal GSC clinical validation data pre-
dicted an increase in how often a benign result occurs, 
an NPV of ≥95% in the majority of clinical settings,  
decreased diagnostic surgery, and an increased rate of 
cancer among nodules with GSC suspicious results.65

The GSC entered routine clinical use in July 2017. 
Similar to the GEC, GSC results among patients aged 
<21 years or from nodules measuring <1 cm are pro-
vided; however, they are notated as outside of indication 
because to the best of our knowledge test performance 
among such samples has not been established. To our 
knowledge to date, 6 independent studies have been  
reported at national conferences or have been published 
(Fig. 2).59,68-72 These real-world experiences demonstrate 
that approximately two-thirds of test results are classi-
fied as GSC benign, approximately two-thirds of the 
GSC suspicious nodules are proven malignant or NIFTP, 
and two-thirds of all tested patients go on to clinical 
observation in lieu of diagnostic surgery. Using surgical 
histology when available and otherwise assuming that 
unoperated GSC benign nodules are truly benign, these 

6 experiences demonstrate an actual GSC upper limit of 
NPV as 97% to 100%. Two centers have reported their  
experience among Hurthle cell–dominant AUS/FLUS 
and SFN nodules.59,72 Whereas historically approximately 
1 of 5 GEC tests returned as benign, the GSC benign rate 
increased to 2 of 3 tests. This markedly improved benign 
call rate extends the cost-effectiveness of GSC to Hurthle 
cell–dominant cytologically indeterminate specimens.42

Beyond the GSC: Xpression Atlas 
Development, Validation, and Real-World 
Performance

A challenge for gene panel testing strategies for cytologi-
cally indeterminate thyroid nodules has been that to 
achieve high sensitivity and high NPV, many variants with 
suboptimal specificity must be included. Consequently, 
relatively few specimens result as negative, and the number 
of specimens identified with high PPV variants is low.73,74 
Nevertheless, decision making may be different among 
the few patients whose thyroid nodule genotype predicts 
a cancer risk >95% compared with when it is just 50%.

The emerging evidence of correlation between 
genomic variants and neoplasm histology, behavior, 
predicted clinical course, and therapeutic options 
has generated interest in increasingly larger genomic 
panels.74-78 To provide this information for GSC sus-
picious AUS/FLUS and SFN nodules, when cancer or 
NIFTP is not ruled out with high NPV, the Afirma 

Figure 2. Clinical experience with the Afirma Genomic Sequencing Classifier (GSC) from multiple centers. Unoperated GSC 
benign nodules were counted as true-negative results. Unoperated GSC suspicious nodules were excluded. Data were obtained 
from Harrell et al,59 Ahmed et al,68 Endo et al,69 San Martin et al,70 Livhits et al,71 and Angell et al.72
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Xpression Atlas (XA) can be requested to report find-
ings from the transcriptome across 511 genes, includ-
ing 761 variants and 130 fusion pairs (Fig. 1A). The 
malignancy classifiers plus XA also can assess FNAB 
specimens from nodules classified as suspicious for ma-
lignancy and malignant and metastases without initial 
GSC testing (Fig. 1A). Nonexpressed variants are not 
measured by transcriptional sequencing. However,  
because the transcriptome ref lects the nodule’s active 
genomic activity, its signaling pathways, and their  
interactions with environmental signals, it has hypo-
thetical advantages over DNA-based genomic findings 
that may occur in transcriptionally silent genes but not 
impact nodule biology.

The potential usefulness of genomic insights from XA 
may be proven to include consideration of initial surgical 
treatment options based on a variant’s risk of malignancy 
and metastatic potential.75,78 However, for neoplasms 
clinically confined to the thyroid, to our knowledge data 
are lacking to demonstrate improved clinical outcomes 
based on the extent of surgery because randomized trials 
based on mutational status have not been performed.

Beyond initial surgical treatment decisions, XA 
may help to guide treatment decisions for patients with 
thyroid cancer that is refractory to standard treatment 
options, with sample collection performed via FNAB 
rather than surgical resection (Fig. 1B). In addition,  
subsequent FNAB assessment may prove helpful when 
disease sites break through the current treatment  
(Fig. 1B). For example, the combination of dabrafenib 
plus trametinib recently was approved by the US Food 
and Drug Administration for BRAF V600E–mutated 
anaplastic thyroid cancer, and larotrectinib recently was 
approved for refractory solid tumors harboring a neu-
rotrophic receptor tyrosine kinase (NTRK ) gene fusion 
(without a known acquired resistance mutation) regard-
less of the cancer type (tissue agnostic). Beyond these  
approved drugs, multiple other recent clinical trials have 
investigated therapies for specific targets relevant for 
thyroid cancer and reported with XA, including BRAF, 
NTRK, EGFR, RET, MET, ROS1, ALK, PAX8/PPARG, 
and HRAS. Initial data related to 2 compounds targeting 
RET alterations have demonstrated highly encouraging 
treatment activities.79,80 The assessment of variants for 
targeted therapy from a large genomic panel allows for the 
simultaneous evaluation of multiple targetable genomic  
changes, many of which are rare.

Summary

Thyroid nodule cytopathology plays a critical role in 
thyroid nodule management. The Afirma GSC, which 
uses genomic data from >10,000 genes used in an  
ensemble of complex machine-learned algorithms, extends  
the usefulness of cytopathology among cytologically  
indeterminate samples by returning a GSC benign result 
in approximately two-thirds of all tested samples (Fig. 2).  
The GSC was rigorously developed and independently 
validated to address the broad spectrum of thyroid  
pathology encountered in both the laboratory and real-
world practice settings. The GSC is a malignancy/
NIFTP rule-out test whose highly accurate benign 
result allows clinicians to recommend clinical obser-
vation over diagnostic surgery (Fig. 1A). Conversely, 
a suspicious GSC result, with an increased risk of  
malignancy over the FNAB result alone, may give a 
patient greater reassurance in proceeding with surgery. 
To complement the GSC, the XA provides genomic  
insights from a curated panel of 511 genes. Emerging 
data have suggested that XA may provide insights  
regarding tumor histology and behavior and the potential  
effectiveness of targeted therapy options among patients 
with GSC suspicious AUS/FLUS and SFN nodules, 
nodules that are suspicious for malignancy and malig-
nant, and thyroid cancer metastases (Figs. 1A and 1B). 
Routine collection of the Afirma sample as part of all 
thyroid FNAB procedures streamlines workflows and 
the patient experience to expedite informed patient 
management decisions from the time of the first FNAB. 
Afirma facilitates personalized treatment decisions based 
on genomic insights derived from the transcriptome 
of the biopsied target and extends the diagnostic and 
therapeutic reach of cytopathologists and FNAB sample 
collection.
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