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Abstract

Flounder is a promising model species for environmental monitoring of coastal regions. To

assess the usefulness of liver transcriptome profiling, juvenile olive flounder Paralichthys oli-

vaceus were exposed to two pollutants, bisphenol S (BPS) and benzo[a]pyrene (BaP),

which have different chemical characteristics and have distinct modes of metabolic action in

teleost. Six hours after intraperitoneal injection with BPS (50 mg/kg bw) or BaP (20 mg/kg

bw), liver transcriptomes were analyzed using the Illumina Hiseq 3000 platform. Interest-

ingly, the transcriptome was highly sensitive and was distinctively expressed in response to

each chemical. The primary effect of BPS was significantly increased transcription of egg

process and vitellogenesis related genes, including vitellogenins (vtg1, vtg2), zona pellucida

sperm-binding proteins (zp3, zp4), and estrogen receptors (erα, erβ), with increases in

plasma 17β-estradiol (E2) and vitellogenin (VTG) concentrations. Following BaP treatment,

detoxification- and biotransformation-related genes such as cyp1a1 and UDP-glucuronosyl-

transferase (ugt1a1) were significantly increased, with an increase in EROD activity. In both

transcriptomes, mRNA expression of genes involved in antioxidant defense systems was

increased, while genes involved in innate immunity were decreased upon BPS or BaP expo-

sure with a decrease in complement activity. This study provides useful insight into the

chemical-specific hepatic transcriptional response of P. olivaceus and suggests a basis for

further studies examining biomarker application of liver transcriptomes for environmental

pollution.
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Introduction

Flatfish are bottom-dwelling fishes that spend most of their life cycle on the bottom of estuaries

and coastal regions. Thus, flatfish are acutely or chronically exposed to a wide range of envi-

ronmental pollutants derived from agricultural and industrial wastes, municipal sewage, and

human activity [1]. Due to their benthic habitats and wide-ranging geographical distributions,

flatfish could be potential indicators of water and sediment quality, using their molecular, bio-

chemical, and physiological sensitivity. Numerous biomarkers have been continuously devel-

oped to understand the potential effects of environmental pollutants on flatfish in their role as

sentinels [2–5]. The capacity of a biomarker to respond may be prolonged or restricted by

complex molecular pathways with combinations of certain signal cascades, as numerous

aquatic pollutants are released in different forms with distinct modes of action in waterbodies.

Particularly, biochemical markers, including molecular responses, have been identified as

powerful and cost-effective approaches to obtain information on the status of the environment

and the effects of pollution on resident species, including flatfish [5–9]. However, the accessi-

bility of genomic resources (e.g., whole genome and transcriptome) is limited in most marine

fish, even though gene expression profiling has been widely applied to predict the potential

toxicity of various chemical compounds and to elucidate the underlying molecular

mechanisms.

The olive flounder Paralichthys olivaceus (also known as the Japanese flounder or bastard

halibut) used in this study is one of the most cosmopolitan aquaculture species in east and

south Asia, including South Korea, Japan, and China. P. olivaceus is desirable for commercial

culture and was subsequently introduced in many Asia countries for aquaculture production.

In 2011, the catch of wild P. olivaceus was approximately 4,600 metric tons and its aquaculture

production was over 40,000 metric tons [10]. One of the most important steps in developing a

model species for environmental monitoring is the availability of genomic information. Geno-

mic platforms have been successfully applied to understand diverse molecular and physiologi-

cal characteristics of P. olivaceus [11–14]. The recently published whole genome sequence of P.

olivaceus provides a unique advantage for genomic application among flatfish [15]. Despite

these advantages, application of genomic information of P. olivaceus in marine environmental

monitoring has received little attention to date.

The primary objective of the present study was to test whether the transcriptome profiling

of the olive flounder could be usefully applied for the monitoring of marine pollutants. Because

the sensitivity of signal pathways is very different for chemicals, two distinct chemical pollut-

ants were employed in this study. Bisphenol S (BPS) is a structural analog of bisphenol A

(BPA) and is used as an alternative for BPA due to increasing concerns over the endocrine dis-

rupting potential of BPA [16]. However, many in vivo and in vitro studies have suggested that

BPS is as hormonally active as BPA with endocrine disrupting effects [17]. Benzo[a]pyrene

(BaP) is a polycyclic aromatic hydrocarbon (PAH) and a ubiquitous marine pollutant derived

from numerous human activities [18]. Adverse effects of BPA (e.g., carcinogenicity, genotoxi-

city, immunotoxicity, and neurotoxicity) and its biotransformation mechanism have been

extensively reviewed [19, 20]. Biotransformation of xenobiotics and drug metabolism (e.g.,

oxidation, reduction, hydrolysis) occurs by the action of one or more enzymes in the liver tis-

sue [21, 22]. In particular, both chemicals have consistently been found up to microgram level

in the sediments and waterbodies of the coastal regions of south Asia, which are known to be

among the olive flounders’ habitats [23–26]. Therefore, we comparatively analyzed BPS- and

BaP-exposed liver tissues of P. olivaceus to consider its hepatic transcriptome as a promising

tool for pollution monitoring of coastal regions.
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Materials and methods

Fish culture and chemical exposure

All animal handling and experimental procedures were approved by the Animal Welfare Ethi-

cal Committee and Animal Experimental Ethics Committee of Korea Institute of Ocean Sci-

ence and Technology (KIOST, South Korea). One-year-old juvenile olive flounder individuals

weighing 497 ± 13.85 g (mean ± S.D.) and 21 ± 2.42 cm (mean ± S.D.) in length were pur-

chased from a local fish farm in Geoje, Korea. The fish were placed in a 100-t tank supplied

with circulating filtered seawater, and acclimated for two weeks. Photoperiod was maintained

at 12/12 h light/dark condition. Water conditions were maintained at 18 ± 0.58˚C, pH 7.7–8.0,

and 87% oxygen saturation. Control fish were injected with dimethyl sulfoxide (DMSO, Sigma

Aldrich, St Louis, MO, USA). Control (2 fish per control group) and each experimental group

fish (3 fish per group) were intraperitoneally injected with bisphenol S (BPS, Sigma Aldrich, St

Louis, MO, USA) at a concentration of 50 mg/kg body weight (bw) or benzo[a]pyrene (BaP,

Sigma Aldrich, St Louis, MO, USA) at a concentration of 20 mg/kg bw. Three fish from each

tank were anesthetized by immersion in buffered tricaine methanesulfonate (MS-222, 200 mg/

L, Sigma Aldrich, St Louis, MO, USA) and subsampled 6 h after exposure. Liver tissues were

frozen in liquid nitrogen and stored at -80˚C for further analysis.

Total RNA extraction and library construction

The entire procedure for Illumina RNA sequencing (RNA seq) was performed in Macrogen

Inc. (Seoul, South Korea). A set of RNA samples for each chemical, comprised of three biologi-

cal replicates, was not pooled. Each liver tissue was frozen in liquid nitrogen and homogenized

with a glass pestle. Total RNA was extracted from individual olive flounder (two fish from con-

trol and three fish from BPS and BaP, respectively) using TRIzolTM Reagent (Invitrogen, Carls-

bad, CA, USA) according to the manufacturer’s instructions. DNA digestion was performed

using DNase I (Sigma Aldrich, St Louis, MO, USA). Prior to Illumina RNA sequencing, total

RNA quantity and quality were checked by analyzing the ratios A230/260 and A260/280 using

a NanoDrop1 2000 Spectrophotometer (Thermo Scientific, Wilmington, DE, USA) and an

Agilant 2100 Bioanalyzer (Agilent, Böblingen, Germany) respectively. Samples satisfying the

criteria of RNA integrity > 7.5 were used for library preparation.

Library construction was performed using Tureseq™ RNA sample prep Kit (Illumina, San

Diego, CA, USA) at Macrogen Inc. (Seoul, South Korea) [27]. Briefly, the poly A-containing

mRNA was purified using oligo dT-coated magnetic beads. The first strand of cDNA was syn-

thesized using random hexamers and subsequently double-stranded cDNA was synthesized

and purified [28]. After adaptor ligation, proper DNA fragments were selected and enriched to

create the final cDNA library template. All libraries were sequenced by Illumina Hiseq 3000

with read length of 101 bp.

De novo assembly, differentially expressed genes (DEGs) identification, and

gene ontology (GO) analysis

Entire raw reads were cleaned with Trimmomatic by filtering with the following criteria: adap-

tor-only nucleotides, unpaired reads, empty nucleotides (N at the end of reads), short reads

(< 59 bp), and low-quality nucleotides (reads containing more than 50% bases with Q-value�

20) [29]. After quality control, large contigs were constructed using the de novo assembler

Trinity (ver. 2.0.6). TransDecoder was used to identify candidate coding regions from the as-

sembled transcripts and/or contigs (http://transdecoder.sourceforge.net). The candidate cod-

ing regions were used for BLAST analysis against the UniProt and the NCBI non-redundant
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(nr) protein database to evaluate sequence similarity to genes of other species using an E-value

cutoff of 1e-06.

The abundance of each transcript was analyzed by direct alignment of each read to the con-

trol group assembly using the Bowtie 2 alignment tool (http://bowtie-bio.sourceforge.net/

bowtie2) with the default parameters and RSEM method (RNA-Seq by Expectation-Maximiza-

tion; http://deweylab.biostat.wisc.edu/rsem). The quantified number of mapped reads was

normalized as fragments per kilobase of transcripts per million fragments mapped (FPKM)

value. The false discovery rate (FDR) was used to predict the P value threshold for statistical

analysis. The FPKM value of each sample was compared using the R package provided by

Trinity platform. When the FDR value of a contig was less than 0.05 and its FPKM value was

more than a two-fold change, the contig was considered to contain a differentially expressed

gene (DEG). Hierarchical clustering analysis was employed in order to construct a heat map

using MeV v.7.4 (Dana-Farber Cancer Institute, Boston, MA, USA) software. Gene Ontology

(GO) analysis of the contigs was performed using the GOstats program (http://www.

bioconductor.org/packages/3.3/bioc/html/GOstats) and Fisher’s Exact Test (P< 0.05), as

implemented in the sequence annotation tool Blast2GO [30].

Data deposition

All the raw data are available in the Sequencing Read Archive (SRA) of NCBI under the Bio-

Project number PRJNA421418, with the accession number SRP126397 (SRX3459054-

SRX3459061).

Quantitative PCR validation

Total RNAs were reverse-transcribed into cDNA using a first-strand cDNA synthesis kit (Invi-

trogen, Carlsbad, CA, USA). The optical density at 260 nm and 280 nm (OD260/280) was

approximately measured as 1.9, and the OD260/230 was between 1.8 and 1.9. The quantitative

reverse transcription polymerase chain reaction (qRT-PCR) was performed using a two-step

procedure. The β-actin gene was used as a reference control for real-time qRT-PCR. To quan-

tify the mRNA expression level, we used the comparative CT method (2-ΔΔCt method) with

Roto-Gene Q (Qiagen, Hilden, Germany) according to the manufacturer’s instruction. mRNA

expression for each gene was measured in triplicate. The specific primers for the qRT-PCR

analysis were designed based on RNA-SEQ library using the ABI PRISM Primer Express soft-

ware (Applied Biosystems, Darmstadt, Germany).

EROD activity

The 7-ethoxyresorufin-O-deethylase (EROD) activity assay was conducted according to previ-

ous studies with slight modifications (e.g. buffer volume, employed basic instruments) [31].

The liver tissues of individual fish were homogenized in 0.25 M sucrose and centrifuged at

9,000 × g for 20 min at 4˚C. To sample the microsomal fraction, the supernatant was trans-

ferred and centrifuged at 105,000 × g for 60 min at 4˚C. Approximately 35 μg of microsomal

fraction was transferred into the EROD buffer (0.1 M NaPO4, pH 7.6) with the addition of

7-ethoxyresorufin (ER) solution (0.4 mM ER in DMSO) and NADPH solution (10 mM

NADPH in distilled water). The background subtraction was prepared with the same mixed

buffer with the absence of the microsomal fraction. The resourufin production was measured

with 530 nm excitation and 595 nm emission filters with a Varioskan Flash fluorometer

(Thermo Fisher Scientific, Tewksbury, MA, USA). Results were represented as μmol min/mg

protein.
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Plasma analysis

In our preliminary study, no significant changes in plasma 17β-estradiol (E2) or vitellogenin

(VTG) were observed at 6 h after the injections of both chemicals. Thus, we extended our anal-

ysis to 24 h after the injection.

The E2 levels in the plasma were quantified by a standard ethyl ether extraction method

using a commercial Estradiol ELISA kit (Cayman Chemical Company, Michigan, USA).

Approximately 1 ml of blood was taken from the caudal vein of individual anesthetized olive

flounders (n = 5) with a heparin syringe. The whole blood sample was centrifuged at 3,000 × g
for 5 min and the supernatant was transferred for E2 analysis. The extract was centrifuged at

2,000 × g for 30 min and the ether phase was removed. The samples were dried using a centrif-

ugal evaporator. The intra-assay coefficients of variance for both the fish were < 10%. The E2

concentration was measured with a Varioskan Flash spectrophotometer (Thermo Fisher Sci-

entific, Tewksbury, MA, USA) at 420 nm, and was expressed as pg/mL.

The concentration of VTG in the plasma samples was determined using a commercially

available enzyme-linked immunosorbent assay (ELISA) kit for VTG (MyBioSource Inc, San

Diego, USA), following the manufacturer’s instructions. The intra-assay coefficients of vari-

ance for both the fish were< 12%. The VTG concentration was measured with a Varioskan

Flash spectrophotometer (Thermo Fisher Scientific, Tewksbury, MA, USA) at 420 nm, and

was expressed as μg/mL.

Haemolytic complement activity

The activity of the alternative complement pathway hemolytic activity (ACH) was conducted

according to the classical method established in fish, with slight modification (e.g. buffer vol-

ume, employed basic instruments) [32]. Since no significant change in complement activity

was observed at 6 h after the injections of both chemicals, we extended our analysis to 24 h

after the injection. Sheep red blood cells (SRBC; 1.5 × 106 cells; National Institute of Toxicolog-

ical Research, South Korea) were used as the targets of the assay. Reconstitution of the haemo-

lytic activity of olive flounder serum was measured by incubation of the SRBC (5 μl) in 6%

olive flounder serum (25 μl) in 10 mM phenol red-free Hank’s buffer with 5 mM Mg2+ and

0.15 NaCl (pH 7.3) in a 96-well plate. The plate was incubated for 90 min at 20˚C with gentle

shaking. Haemolysis was measured spectrophotometrically with a Varioskan Flash spectro-

photometer (Thermo Fisher Scientific, Tewksbury, MA, USA) at 414 nm. Complete (100%)

and no haemolysis (0%) were measured by adding the washed SRBC (25 μl) to distilled water

(100 μl) and phenol red-free Hank’s buffer, respectively. The ACH was calculated as the recip-

rocal of the serum dilution, causing 50% lysis of SRBC (ACH50; U/ml) based on the value of Y/

1 − Y against the reciprocal of the serum dilutions on a log–log scaled graph.

Statistical analysis

Data are presented as mean ± standard deviation (S.D.). We performed a one-way analysis of

variance (ANOVA) followed by Duncan’s test to identify differences between the experimental

groups. All analyses were performed using SPSS ver. 17.0 (SPSS Inc., Chicago, IL).

Results

Sequencing and assembly

To compare the molecular response to different chemical characteristics in the olive flounder,

we conducted an RNA-seq based investigation of transcriptional changes in liver tissues

exposed to BPS or BaP for 6 h. Three libraries for each chemical and two libraries for the

Chemical-specific transcriptome profiles of olive flounder
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control group were subjected to Illumina RNA seq. The sequenced liver cDNA libraries con-

tained a large number of raw reads, at 62 to 83 million reads per library (S1 Table). After the

trimming process, 62–82 million reads were retained from each library.

The de novo assembly generated 124,125 transcripts for the liver tissue of P. olivaceus
(Table 1). The lengths of total transcripts ranged from 201 to 17,656 bp with an average length

of 984 bp. The overall GC ratio of total transcripts was 47% and the N50 value of those tran-

scripts was 2,110 bp. By employing a bioinformatics platform, 38,909 unigenes were filtered

out from the total transcripts (S2 Table). Gene annotation of whole unigenes was performed

by BLASTx analysis with the reciprocal BLAST best-hit method (E-value < 1 × 10–10) using

NCBI nr protein database. Of unigenes, 28,919 (74%) and 29,979 (77%) transcripts were anno-

tated with GO and KO identity, respectively.

mRNA expression profiling

Each library of the three groups (i.e. control, BPS exposure, BaP exposure) was individually

aligned to the assembled reference transcriptome in order to compare differentially expressed

transcripts. Overall mRNA expressions analyzed by both hierarchical clustering and multidi-

mensional scaling (MDS) plot revealed that those of all three groups separated clearly (Fig 1,

S1 Fig). No outlier library was observed in each group, and relatively similar expression pro-

files were found with hierarchical clustering (Fig 1A). To investigate whether clear differences

existed between the control and treated groups, we performed a principle component analysis

(PCA), to provide a general overview (Fig 1B). All members involved in each group closely

clustered together. While the two control libraries had a relatively higher data variance regard-

ing component two, the scatter was very low regarding the more indicative component one

(39.9%). Taken together, both analyses revealed similar relative expression levels for all mem-

bers analyzed in each group.

A total of 917 unique genes showed significantly different mRNA expression between con-

trol and BPS-exposed fish with the criteria > ± 2-fold change and P< 0.05 (603 transcripts

Table 1. Summary of the assembly statistic information.

Sample Merge

All transcript contigs Only longest isoform per gene

Total trinity ’genes’ 99,988 99,988

Total trinity transcripts 124,125 99,988

%GC 46.67 46.06

N90 (bp) 335 282

N80 602 420

N70 1,039 661

N60 1,569 1,072

N50 2,110 1,629

N40 2,680 2,237

N30 3,341 2,948

N20 4,172 3,827

N10 5,543 5,228

Maximum contig length (bp) 17,656 17,656

Minimum contig length (bp) 201 201

Median contig length (bp) 431 364

Average contig length (bp) 983.63 789.82

Total assembled bases (bp) 122,093,418 78,972,560

https://doi.org/10.1371/journal.pone.0196425.t001
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upregulated; 314 transcripts downregulated), while 1,628 transcripts showed significant differ-

ences in the BaP-exposed fish compared to the control (993 transcripts upregulated; 635 tran-

scripts downregulated) (Fig 1C).

Of upregulated transcripts, 305 mRNAs of BPS- and 695 mRNAs of BaP-exposed fish

were chemical-preferentially expressed, whereas 298 mRNAs were commonly upregulated

in both chemical exposures (Fig 1D). In the case of downregulated transcripts, 219 mRNAs

were common to both chemicals, while 95 and 416 mRNAs were unique to BPS and BaP,

respectively.

Fig 1. Comparison of transcriptional expression patterns of whole libraries and analysis of chemical-specifically expressed genes. (A) Transcriptional pattern

analysis of each library (i.e., two control, three BPS-exposed, and three BaP-exposed liver tissues) by employing heat map and hierarchical clustering; (B) PCA plot

analysis of transcriptional profile of each library. Each sample is depicted with a different color. (C) Number of statistically significant transcripts (i.e., over 2 fold;

P< 0.05) in P. olivaceus liver tissues exposed to BPS or BaP; (D) the number of uniquely or commonly up- or downregulated transcripts in the P. olivaceus liver

tissues exposed to BPS or BaP. Detailed list of the commonly modulated genes is included in S5 and S6 Tables.

https://doi.org/10.1371/journal.pone.0196425.g001
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Analysis of gene ontology (GO) and KEGG pathway

Global functionality of the BPS- and BaP-exposed liver transcriptomes compared to the con-

trol group was analyzed by both GO analysis and KEGG pathway mapping. Transcripts were

categorized according to their functions within each GO class, such as biological process, cellu-

lar process, or molecular function (Fig 2, S3 Table). Overall GO composition was analyzed and

Fig 2. Functional classification of differentially expressed genes. Comparison of Gene Ontology (GO) in terms of (A)

biological process, (B) cellular components, and (C) molecular function that were enriched in the BPS- or BaP-exposed liver

tissues of P. olivaceus. Composition of each GO term is represented as a percentage. For detailed information see in S3

Table.

https://doi.org/10.1371/journal.pone.0196425.g002

Chemical-specific transcriptome profiles of olive flounder

PLOS ONE | https://doi.org/10.1371/journal.pone.0196425 May 1, 2018 8 / 25

https://doi.org/10.1371/journal.pone.0196425.g002
https://doi.org/10.1371/journal.pone.0196425


the majority was similar among transcriptomes. In the biological process class, the numbers

with the GO term “Metabolic process” were increased in the BPS- (2,154) and BaP-exposed

liver (2,297) compared that in the control (1,949). Similarly, counts for the GO term “Response

to stimulus” were higher in the BPS- (461) and BaP-exposed liver (520) compared to the num-

ber in the control (401). Interestingly, the numbers of most GO terms involved in the molecular

function class were higher in the BPS- and BaP-exposed liver transcriptomes than those of the

control. However, the number of genes categorized in each function of the BPS-exposed liver

transcriptome was higher than that from BaP for most GO terms of the three major categories.

To test the distinct sensitivity and further usefulness of hepatic transcriptome profiling

between the BPS and BaP exposures, all the assembled reads were assigned on the functional

classification of KEGG (Table 2 and S4 Table). In both transcriptomes, a high number of tran-

scripts had annotations related to “Metabolic pathways” and “Biosynthesis of secondary

metabolites”. Overall KEGG classification showed similar distributions and compositions

between transcriptomes. To analyze whether the gene composition matching certain pathways

is chemical-specific, we selected a pathway which showed a distinct difference in gene number,

and compared each gene’s involvement. Although the pathway, entitled “Metabolic pathways”,

showed the largest matched gene number, we were not able to adopt it, as numerous pathways

and sub-pathways are involved in the KEGG classification. Among the classifications, the

“Protein processing in endoplasmic reticulum” pathway showed different matched genes, as

34 genes of BaP transcriptome were matched to the pathway, while only 12 genes from BPS

transcriptome were incorporated in the pathway (Fig 3A).

Since the pathway of “Metabolism of benzo[a]pyrene by cytochrome P450” is registered in

the KEGG database, we additionally checked the number and composition of matched genes

to the pathway. As shown in Fig 3B, CYP1A-involved metabolism genes were highly expressed

in the BaP-exposed liver transcriptome. In addition, significant increases in EROD activity

were observed at 5 and 50 mg/kg bw of BaP injection into the liver tissue, while no significant

change was measured in the BPS-exposed olive flounder (Fig 3C). The signaling, BaP-medi-

ated CYP1A expression, is not uncommon in teleosts, but comparison of the mated gene

clearly showed that the flounder hepatic transcriptome is differentially sensitive to specific

chemicals; this profiling will be useful for monitoring marine contaminants.

Comparison of the BPS- and BaP-exposed liver transcriptomes

A comparative analysis of the P. olivaceus liver transcriptomes was performed to identify tran-

scripts conserved in the liver tissue and those unique to each chemical exposure. Table 3 and

Table 2. Most highly represented KEGG classifications in the liver transcriptomes of the olive flounder Paralichthys olivaceus upon BPS and BaP exposures.

BPS exposure BaP exposure

Classification Map ID # Classification Map ID #

Metabolic pathways 1100 77 Metabolic pathways 1100 129

Biosynthesis of secondary metabolites 1110 28 Biosynthesis of secondary metabolites 1110 39

Microbial metabolism in diverse environments 1120 23 Protein processing in endoplasmic reticulum 4141 34

Biosynthesis of antibiotics 1130 20 Biosynthesis of antibiotics 1130 28

Pathways in cancer 5200 15 Pathways in cancer 5200 27

Carbon metabolism 1200 15 Microbial metabolism in diverse environments 1120 24

Protein processing in endoplasmic reticulum 4141 13 PI3K-Akt signaling pathway 4151 19

PI3K-Akt signaling pathway 4151 13 Carbon metabolism 1200 18

Non-alcoholic fatty liver disease (NAFLD) 4932 12 Epstein-Barr virus infection 5169 18

Human papillomavirus infection 5165 12 FoxO signaling pathway 4068 16

https://doi.org/10.1371/journal.pone.0196425.t002
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Fig 3. Comparison of KEGG pathways with mapped genes. (A) “Protein procession in endoplasmic reticulum” and (B) Benzo[a]pyrene metabolism in “Metabolism

of xenobiotics by cytochrome P450” in the BPS- or BaP-exposed liver tissues of P. olivaceus. The orange color denotes the gene mapped from the BPS-exposed liver

transcriptome to each KEGG pathway. The blue-green color denotes the gene mapped from the BaP-exposed liver transcriptomes to each KEGG pathway. Notably, no

gene was solely mapped from the BPS-exposed liver transcriptome to a KEGG pathway. (C) The hepatic EROD activity in the liver tissue of BPS- or BaP-injected olive

flounder. Data are presented as the mean ± standard deviation (S.D.). Significant differences from the control value are indicated by an asterisk (�) on the data bar

(P< 0.05).

https://doi.org/10.1371/journal.pone.0196425.g003
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Table 4 show the 20 most highly up- and downregulated genes in the BPS- or BaP-exposed

liver tissue, respectively. Overall, 4 of the 20 most highly upregulated genes in the BPS-exposed

liver transcriptome were related to egg process and vitellogenesis, such as vitellogenin 1 (vtga),

2 (vtgb), and zona pellucida sperm-binding protein (zp3 and zp4) (Table 3). Since the tran-

scription of vtg genes and synthesis of the VTG protein are strongly associated with estrogen

Table 3. Differentially expressed mRNAs in BPS/control [fold change (log 2)>10].

Gene symbol Fold

Change

Up or

Down

KEGG orthology

MFSD2AB 54.69 up lco:104920439 mfsd2a; major facilitator superfamily domain containing 2A

VTG1 45.45 up lco:104931934 VgA; vitellogenin-1-like

- 42.91 up unnamed protein product

VTG2 28.09 up lco:104931936 VgB; vitellogenin-2-like

GPT2L 24.62 up lco:104929222 alanine aminotransferase 2-like

IGFBP1A 23.65 up lco:104929331 insulin-like growth factor-binding protein 1

ZP3 23.30 up lco:104940476 zona pellucida sperm-binding protein 3

MIOX 19.20 up lco:104918107 miox; myo-inositol oxygenase

FAM46BA 18.23 up lco:104938655 fam46b; protein FAM46A

IGFBP1A 17.75 up lco:104929331 insulin-like growth factor-binding protein 1

CCER 15.81 up lco:104930694 coiled-coil domain-containing glutamate-rich protein 1-like

ALDOB 14.58 up lco:104939510 aldob; fructose-bisphosphate aldolase B

AGXTB 14.11 up mze:101480149 serine—pyruvate aminotransferase-like

FAM20C 13.83 up mze:101477115 extracellular serine/threonine protein kinase FAM20C-like

MUC2 13.19 up lco:104921854 prg4; proteoglycan 4

UNNAMED 12.73 up lco:109140524 alanine aminotransferase 2-like

SI:DKEY-178E17.3 12.58 up lco:104921667 somatomedin-B and thrombospondin type-1

domain-containing protein-like

MOB2 11.62 up lco:104918109 MOB kinase activator 2

ZP4 11.50 up lco:104940483 zona pellucida sperm-binding protein 4-like

ZGC:112285 11.36 up mze:101487569 elastase-1-like

GDF15 -99.77 down lco:104920968 gdf15; growth differentiation factor 15

OSER1 -32.97 down lco:104938359 oser1; oxidative stress responsive serine rich 1

DIO3 -24.48 down lco:104924692 thyroxine 5-deiodinase-like

ANGPTL4 -22.35 down lco:109141011 angiopoietin-related protein 4-like

PHGDH -19.82 down lco:104931034 phgdh; phosphoglycerate dehydrogenase

TNIP3 -18.58 down lco:104933799 TNFAIP3-interacting protein 1-like

PHGDH -15.40 down lco:104931034 phgdh; phosphoglycerate dehydrogenase

TNNT1 -15.27 down lco:104939292 troponin T, slow skeletal muscle-like

- -13.82 down unnamed protein product

HAMP -11.89 down xma:102230476 hamp; hepcidin antimicrobial peptide

TGM2L -11.40 down lco:104929140 protein-glutamine gamma-glutamyltransferase 2-like

- -10.38 down unnamed protein product

CALCOCO1B -8.92 down mze:101469246 calcium-binding and coiled-coil domain-containing protein 1-like

KRT18 -8.53 down lco:104930767 keratin, type I cytoskeletal 18-like

SERPINH1B -8.49 down ola:100529194 serpinh1; serpin H1 isoform X1

HP -8.34 down mze:101466498 haptoglobin-like

GK -8.13 down lco:104922970 gck; glucokinase

ISYNA1 -7.62 down lco:104926597 isyna1; inositol-3-phosphate synthase 1-A

TCNL -7.61 down lco:104937502 transcobalamin-1

IGFBP3 -7.55 down lco:104927720 igfbp3; insulin like growth factor binding protein 3

https://doi.org/10.1371/journal.pone.0196425.t003
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level, we further analyzed estrogen-related transcriptional and physiological responses. In the

increased genes, we identified that the estrogen receptor (ER) family such as erα and erβ genes

were significantly increased compared to their expression in BaP-exposed liver tissue (Fig 4A).

To confirm the potential correlation between upregulation of the vtg and er genes, we mea-

sured the plasma E2 and VTG concentrations in the serum samples after BPS or BaP injection.

Table 4. Differentially expressed mRNAs in BaP/control [fold change (log 2)>10].

Gene symbol Fold

Change

Up or

Down

KEGG orthology

CYP1A 176.14 up lco:104920743 CYP1A; cytochrome P450 1A1

UGT1A1 60.52 up lco:109136658 UDP-glucuronosyltransferase-like

IGFBP1A 42.85 up lco:104929331 insulin-like growth factor-binding protein 1

- 29.24 up tng:GSTEN00019789G001 unnamed protein product

PDK2B 29.16 up lco:104927162 pyruvate dehydrogenase (acetyl-transferring) kinase isozyme 2,

mitochondrial-like

GM46320 22.65 up mmu:108167963 Gm46320; predicted gene, 46320

MIOX 21.93 up lco:104918107 miox; myo-inositol oxygenase

GPT2L 21.88 up lco:104929222 alanine aminotransferase 2-like

A4GUE9 16.28 up lco:109140778 insulin-like growth factor II

MOB2 16.19 up lco:104918109 MOB kinase activator 2

ZGC 15.50 up mze:101487569 elastase-1-like

GPT2-LIKE 13.44 up lco:109140524 alanine aminotransferase 2-like

TIPARP 13.28 up lco:104924110 tiparp; TCDD inducible poly (ADP-ribose) polymerase

WFDC2 12.18 up lco:104919425 WAP four-disulfide core domain protein 18-like

CYP26A1 12.14 up lco:104928862 cytochrome P450 26A1

- 12.10 up nle:105739288 uncharacterized LOC105739288

SI:DKEY-188C14 12.08 up lco:104923163 serine/arginine repetitive matrix protein 1-like

EEF2B 11.73 up mze:101482186 elongation factor 2

SI:DKEY-188C14 11.72 up lco:104923163 serine/arginine repetitive matrix protein 1-like

AGXTB 11.63 up mze:101480149 serine—pyruvate aminotransferase-like

GDF15 -344.78 down lco:104920968 gdf15; growth differentiation factor 15

TNIP3 -66.63 down lco:104933799 TNFAIP3-interacting protein 1-like

HSPA5 -34.02 down lco:104925213 hspa5; 78 kDa glucose-regulated protein

ANGPTL4 -32.22 down lco:109141011 angiopoietin-related protein 4-like

PFKFB3 -27.26 down lco:104933238 pfkfb3; 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3

PHGDH -23.58 down lco:104931034 phgdh; phosphoglycerate dehydrogenase

OSER1 -22.25 down lco:104938359 oser1; oxidative stress responsive serine rich 1

HSP90B1 -18.65 down mze:101467243 hsp90b1; heat shock protein 90 beta family member 1

CRELD2 -17.52 down lco:104926574 creld2; cysteine rich with EGF like domains 2

MIDN -17.09 down lco:104924845 midnolin-A-like

SGK1 -13.80 down lco:104925665 sgk1; serum/glucocorticoid regulated kinase 1

TGM2L -13.53 down lco:104929140 protein-glutamine gamma-glutamyltransferase 2-like

IARS -12.37 down lco:104931396 iars; isoleucyl-tRNA synthetase

LIPG -11.84 down lco:104922983 lipg; lipase G, endothelial type

CALCOCO1B -11.17 down mze:101469246 calcium-binding and coiled-coil domain-containing protein 1-like

HAMP -11.12 down xma:102230476 hamp; hepcidin antimicrobial peptide

DNAJB11 -10.99 down mze:101474382 dnajb11; DnaJ heat shock protein family (Hsp40) member B11

YARS -10.93 down lco:104920437 yars; tyrosyl-tRNA synthetase

KRT18 -9.80 down lco:104930767 keratin, type I cytoskeletal 18-like

CALR3B -9.53 down lco:104931427 calreticulin-like

https://doi.org/10.1371/journal.pone.0196425.t004
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As a result, significant increases in plasma E2 were observed after 24 h in the BPS-injected

olive flounder (P< 0.05), while no significant change was measured in the BaP treatment

Fig 4. Hierarchical clustering analysis of differentially expressed genes and biochemical evidences. (A) Transcriptional profiles of estrogen receptor genes (i.e. erα,

erβ, and erγ) in the BPS- or BaP-exposed liver tissues of P. olivaceus; (B) the effect of BPS and BaP injections on the plasma 17β-estradiol (E2) concentration in the liver

tissues of P. olivaceus. E2 concentration is expressed as pg/mL. Each value is an average of five biological replicates, and data are shown as means ± S.D; (C) the effect of

BPS and BaP injections on the plasma vitellogenin (VTG) concentration in the liver tissues of P. olivaceus. VTG concentration is expressed as μg/mL. Each value is an

average of five biological replicates, and data are shown as means ± S.D; (D) transcriptional expressions of genes associated with the innate immunity in the BPS- or

BaP-exposed liver tissues of P. olivaceus. (E) the effect of BPS and BaP injections on the plasma complement activity in the liver tissues of P. olivaceus. The activity is

expressed as U/mL. Each value is an average of five biological replicates, and data are shown as means ± S.D. The asterisk symbol (�) indicates statistical significance

(P< 0.05) compared to the control values.

https://doi.org/10.1371/journal.pone.0196425.g004
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(p> 0.05) (Fig 4B). A significant elevation in the plasma VTG was also observed only after 24

h in the BPS-injected olive flounder (P< 0.05) (Fig 4C).

In the case of the BaP-exposed liver, genes involved in drug/xenobiotic metabolism were

highly upregulated, as the most highly expressed gene was cyp1a1, with 176 a fold change, fol-

lowed by UDP-glucuronosyltransferase (ugt1a1) (Table 4). We observed that 10 genes related

to drug/xenobiotic metabolism and the antioxidant defense system (i.e. UDP-glucuronosyl-

transferase, ugt2A1; glutathione S-transferase, gst; microsomal GST, mgst; GST zeta, gstz; and

catalase, cat) were commonly upregulated by BPS and BaP exposures (S5 Table). The hepatic

enzymatic activity of the total GST protein was significantly elevated by the injections of both

chemical (P< 0.05) (Fig 5A). Additionally, the CAT activity showed significant increases in its

response to both chemicals (P< 0.05) (Fig 5B), while only BaP increased the SOD activity at 6

h after the injection (P< 0.05) (Fig 5C).

Notably, the CYP1A1 and UGT1A proteins are members of the “aryl hydrocarbon receptor

(AhR) gene battery” which comprises several important metabolizing enzymes for biotransfor-

mation and detoxification of xenobiotics and toxicants [33]. Two-contigs coding for the ahr
gene were significantly upregulated by BaP exposure (c41830_g1_i3: 2.33-fold upregulated,

P = 0.004; c41830_g1_i4: 3.07-fold upregulated, P = 0.009), while their modulations were not

significant following BPS exposure. Transcriptional expressions of additional “AhR gene bat-

tery” members were also significantly increased such as cyp1b1 (c47411_g3_i2: 2.40-fold upre-

gulated, P = 0.029; c47411_g3_i3: 2.31-fold upregulated, P = 0.031; c47411_g3_i4: 2.94-fold

upregulated, P = 0.014) and gsta (c40603_g1_i1: 2.11-fold upregulated; P = 0.021).

Although numerous genes associated with diverse pathways were downregulated by BPS or

BaP exposure, mRNA expressions of several genes involved in the innate immunity including

complement genes were decreased by both BPS and BaP exposure (Fig 4D, S6 Table). To fur-

ther assess the potential correlation between the decrease in mRNA expression and protein

activity, we measured the haemolytic complement activity of olive flounder serum. The plasma

haemolytic complement activity of BPS- or BaP-exposed olive flounder was decreased, but

only reached a statistically significant level after 24 h (P< 0.05) (Fig 4E). In this experiment,

the DMSO also decreased the activity after 24 h (P< 0.05, observed in the plasma of BaP-

injected olive flounder).

qPCR validation

To verify differentially expressed genes for each chemical, mRNA expressions of highly repre-

sented genes were analyzed by real-time qRT-PCR (Fig 6). The details on primer information

are shown in S7 Table. Quantitative expressions of 15 randomly selected genes among the

highly up- or downregulated genes in BPS- or BaP-exposed liver tissue showed the high repro-

ducibility of the biological replicates. Most genes showed similar mRNA expression patterns

between the two platforms, RNA-seq and qPCR, except for calr3 and ch in the BPS-injected

sample, and vtg1 and zp4 in the BaP-injected sample.

Discussion

Overall comparison of GO compositions and their ratio among transcriptomes indicates that

both chemicals have the potential to induce or inhibit transcriptional expression, and the mod-

ulated genes may be associated with cellular homeostasis in liver tissue. This result further

implies that diverse pathways are active in the liver tissue of P. olivaceus, some of which have

chemical-specific roles. KEGG analysis revealed that a high number of transcripts were associ-

ated with general metabolism and metabolite processes in both transcriptomes. A possible ex-

planation for this could be that the fish liver tissue employs numerous enzymes and functional
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systems to maintain homeostasis by converting molecules (e.g., drug/xenobiotics metabolism)

and regulating energy balance (e.g., glycogenesis, gluconeogenesis) [34]. Both chemicals used

in this study are detoxified and excreted by metabolism in the fish liver [35–39]. BPS was bio-

transformed into a variety of gluco- and sulfo-conjugated metabolites in zebrafish models

(primary hepatocytes, ZFL, and ZELH-zfER cell lines) [40]. BaP-diones accounted for the

majority of metabolites in the liver tissue of two species of Ictalurid catfish [41]. In fact,

increase or decrease in the transcriptome after exposure to exogenous chemicals is not surpris-

ing as this phenomenon has been continuously observed in diverse aquatic animals, including

fish. However, it is notable that genes mapped to a KEGG pathway by comparative transcrip-

tome analysis showed chemical-specific patterns. The results clearly suggest that transcriptome

profiling and transcriptional sensitivity in the P. olivaceus liver tissue is promising as a strong

biomarker with distinct characteristics on exposure to certain chemicals.

Vitellogenin (Vtg), as the precursor of egg yolk protein, is important for oocyte develop-

ment and embryogenesis in oviparous oogenesis, as Vtg is secreted into the bloodstream and

incorporated into the growing oocytes [42]. Estrogen and other hormones mainly control the

synthesis of Vtg protein, and its extra-hepatic expressions have been detected in teleost in

addition to its major production in the liver tissue [43]. Induction of Vtg is known to be a

strong biomarker for estrogenic compounds, such as endocrine disrupting chemicals (EDCs)

in fish [44–46]. Induction of Vtg has also been observed in immature fish (e.g., larvae and juve-

niles) [47], as shown in the present study. Although BPS has been considered as an alternative

of BPA, its estrogenic potential and adverse effects (e.g., endocrine-disrupting effects) on the

physiological functions have been consistently reported in vertebrates, including fish [17, 48,

49]. Developmental exposure to BPS significantly increased plasma Vtg levels in both male

and female zebrafish [50]. In fish, vitellogenin production and vitellogenesis are mainly medi-

ated through the induction of ERs [51, 52]. In fact, BPS can directly bind to the ERs in a con-

centration-, tissue-, or species-specific manner [53–56]. Based on the transcriptional increases

of the ER family and plasma E2 level observed in this species, we would conclude that BPS

injection triggered vitellogenic responses by exerting estrogenic effects in P. olivaceus.
Zona pellucida proteins (ZPs) share a conserved ZP domain and are constituents of the egg

chorion under estrogenic control in fish [57]. Although the potential function of ZPs in the

recognition and interaction between egg and sperm has been rarely studied in fish, it is notable

that xenoestrogen treatments strongly induced genes associated with fish zonagenesis [42, 57].

In addition, mRNA expressions of ZPs (i.e., zp3, zpb, zpc) were significantly increased by the

estrogen mimic octylphenol and nonylphenol exposure in the Atlantic salmon smolts and

cichlid fish [58, 59]. Thus, transcriptional expression of P. olivaceus ZPs can be assertive molec-

ular indicators for xenoestrogens.

Besides the well-characterized carcinogenicity and genotoxicity of BaP, previous studies

have suggested that BaP is biotransformed to epoxides and quinones by drug/xenobiotic

metabolism via activation of the “AhR gene battery” [18, 33, 60, 61]. In P. olivaceus, BaP injec-

tion strongly increased mRNA expression of the members of “AhR gene battery” in a mecha-

nistic manner through phase I (e.g. cyp1a1) to phase II (e.g. ugt2A1, gsts) drug/xenobiotic

metabolism with inductions of the EROD and GST activity. The AhR-mediated process was

originally characterized as a regulator of PAHs such as BaP beyond the well-characterized

Fig 5. Enzymatic activities of biotransformation and antioxidant defense systems. The effect of the BPS and BaP

injections on the enzymatic activities of the (A) GST, (B) CAT, and (C) SOD proteins in the liver tissues of P. olivaceus
at 6 h. The activity is expressed as μmol /min/mL. Each value is an average of five biological replicates, and data are

shown as means ± S.D. The asterisk symbol (�) indicates statistical significance (P< 0.05) compared to the control

values.

https://doi.org/10.1371/journal.pone.0196425.g005
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Fig 6. qPCR validation results on the mRNA expressions of 15 randomly selected genes. (A) The mRNA expressions of 15 genes were

selected from the RNA-seq data (P< 0.05). (B) Validation of the mRNA expression patterns of the selected 15 genes by qPCR. Abbreviations of

the gene names are as follows: Major facilitator superfamily domain contating 2A, mfsd2a; Vitellogenin 1, vtg1; Zona pellucida sperm-binding

protein 3, zp3; Zona pellucida sperm-binding protein 4, zp4; Estrogen receptor alpha, erα; Cytochrome P450 1A1, cyp1a1; Glutathione S-

transferase zeta 1, gstz; Catalase, cat; Hepcidin antimicrobial peptide, hamp; Calreticulin 3, calr3; Complement C9, c9; Complement H, ch;

Calnexin, cnx; lectin; Selenoprotein F, selenof.

https://doi.org/10.1371/journal.pone.0196425.g006

Chemical-specific transcriptome profiles of olive flounder

PLOS ONE | https://doi.org/10.1371/journal.pone.0196425 May 1, 2018 17 / 25

https://doi.org/10.1371/journal.pone.0196425.g006
https://doi.org/10.1371/journal.pone.0196425


TCDD-induced toxicity [62]. In addition to the classical AhR-mediated mechanism, induction

of the cyp1a gene at both transcriptional and translational levels has been highlighted as one of

the major biomarkers for BaP exposure in numerous teleost [63–67]. Several fish also showed

BaP-triggered inductions of members of the UGT [68, 69] or GST gene families [41, 67, 70,

71]. Some GST proteins are strongly involved in the AhR-mediated process [33, 61]. Taken

together, the overall response of the “AhR gene battery” is likely to be sensitive to BaP injection

in P. olivaceus. Although our results are not sufficient to prove actual biotransformation

because enzymatic activity and chemical structure of BaP metabolites were not analyzed, a sig-

nificant elevation of the mRNA expressions with induction of the EROD activity indicates

their potential as strong biomarkers and early signals of BaP exposure in P. olivaceus.
The mRNA expression and enzymatic activity of genes associated with the antioxidant

defense system was increased in the liver transcriptome of P. olivaceus after exposure to both

chemicals studied. Over the last ten years, the prooxidant role of BPA has been extensively

studied, including BPA-induced intracellular free radicals [e.g. reactive oxygen species (ROS)],

oxidative stress, and subsequent DNA damage in numerous in vitro models and vertebrates,

including fish [72–74]. Although there still needs to be rigorous study to understand BPS-

induced oxidative stress, recent research suggests that BPS, as the main BPA substituent, can

also promote the generation of ROS and alter antioxidant balance related to oxidative stress in

vertebrates [75–77]. Taken together, the results of the present study suggest that BPS-triggered

induction of oxidative stress may produce potential pleiotropic effects such as DNA damage,

developmental toxicity, reproductive toxicity, and disease beyond its endocrine disrupting

properties in fish.

Typically, PAHs, including BaP, are known to act as strong mutagens and/or carcinogens

via oxidative stress induction. BaP can generate large amounts of intracellular ROS during the

biotransformation process and the modulation of the antioxidant defense system [78]. In

detail, its metabolites (e.g. BaP-3-phenol, BaP-quinone) are believed to directly bind to intra-

cellular micro and macromolecules with the formation of ROS [79]. In teleost, studies on tran-

scriptional activation and enzymatic modulation of the antioxidant defense system have

consistently highlighted their biomarker potential for BaP exposure prior to the phenotypic

and physiological toxic effects [67, 71, 80–83]. Thus, we consider that BaP-triggered oxidative

stress may be significant in the liver tissues of P. olivaceus. Although the example of KEGG

classification, “Protein processing in endoplasmic reticulum”, was used for testing different

transcriptional sensitivities, the pathway also suggested biological evidence of BaP-triggered

oxidative stress, and the subsequent induction of the endoplasmic reticulum-stress pathway, as

shown in in vitro systems [84, 85]. Since there is very limited information available on ubiqui-

tin ligase (E3) complexes and ubiquitination in teleosts, we were not able to estimate its role in

the BaP-specific transcriptional expression observed in this species. Activated AhR induced

the expressions of estrogen receptor (ER) target genes, which promoted ER proteolysis

through assembling the E3 complex [86]. The BaP-triggered AhR pathway could be associated

with the ubiquitination of certain proteins damaged by BaP in the liver tissues of P. olivaceus.
Another interesting aspect revealed by transcriptome profiling is that mRNA expression of

genes involved in the innate immune system were reduced by both BPS and BaP injection in

this species. Similarly to the decreased mRNA expressions of several complement genes, the

haemolytic complement activity was also significantly decreased by both chemicals. The innate

immunity of vertebrates has been considered as one of the targets of BPA [87]. BPA modulates

various aspects of the immune system, including innate and adaptive immunity, by altering B

cell functions, T cell subsets, dendritic cell, and macrophage biology in aquatic animals [87,

88]. In teleost, both acute and chronic exposure to BPA significantly affect the immune system

such as inhibition of transcriptional expressions of genes related to the immune response [e.g.,
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IFNγ, IL1β, IL10, Mx, TNFα, CC-chemokine, CXCL-clc, the Toll-like receptors (TLRs) signal-

ing pathway (TLR3, TRIF, MyD88, SARM, IRAK4, and TRAF6), and NF-κB-associated

immune genes], serum immune parameters [e.g. levels of immunoglobulin M (IgM), C-reac-

tion Protein (CRP), and complement component 3] [87–91]. Although BPS assays on the fish

immune system have not been extensively undertaken to date, a recent study suggested that

immune defense is diminished by exposing parental generations to environmentally relevant

concentrations of BPS in zebrafish [92]. Suppressive effects of BaP on immune systems have

been extensively reviewed in teleost [93–95]. In particular, the liver tissues contribute to

immune surveillance by controlling circulating antigens and innate immune cells [96, 97].

Taken together, modulation of immune transcriptomes would be involved in dysregulation of

innate immunity, as the physical and chemical barriers of the innate immune system can con-

trol numerous waterborne pathogens in fish.

The aim of this study was to elucidate the potential advantages, particularly in monitoring

of coastal regions and in transcriptional profiling of the P. olivaceus liver tissue. Finally, we

propose a schematic diagram for transcriptional responses involved in the spectrum of flatfish

(i.e., chemical-specific) or common induction and inhibition of possible mechanisms in the

BPS- or BaP-exposed liver tissues of P. olivaceus with biochemical evidence (Fig 7). Our results

show that the application of transcriptome profiling is a promising testing method for the

Fig 7. Schematic summary of unique and common transcriptional responses in the BPS- and BaP-exposed liver tissues of P. olivaceus. Red arrow means

increased transcriptional metabolism and green arrow represents decreased transcriptional metabolism.

https://doi.org/10.1371/journal.pone.0196425.g007
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study of exposure to different environmental pollutants, as each transcriptome can respond to

certain chemicals via both specific and common response mechanisms.

Supporting information

S1 Fig. Comparison of transcriptional expression patterns of whole libraries. A) Hierarchi-
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