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Hyperinflammation is related to the development of COVID-19. Resveratrol is considered an anti-inflammatory and antiviral
agent. Herein, we used a network pharmacological approach and bioinformatic gene analysis to explore the pharmacological
mechanism of Resveratrol in COVID-19 therapy. Potential targets of Resveratrol were obtained from public databases. SARS-
CoV-2 differentially expressed genes (DEGs) were screened out via bioinformatic analysis Gene Expression Omnibus (GEO)
datasets GSE147507, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis; then, protein-protein interaction network was constructed. The common targets, GO terms, and KEGG
pathways of Resveratrol targets and SARS-CoV-2 DEGs were confirmed. KEGG Mapper queried the location of common
targets in the key pathways. A notable overlap of the GO terms and KEGG pathways between Resveratrol targets and SARS-
CoV-2 DEGs was revealed. The shared targets between Resveratrol targets and SARS-CoV-2 mainly involved the IL-17
signaling pathway, NF-kappa B signaling pathway, and TNF signaling pathway. Our study uncovered that Resveratrol is a
promising therapeutic candidate for COVID-19 and we also revealed the probable key targets and pathways involved.
Ultimately, we bring forward new insights and encourage more studies on Resveratol to benefit COVID-19 patients.

1. Introduction

The outbreak of coronavirus disease 2019 (COVID-19) has
caused a global health emergency. People worldwide are still
being challenged by the enhanced infection risk as coronavi-
rus 2 (SARS-CoV-2) is rapidly spreading [1]. Hence,
researchers urgently need to accelerate clinical trials of any
possible effective and tolerable drug that may reduce the
mortality rate in severe SARS-CoV-2 pneumonia patients.

Severe COVID-19 patients often demonstrate acute
respiratory distress syndrome (ARDS). Proinflammatory
cytokines in the blood were found to be upregulated in
COVID-19 patients, including interleukin- (IL-) 1, IL-6,
tumor necrosis factor (TNF), and interferon γ. Studies sug-
gest that a subgroup of patients with severe COVID-19
might have acquired cytokine storm syndrome [1]. Accumu-
lated evidence has confirmed that excessive inflammation,
oxidation, and an exaggerated immune response may play

an important role during a cytokine storm and subsequent
progression to acute lung injury (ALI)/ARDS and often
death [1, 2]. Approved therapies to alleviate hyperinflamma-
tion and improve the prognosis of severe COVID-19
patients are recommended.

Resveratrol (PubChem CID: 445154) is a phytoalexin
that can be extracted from grapes and a wide range of plants
and possesses antioxidant and potential chemopreventive
properties. Resveratrol displays anti-inflammatory effects
via regulating immune cells and interfering with the synthe-
sis of proinflammatory cytokines [3–5]. Resveratrol also acts
as an antiviral agent through different mechanisms of action.
Resveratrol has been shown to inhibit various viruses,
including respiratory syncytial virus, influenza virus, human
metapneumonia virus, Epstein–Barr virus, enterovirus, and
HIV [6–8].

Our previous study predicted that astragaloside IV could
alleviate hyperinflammation in COVID-19 using network
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pharmacology methodology [9]. Resveratrol possesses not
only antiviral properties but also anti-inflammatory effects;
however, there is still no research focused on Resveratrol
in the treatment of COVID-19 at the moment. In this study,
a network pharmacological approach and bioinformatic
gene analysis strategy were adopted to investigate the mech-
anism of action underlying the effectiveness of Resveratrol in
COVID-19 therapy.

2. Materials and Methods

2.1. Potential Resveratrol-Related Targets. The word “Resver-
atrol” was searched in PubChem (https://pubchem.ncbi.nlm
.nih.gov/), which is the world’s largest collection of freely
accessible chemical information [10]; molecular structure
and PubChem CID (445154) of Resveratrol were obtained.
Comparative Toxicogenomics Database (CTD, http://
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Figure 1: Molecular structure of Resveratrol: (a) 2D molecular structure; (b) 3D molecular structure.
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Figure 2: Resveratrol-related targets: (a) the green circle on the left represents targets from TargetNet, the blue circle on the right represents
targets from CTD, and the yellow circle in the middle indicates the overlapping targets of TargetNet and CTD. (b) Targets from TargetNet
and CTD are shown in the Venn diagram.
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ctdbase.org/about/), a robust publicly available database that
provides manually curated information about chemical–
gene/protein interactions and chemical–disease and gene-
disease relationships [11], and TargetNet (http://targetnet
.scbdd.com), an open web server that is used for netting or
predicting the binding of multiple targets for any given mol-
ecule [12], were used to predict potential targets for Resver-
atrol. To improve accuracy, we took the target genes found
in the intersecting region of these two databases. Because
of the nonstandard naming, the names of targets were listed
using the official symbol format from the UniProt Knowl-
edgebase (UniProtKB, http://www.uniprot.org/).

2.2. SARS-CoV-2-Related Genes. The GSE147507 dataset
containing the host transcriptional response to SARS-CoV-

2 was downloaded from GEO [13]. During the publisher’s
study, SARS-CoV-2 (USA-WA1/2020) was used to stimulate
primary human lung epithelium (NHBE) and transformed
lung alveolar (A549) cells, which suggested that the unique
transcriptional signature of this virus may be responsible for
the development of COVID-19 [14]. We chose the transcrip-
tional results of NHBE for analysis. R packages of “impute”
and “limma” provided by the Bioconductor project (http://
www.bioconductor.org/packages/release/bioc/html/affy.html)
[15] were applied to assess the transcriptional results of
NHBE. Quantile normalization and log2-transformation were
used to create a robust multiarray average (RMA). Adjusted
original p values were obtained via the Benjamini-Hochberg
method; the false discovery rate (FDR) procedure was used
to calculate fold changes (FC). Gene expression values of ∣log
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Figure 3: (a) Volcano plots of the significantly expressed (p < 0:05, fold change > 1) mRNAs between control and SARS-CoV-2 samples
after analysis of the GSE147507 dataset. Red dots represent upregulated genes; green dots represent downregulated genes. (b) Heatmaps
depicting the expression levels of the top 50 DEGs ranked by p value among SARS-CoV-2 DEGs. Legend on the top right indicates log
fold change of genes (Infection1, Infection2, Infection3 = infected with SARS-CoV-2 samples; Control1, Control2, Control3 =mock-
treated samples).
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2 FC ∣ >1 and p value < 0.05 were used as a threshold to filter
differentially expressed genes (DEGs).

2.3. PPI Network Construction. Intersecting target genes of
Resveratrol and DEGs related to SARS-CoV-2 were
obtained. The Resveratrol-related targets and SARS-CoV-2
DEGs were uploaded to String (https://string-db.org/) [16],
with species set as “Homo sapiens,” a confidence score >
0:9 to construct PPI networks, and then, the 2 PPI networks
were merged and visualized using Cytoscape 3.7.2 (http://
www.cytoscape.org/) [17].

2.4. KEGG Pathway and Gene Ontology (GO) Enrichment
Analysis. A list of Resveratrol targets and DEGs related to
SARS-CoV-2 were submitted to Metascape (http://
metascape.org) [18], with species limited to “Homo sapiens.”
KEGG pathway, GO Biological Processes, GO Cellular Com-
ponents, and GO Molecular Functions analysis were carried
out with the following ontology sources: the enrichment
background are all genes in the genome. p value < 0.01,
count > 3, and a minimum enrichment factor of 1.5 were
used as filtering terms. Common KEGG pathways and GO
terms between Resveratrol-related targets and SARS-CoV-
2’s DEGs were chosen. We listed the overlapping targets
and related key pathways. KEGG Mapper queried the loca-
tion of SARS-CoV-2 DEGs and shared targets in the key
pathways.

2.5. In Silico Molecular Docking Study of Resveratrol Key
Targets. Molecular docking of Resveratrol with the common
targets between Resveratrol and SARS-CoV-2 was per-
formed using Autodock Vina [19]. The molecular structure
of Resveratrol was downloaded in the PDB format from
the PubChem database (https://www.ncbi.nlm.nih.gov/)
[20]. The molecular structures of the targets were obtained
from the Protein Data Bank (http://www.rcsb.org/) [21].
Before docking, the original crystal ligands and water mole-

cules were removed from the protein-ligand complexes.
Hydrogen atoms and charge were added, and default set-
tings were selected for other parameters. Local Search
Parameters were selected as the molecular docking model
of Resveratrol to the protein targets. The docking score
was used to evaluate the theoretical binding affinities of Res-
veratrol to the common targets.

3. Results

3.1. Potential Targets of Resveratrol. The molecular structure
of Resveratrol was downloaded from the PubChem database
(Figure 1). Then, 616 corresponding potential targets of Res-
veratrol were extracted from TargetNet, while 3735 corre-
sponding potential targets of Resveratrol were obtained
from the Comparative Toxicogenomics Database (CTD).
After comparing common targets, 235 potential targets were
selected, as shown in Figure 2 and Supplemental file
Table S1.

3.2. Identification of SARS-CoV-2 DEGs. In total, we identi-
fied 23710 genes when comparing SARS-CoV-2 and control
samples and 510 of them were considered significantly dif-
ferentially expressed, including 270 downregulated genes
and 240 upregulated genes. Heatmaps were used to display
the expression levels of the top 50 DEGs ranked by p value
(Figure 3 and Supplemental file Table S2).

3.3. PPI Network Analysis. Overlapping targets of Resvera-
trol and SARS-CoV-2 DEGs included the following:
MMP13, PRKCB, PLAT, KCNH2, ICAM1, PDGFRB, TNF,
ITGB3, CSF1R, BCL2A1, and MMP9. PPI network was used
to visualize and quantify the function of specific proteins in
cells at the systematic level [22]. PPI network of Resveratrol-
related targets and SARS-CoV-2 DEGs were constructed,
and the common targets were identified (Figure 4).

Resveratrol

224 11 499

SARS-Cov-2

(a) (b)

Figure 4: PPI network analysis. (a) Targets of Resveratrol and SARS-CoV-2 DEGs are shown in the Venn diagram. There are 235
Resveratrol-related targets and 510 SARS-CoV-2 DEGs, and both share 11 targets. (b) The red circle on the left represents Resveratrol-
related targets, the blue circle on the right represents SARS-CoV-2 DEGs, and the green rhombus in the middle indicates the
overlapping targets between Resveratrol and SARS-CoV-2 DEGs; edges represent correlations between targets.
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3.4. Gene Ontology and KEGG Enrichment Analysis of
Resveratrol-Related Targets and SARS-CoV-2 DEGs. GO
analysis identified 266 enriched terms for Resveratrol-
related targets, including 240 Biological Process terms, 23
Molecular Function terms, and 3 Cellular Component terms.
The most significant items ranked by p value are listed in
Figure 5(a) and Supplemental file Table S3. SARS-CoV-2
DEGs displayed 315 enriched GO terms, including 299
Biological Process terms, 13 Molecular Function terms, and
3 Cellular Component terms. The most significant items
were ranked using p value and are listed in Figure 5(b) and
Supplemental file Table S4. The intersecting region
between Resveratrol-related targets and SARS-CoV-2
DEGs contained 89 terms; the top 10 common items were
ranked by p value and are listed in Table 1.

For Resveratrol-related targets, KEGG analysis revealed
142 enriched pathways and the most significant pathways
were listed by p value strength in Figure 6(a) and Supplemen-
tal file Table S5. For SARS-CoV-2 DEGs, KEGG analysis
showed 40 enriched pathways, ranked by p value in
Figure 6(b) and Supplemental file Table S6. The intersection
of Resveratrol-related targets and SARS-CoV-2 DEGs
included 30 terms, the top 10 items in the intersection
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Figure 5: GO enrichment analysis. (a) The most significant items in Resveratrol-related targets are classified according to the p value. (b)
The most significant items in SARS-CoV-2 DEGs are ranked by p value.

Table 1: Top 10 overlapping GO terms between Resveratrol-
related targets and SARS-CoV-2 DEGs ranked by p value.

Term Description p value

GO:0019221
Cytokine-mediated signaling

pathway
2:05074E − 21

GO:0060326 Cell chemotaxis 5:87962E − 12
GO:0030595 Leukocyte chemotaxis 7:40744E − 12
GO:0032496 Response to lipopolysaccharide 1:40404E − 11
GO:0006935 Chemotaxis 1:68576E − 11
GO:0097529 Myeloid leukocyte migration 1:7267E − 11

GO:0071222
Cellular response to
lipopolysaccharide

1:7267E − 11

GO:0042330 Taxis 1:85514E − 11

GO:0002237
Response to molecule of bacterial

origin
5:64373E − 11

GO:0071219
Cellular response to molecule of

bacterial origin
5:83252E − 11
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ordered by p value are listed in Table 2. The common targets
and overlapping KEGG pathways are listed in Figure 7. The
key KEGG pathways and the location of SARS-CoV-2 DEGs
and overlapping genes of enriched pathways are listed in
Figure 8.

3.5. Molecular Docking Analysis. Molecular docking analysis
showed that the docking scores of Resveratrol in relation to
PLAT, MMP13, PRKCB, ICAM1, and ITGB3 are greater
than 5 kcal/mol. Interestingly, Resveratrol displayed the
highest docking score with PLAT and MMP13 (docking
score: -6.93, -6.27), demonstrating that Resveratrol could
form a strong interaction with PLAT and MMP13. Other
key targets that showed an affinity with Resveratrol are fur-
ther listed in Figure 9 and Table 3.

4. Discussion

We screened 235 potential Resveratrol-related targets from
an online database; GO analysis of these targets revealed
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Figure 6: KEGG enrichment analysis. (a) The most significant enriched KEGG pathways are classified according to their p value in
Resveratrol-related targets. (b) The most significant enriched KEGG pathways are ranked by p value in SARS-CoV-2 DEGs.

Table 2: Top 10 overlapping KEGG pathways between
Resveratrol-related targets and SARS-CoV-2 DEGs ranked by p
value.

Term Description p value

hsa04657 IL-17 signaling pathway 9:59366E − 15
hsa04668 TNF signaling pathway 1:69723E − 13
hsa04621 NOD-like receptor signaling pathway 6:07599E − 10
hsa05162 Measles 5:30173E − 09
hsa05134 Legionellosis 5:45103E − 09
hsa05164 Influenza A 2:00359E − 07
hsa05133 Pertussis 1:63392E − 06
hsa04064 NF-kappa B signaling pathway 1:8066E − 06
hsa05140 Leishmaniasis 9:37339E − 06
hsa05146 Amoebiasis 1:38036E − 05
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enriched terms such as cytokine-mediated signaling path-
way, cell chemotaxis, leukocyte chemotaxis, response to lipo-
polysaccharide, chemotaxis, myeloid leukocyte migration,
and cellular response to lipopolysaccharide, which are in line
with the findings of a recent study on Resveratrol [23]. 510
DEGs were then confirmed in samples infected with SARS-
CoV-2 when compared to mock samples. Similar to the
study by Blanco-Melo et al. [24], enriched GO terms such
as cellular response to virus infection (GO:0009615),
humoral immune response (GO:0006959), and chemokines
and cytokines (GO:0005125) were identified.

Among the SARS-CoV-2 DEGs identified, cytokines
such as IL-6, IL-8, IL-17, TNF, IL-32, IL-1, and NOD2 were
upregulated. These results are in accordance with a recent
study that found elevated levels of cytokines in the plasma
of COVID-19 patients [1]. GO analysis results of SARS-
CoV-2 DEGs reveal that cytokine-mediated signaling path-
way, cytokine activity, and neutrophil chemotaxis are the
most significant terms. The most relevant KEGG enrich-
ment items were cytokine-cytokine receptor interaction,
IL-17 signaling pathway, TNF signaling pathway, NOD-
like receptor signaling pathway, and NF-κB signaling path-
way. Recent research shows that the NF-κB pathway can
be induced by SARS-CoV-2 infection, leading to multiple
inflammatory responses [25]. In addition, TNF was present
in the blood and disease tissues of patients with COVID-19
[26], which is important in nearly all acute inflammatory
reactions, acting as an amplifier of inflammation. Further-
more, NF-κB, IL-6, and TNF are considered promising ther-
apeutic targets in COVID-19 [27].

The shared targets of Resveratrol and SARS-CoV-2
DEGs may represent the potential therapeutic targets of Res-
veratrol on COVID-19, which include MMP13, PRKCB,
PLAT, KCNH2, ICAM1, PDGFRB, TNF, ITGB3, CSF1R,
BCL2A1, and MMP9. These are mainly involved in the IL-
17 signaling pathway, NF-κB signaling pathway, and TNF
signaling pathway. The activation of these pathways leads
to the increased release of cytokines, which have been shown
to play an important role in viral infection [28, 29]. We sur-
mise that Resveratrol can reduce the expression level of cyto-
kines and alleviate hyperinflammation in COV19 by
inhibiting the activation of these pathways.

Studies have demonstrated that Resveratrol exerts anti-
inflammatory effects through various pathways to reduce
lung injury [30]. For instance, Resveratrol suppresses TNF-
induced activation of nuclear transcription factors NF-κB
[31] and also mitigates LPS-induced acute lung inflamma-
tion by inhibiting the TLR4/NF-κBp65/MAPK signaling cas-
cade and NLRP3 inflammasome [32–34]. Furthermore,
Resveratrol improved hyperoxia-induced lung injury via its
antioxidant, anti-inflammatory, and antifibrotic effects, pro-
moting the transdifferentiation of alveolar type II epithelial
cells into their type I counterpart and suppressing the
Wnt/β-catenin signaling in preterm rats [35, 36].

By decreasing nucleocapsid (N) protein expression, Res-
veratrol controlled MERS-CoV infection and improved cel-
lular survival after virus infection [37]. The interaction of
nucleocapsid protein and viral RNA in the cytoplasm is nec-
essary for viral RNA nucleocapsid assembly. Resveratrol
inhibited the replication of influenza A by nearly 90% by

Figure 7: The shared targets have overlapping KEGG pathways. The red circle in the middle represents overlapping Resveratrol-related
targets and SARS-CoV-2 DEGs; the green square represents overlapping KEGG pathways in relation to inflammatory and immune
response; the blue square represents other items among overlapping KEGG pathways.
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Figure 8: Continued.
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Figure 8: The key KEGG pathways: (a) NF-κB signaling pathway, (b) TNF signaling pathway, and (c) IL-17 signaling pathway. The red
nodes represent upregulated SARS-CoV-2 DEGs, the green marked node represents downexpression SARS-CoV-2 DEGs, and the blue
marked node represents overlapping targets between Resveratrol and SARS-CoV-2.
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preventing nucleocapsid protein translocation from the
nucleus to the cytoplasm [38, 39]. Resveratrol not only
reduced the titer of the respiratory syncytial virus but also
decreased interferon-γ production induced by the respira-
tory syncytial virus in a mouse model and alleviated airway
inflammation and hyperresponsiveness [23, 40]. In human
9HTEo cells, respiratory syncytial virus replication and pro-
duction of IL-6 were reduced after Resveratrol incubation.
Resveratrol treatment also decreased expression of ICAM-1
induced by human rhinoviruses in H1HeLa and nasal epi-
thelial cells [41, 42]. These data demonstrate that Resveratrol
might act as a therapeutic drug for viral infections showing
both effective anti-inflammatory and antiviral potential.
Although there are no experiments to confirm the therapeu-
tic effect of Resveratrol in COVID-19, the molecular docking
previously revealed a wide spectrum of interactions between
Resveratrol derivatives and two newly released coordinate
structures for COVID-19 [43]. The drug for immunosup-
pression is likely to be beneficial to patients with hyperin-
flammation. IL-1 blockade (anakinra) showed a significant
survival benefit in sepsis patients with hyperinflammation,
without increased adverse events [44].

However, our study has some limitations. We failed to
prove the therapeutic effect of Resveratrol in COVID-19
through experiments due to complexity reasons. Direct evi-
dence of Resveratrol efficacy is still needed in a SARS-CoV-2
infection experiment model. Nevertheless, we strongly believe
that Resveratrol is likely to be beneficial for COVID-19

patients because combined anti-inflammatory and antiviral
effects are shown in numerous studies. In light of our findings,
related and more in-depth studies on Resveratrol are urgently
warranted.

5. Conclusion

Taken together, our findings show that Resveratrol is a
potential candidate in COVID-19 therapy, based on network
pharmacology and bioinformatic gene analysis. More
importantly, we also identified the possible key targets and
pathways involved in this novel therapeutic strategy.
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Figure 9: Structural interactions of Resveratrol and key target receptors.

Table 3: The docking scores of Resveratrol and rapamycin with key
proteins.

Target PDB ID Drug Binding energy (kcal/mol)

PLAT 1OLP -6.93

MMP13 2OW9 -6.27

PRKCB 3PFQ Resveratrol -6.17

ICAM1 5E6D -5.88

ITGB3 4YNY -5.2

BCL2A1 5UUP -4.98
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