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Background-—In patients with chronic heart failure and chronic kidney disease, correction of anemia with erythropoietin-
stimulating agents targeting normal hemoglobin levels is associated with an increased risk of cardiovascular morbidity and
mortality. Emerging data suggest a direct effect of erythropoietin on fibroblast growth factor 23 (FGF23), elevated levels of which
have been associated with adverse outcomes. We investigate effects of erythropoietin-stimulating agents in patients with both
chronic heart failure and chronic kidney disease focusing on FGF23.

Methods and Results-—In the EPOCARES (Erythropoietin in CardioRenal Syndrome) study, we randomized 56 anemic patients
(median age 74 [interquartile range 69–80] years, 66% male) with both chronic heart failure and chronic kidney disease into 3
groups, of which 2 received epoetin beta 50 IU/kg per week for 50 weeks, and the third group served as control. Measurements
were performed at baseline and after 2, 26, and 50 weeks. Data were analyzed using linear mixed-model analysis. After 50 weeks
of erythropoietin-stimulating agent treatment, hematocrit and hemoglobin levels increased. Similarly, C-terminal FGF23 levels, in
contrast to intact FGF23 levels, rose significantly due to erythropoietin-stimulating agents as compared with the controls. During
median follow-up for 5.7 (2.0–5.7) years, baseline C-terminal FGF23 levels were independently associated with increased risk of
mortality (hazard ratio 2.20; 95% CI, 1.35-3.59; P=0.002).

Conclusions-—Exogenous erythropoietin increases C-terminal FGF23 levels markedly over a period of 50 weeks, elevated levels of
which, even at baseline, are significantly associated with an increased risk of mortality. The current results, in a randomized trial
setting, underline the strong relationship between erythropoietin and FGF23 physiology in patients with chronic heart failure and
chronic kidney disease.

Clinical Trial Registration-—URL: http://www.clinicaltrials.gov. Unique identifier: NCT00356733. ( J Am Heart Assoc. 2019;8:
e011130. DOI: 10.1161/JAHA.118.011130.)
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A nemia is associated with diminished exercise capacity
and quality of life in patients with chronic heart failure

(CHF) and/or chronic kidney disease (CKD).1 Major contribut-
ing factors to development of anemia are impaired erythro-
poietin (EPO) production and response.2-4 Interestingly, large
randomized trials in CHF and CKD striving for full correction of

anemia with erythropoiesis-stimulating agents (ESA) were
associated with an increased risk of cardiovascular morbidity
and mortality.5-7 To date, the mechanism linking ESA
treatment and increased cardiovascular risk is unknown.

Recently, it has been established in animal models that
exogenous EPO administration augments expression of
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fibroblast growth factor 23 (FGF23), an osteocyte-derived
phosphaturic hormone essential in bone and mineral
metabolism.8,9 Recent human and animal experimental
studies describe an increase in C-terminal FGF23 (cFGF23)
levels following EPO treatment, while intact FGF23 (iFGF23)
remained stable, which together is suggestive of upregu-
lated production and concomitant cleavage of FGF23.10-13

Preclinical studies demonstrated that FGF23 can induce left
ventricular hypertrophy by binding to FGF23 receptor 4 in
cardiac myocytes and promote endothelial dysfunction.14,15

Elevated levels of cFGF23 have been shown to be
associated with increased risk of cardiovascular mortal-
ity across different patient populations, including CKD
patients and CHF patients, but also among healthy
individuals.16-18

Furthermore, it is known that exogenous EPO treatment
increases the need for iron by stimulating erythropoiesis. Iron
stores frequently cannot be mobilized fast enough to meet the
demand of increased erythropoiesis, resulting in functional
iron deficiency.19 Recently, studies from our group and others
have shown that iron deficiency results in increased produc-
tion and concomitant upregulated cleavage of FGF23, result-
ing in elevated levels of cFGF23.20-23

We analyzed the data of the EPOCARES (Erythropoietin in
the CardioRenal Syndrome) study aiming to assess the effects
of ESA therapy on red cell production, iron status, inflamma-
tion, and bone mineral homeostasis, including both iFGF23
and cFGF23.

Methods

Study Design and Patients
The data that support the findings of this study are available
from the corresponding author on reasonable request. The
EPOCARES study has been described in detail.24,25 In brief,
we conducted an open-label, prospective, randomized trial to
study effects of ESA in patients with CHF, CKD, and anemia.
At enrollment, patients had to be at least 18 years of age and
<85 years, have a renal function of 20 to 70 mL/min per
1.73 m2 calculated with the Cockroft-Gault equation, and
have hemoglobin levels between 10.2 and 12.7 g/dL for men
and 12.0 g/dL for women. CHF was defined as New York
Heart Association class II or higher, based on symptoms,
signs, and objective evidence of an abnormality in cardiac
structure or function according to the European Society of
Cardiology guidelines. Key exclusion criteria constituted
patients with an active systemic disease, malignancy, uncon-
trolled hypertension (ie, systolic blood pressure higher than
160 mm Hg or diastolic blood pressure higher than
100 mm Hg), uncontrolled diabetes mellitus (ie, a glycated
hemoglobin A1c of more than 8.0%), EPO therapy in the
previous 6 months, and anemia due to bleeding, hemolysis, or
vitamin B12, folate, or iron deficiency. Follow-up data about
mortality have been retrieved at fixed time points from the
patient medical records after the study was finished.

Intervention
All eligible patients started with a standard run-in treatment,
at least 4 weeks before inclusion and randomization, con-
sisting of oral iron supplementation and medical treatment
according to CHF guidelines.26 If the subjects were still
anemic after at least 4 weeks of oral iron supplementation,
they were included and randomized into 3 different groups.
Randomization was stratified for EPO resistance (defined as
an observed or predicted log[serum EPO] ratio <0.6), and
allocation was performed in blocks of 6 patients (block
randomization) using a computerized table of random num-
bers. The first group received a fixed dose of 50 IU/kg per
week of EPO (epoietin-b, Neorecormon; Roche Pharmaceuti-
cals, Mannheim, Germany) to increase the Hb level to a
maximum of 13.7 g/dL for men and 13.4 g/dL for women
(hemoglobin-rise group). The second group also received
50 IU/kg per week EPO, but the hemoglobin levels in these
patients were maintained at baseline level during 26 weeks
by sequential blood withdrawal (hemoglobin-stable group).
The third, the control group only received standard care. Of
the 62 patients included in the EPOCARES study, 5 withdrew
their informed consent, and 1 was excluded because of
presumed malignancy at the time of inclusion.

Clinical Perspective

What Is New?

• In the EPOCARES (Erythropoietin in CardioRenal Syndrome)
study, which consists of 56 anemic patients with both
chronic heart failure and chronic kidney disease who were
randomized to 3 groups, of which 2 received epoetin beta
for a period of 50 weeks and 1 was the control group, we
show that administration of exogenous erythropoietin over
time increases C-terminal fibroblast growth factor 23,
elevated baseline levels of which are associated with an
increased risk of mortality in this population.

What Are the Clinical Implications?

• Current results underline in a randomized trial setting the
strong relationship between erythropoietin and fibroblast
growth factor 23 physiology in patients with chronic heart
failure and chronic kidney disease.

• C-terminal fibroblast growth factor 23 levels might be the
potential link between the previously well-established
association of exogenous erythropoietin treatment with
detrimental outcomes in this patient setting.
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To maintain hemoglobin levels steady in the hemoglobin-
stable group, blood was drawn if hemoglobin levels exceeded
14.0 g/dL in men or 13.8 g/dL in women while the low dose
of 50 IU/kg of EPO was maintained. Blood was drawn up to a
maximum of 250 mL per session, to a maximum of 250 mL
per 2 weeks. However, after 26 weeks the phlebotomies
ceased in the hemoglobin-stable group, and the hemoglobin
was allowed to increase equal to that of the hemoglobin-rise
group according to a request of the institutional review board.
In a prespecified subgroup, echocardiograms were performed
according to study protocol, as described previously.24 The
study protocol has been approved by the institutional review
boards, and written informed consent was obtained from all
subjects and adhered to the principles of the Declaration of
Helsinki.

Laboratory Tests
All blood samples were drawn between 8 and 9 AM. Serum
ferritin, as a marker of iron stores, was determined using
routine laboratory procedures. Iron status was further
assessed by serum iron, transferrin, transferrin saturation,
and serum hepcidin. Details of the methods used for
biomarker analysis have been published.27 Intact FGF23
was measured using stored plasma samples by ELISA (Kainos
Laboratories, Inc, Tokyo, Japan) and cFGF23 by ELISA
(Immutopics/Quidel, Inc, San Clemente, CA). The cFGF23
immunometric assay uses 2 antibodies directed against
different epitopes within the C-terminal part of FGF23, which
therefore detects both the intact hormone and the C-terminal
cleavage products. In contrast, the iFGF23 assay detects only
the intact molecule.28 All variables were measured at baseline
and after 2, 26, and 50 weeks.

Statistical Analyses
Intention-to-treat analyses included all randomized patients
starting ESA treatment or standard of care in the control
group. Data were analyzed using IBM SPSS software, version
23.0 (SPSS Inc, Chicago, IL). Normally distributed variables
are presented as means�SD, whereas skewed distributed
variables are shown as median with interquartile range.
Categorical variables are shown as numbers with percentage.
Baseline characteristics among the 3 groups were evaluated
with a 1-way ANOVA for normally distributed data, a Kruskal-
Wallis test for skewed distributed data, and a chi-squared test
for categorical variables. Cox proportional hazard regression
analysis was performed to assess whether baseline cFGF23
levels were associated with risk of mortality over time.
Adjustments were performed for age, sex, estimated
glomerular filtration rate, presence of diabetes mellitus,
hypertension, and smoking status as traditional mortality risk

factors. In addition, we adjusted for iron status and red blood
cell dynamics (ferritin, hemoglobin, and EPO), which could be
considered confounders because of their relationship with
both cFGF23 and mortality. Linear regression analysis based
on intention-to-treat approach was performed to assess the
association between baseline cFGF23 levels and measured
ejection fraction by echocardiography at 50 weeks. Possible
effect modification by group randomization on the associa-
tion of cFGF23 with mortality and measured ejection fraction
has been assessed. The difference in cFGF23 levels at
baseline and 50 weeks among the 3 groups was assessed by
means of contrast analysis in the linear mixed models. As
sensitivity analysis, we performed a per-protocol analysis of
our primary association between ESA treatment and the
effect on cFGF23 and iFGF23 by repeating the linear mixed-
model analysis.

To estimate the effect of EPO on the hemoglobin-rise and
hemoglobin-stable groups compared with the control group,
we performed a linear mixed-effect model with “group,” “time”
(as continuous variable), and “group9time” as fixed effects
and patient identification number as random effect. In all
analyses, skewed data were natural-log transformed before
analysis, and a 2-sided P<0.05 was considered significant.

Results

Baseline Characteristics
Fifty-six patients (median age 74 [interquartile 69–80] years,
66% males, mean estimated glomerular filtration rate of
36�15 mL/min per 1.73 m2) were included. Demographics
and clinical characteristics of the 56 patients, subdivided by
study group, are shown in Table 1. At baseline, no significant
differences were observed for the main parameters. During
the course of the study, 6 patients died (3 in the control
group, 2 in the hemoglobin-rise group, and 1 in the
hemoglobin-stable group); 3 of these patients died due to
terminal heart failure, 1 due to abdominal sepsis, 1 due to an
out-of-hospital cardiac arrest, and 1 due to ventricular
fibrillation.

Laboratory Results in Response to EPO
Treatment
Table 2 summarizes laboratory values at the end of the 50-
week trial and shows treatment effects of EPO. After
50 weeks of treatment, hemoglobin levels in the EPO
hemoglobin-stable group increased from 11.7�0.84 to
13.1�0.8 g/dL, and in the EPO hemoglobin-rise group it
increased from 11.8�1.07 to 13.2�1.30 g/dL, whereas
hemoglobin levels remained stable at 11.8�0.79 g/dL in
the control group. Similarly, hematocrit increased due to EPO
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treatment. No significant differences were noticed in serum
ferritin levels due to EPO treatment. In contrast, transferrin
levels increased significantly in the EPO-treated groups
(Table 2). Surprisingly, transferrin saturation levels remained
stable or even increased slightly due to EPO treatment,
although not significantly. No significant differences due to
EPO treatment were observed for renal function, electrolytes,
or inflammatory parameters.

Intact and C-Terminal FGF23 in Response to EPO
Treatment

After 50 weeks of EPO treatment, cFGF23 levels increased
significantly in the EPO hemoglobin-stable group from 162
(110–239) to 306 (231–443) RU/mL and in the EPO
hemoglobin-rise group from 205 (69–442) to 322 (187–
685) RU/mL, whereas the levels decreased in the control

Table 1. Baseline Characteristics of 56 Patients With Chronic Heart Failure, Chronic Kidney Disease, and Anemia

Hb-Stable Group (n=18) Hb-Rise Group (n=19) Control Group (n=19) P Value

Age, y 78 (69–81) 74 (70–80) 72 (66–77) 0.65

Male sex, n (%) 10 (56) 13 (68) 14 (74) 0.49

BMI, kg/m2 26.1�4.9 25.7�3.6 27.4�4.3 0.54

eGFR, mL/min per 1.73 m2 36�14 35�12 34�16 0.94

NT-proBNP, pg/mL 1767 (762–3127) 1373 (524–2151) 1680 (659–2610) 0.78

Etiology of heart failure 0.43

Ischemic, n (%) 9 (50) 13 (68) 13 (68)

Hypertensive, n (%) 3 (17) 3 (16) 3 (16)

Valvular, n (%) 2 (11) 1 (5) 3 (16)

Other, n (%) 4 (22) 2 (11) 0 (0)

Diabetes mellitus, n (%) 5 (28) 7 (37) 7 (37) 0.80

Hypertension, n (%) 14 (78) 13 (68) 16 (84) 0.51

Smoking status 0.05

Never smoker, n (%) 10 (56) 5 (26) 3 (16)

Former smoker, n (%) 7 (39) 13 (68) 12 (63)

Current smoker, n (%) 1 (6) 1 (5) 4 (21)

Hemoglobin, g/dL 11.7�0.8 11.8�1.1 11.8�0.8 0.94

Hematocrit, % 36�3 35�4 35�3 0.89

MCV, fL 90�4 91�4 89�4 0.61

Reticulocytes, % 1.1�0.3 1.2�0.4 1.1�0.4 0.85

RDW (%) 14.5 (13.4–15.2) 13.6 (13.2–14.3) 14.2 (13.1–15.1) 0.48

EPO, IU/L 13 (7–15) 14 (10–19) 15 (5–17) 0.64

Iron, lmol/L 11.4�5.4 11.8�4.4 11.8�3.5 0.96

Ferritin, lg/L 127 (87–179) 136 (71–307) 128 (76–164) 0.81

TSAT, % 22�13 23�9 22�7 0.99

Hepcidin, ng/mL 6.6 (2.8–8.7) 6.6 (4.1–11.5) 5.7 (3.3–7.9) 0.28

Calcium, mmol/L 2.34�0.14 2.29�0.08 2.30�0.12 0.32

Phosphate, mmol/L 1.2�0.2 1.2�0.1 1.1�0.2 0.56

PTH, pmol/L 10.0 (6.0–11.2) 11.9 (6.9–19.2) 12.0 (6.6–20.1) 0.34

cFGF23, RU/mL 162 (110–239) 205 (69–442) 315 (127–685) 0.17

iFGF23, pg/mL 89 (53–114) 118 (46–235) 115 (77–248) 0.11

hs-CRP, mg/dL 2.8 (1.1–11.0) 6.8 (1.7–11.4) 4.3 (1.7–6.9) 0.44

Mean�SD or median (interquartile range) are shown. Differences between groups were calculated with 1-way ANOVA for normally distributed data, with Kruskal-Wallis test for skewed
distributed data, and chi-squared test for categorical data. BMI indicates body mass index; cFGF23, C-terminal fibroblast growth factor 23; eGFR, estimated glomerular filtration rate; EPO,
erythropoietin; Hb, hemoglobin; hs-CRP, high-sensitivity CRP; iFGF23, intact fibroblast growth factor 23; MCV, mean corpuscular volume; NT-proBNP, N-terminal pro–brain natriuretic
peptide; PTH, parathyroid hormone; RDW, red cell distribution width; TSAT, transferrin saturation.
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group from 315 (127–685) to 178 (132–424) RU/mL (Figure,
upper panel). Intact FGF23 levels in both the EPO hemoglobin-
stable and EPO hemoglobin-rise groups were not different
between baseline and after 50 weeks of treatment (89 [53–
114] to 129 [60–200] pg/mL and 118 [46–235] to 206 [73–
572] pg/mL, respectively), and the level remained stable in
the control group (Figure, lower panel). Phosphate levels
decreased in both EPO-treated groups, significantly in the EPO

hemoglobin-stable group. Calcium and PTH levels did not
significantly change after EPO treatment.

Association of Baseline cFGF23 and iFGF23 With
Prospective Outcomes
During a median follow-up of 5.7 (2.0–5.7) years, 27 (48%)
patients died, which is in line with survival rates previously

Table 2. Effect of Erythropoietin Treatment in Hemoglobin-Stable and Hemoglobin-Rise Patients Compared With Control Patients

Values After 50 Weeks of Treatment Treatment Effect

EPO-Hb-Stable (n=18) EPO-Hb-Rise (n=19) Control (n=19) EPO-Hb-Stable vs Control EPO-Hb-Rise vs Control

Red blood cell and iron status

Hemoglobin, g/dL 13.1�0.8 13.2�1.3 11.8�1.2 1.0 (0.17 to 1.83)* 1.2 (0.61 to 1.79)***

Hematocrit, % 40.4�2.2 39.8�3.8 36.0�3.6 4.0 (1.0 to 6.6)** 4.0 (2.0 to 6.0)***

MCV, fL 92.2�5.1 89.4�4.3 90.4�3.2 2.0 (�0.01 to 4.01) �0.3 (�1.8 to 1.2)

Reticulocytes, % 1.2�0.3 1.2�0.4 1.0�0.4 0.002 (�0.01 to 0.01) 0.003 (�0.005 to 0.01)

RDW (%) 14.5 (13.6 to 15.5) 13.9 (13.5 to 14.4) 13.8 (13.2 to 14.6) 0.8 (�1.0 to 2.5) 0.7 (�0.8 to 2.1)

EPO,† IU/L 32 (25 to 46) 35 (26 to 50) 10 (7 to 13) 6.0 (�16.2 to 28.2) 10.0 (�5.7 to 25.7)

Iron, lmol/L 12.8�4.5 10.9�2.5 11.4�2.7 �7.0 (�19.4 to 5.5) �6.0 (�14.8 to 2.8)

Ferritin,† lg/L 84 (47 to 102) 99 (68 to 139) 139 (61 to 232) 0.61 (0.23 to 1.62) 0.47 (0.11 to 2.05)

Transferrin, g/L 2.4�0.4 2.2�0.2 2.2�0.3 0.8 (0.06 to 1.44)* 0.5 (0.01 to 0.99)*

TSAT, % 24�10 21�6 22�6 2.5 (�21.1 to 26.1) 0 (�17 to 17)

Hepcidin,† ng/mL 2.8 (1.3 to 5.0) 6.0 (2.9 to 7.9) 6.2 (5.1 to 9.2) 0.29 (0.02 to 4.58) 0.45 (0.07 to 3.36)

Renal function and heart failure

Urea,† mmol/L 11.9 (8.3 to 17.8) 13.5 (11.3 to 23.1) 14.1 (9.1 to 23.8) 0.70 (0.53 to 0.93)* 0.82 (0.67 to 1.00)*

Creatinine, lmol/L 152 (118 to 231) 189 (126 to 279) 176 (143 to 334) 0.93 (0.82 to 1.05) 0.96 (0.88 to 1.04)

eGFR,‡ mL/min per 1.73 m2 36�14 32�14 33�17 2.5 (�2.1 to 7.1) 1.95 (�1.4 to 5.3)

NT-proBNP,† pg/mL 1756 (888 to 2713) 1017 (666 to 1925) 1355 (373 to 2220) 0.74 (0.05 to 10.5) 0.78 (0.11 to 5.54)

Bone and mineral metabolism

Calcium, mmol/L 2.36�0.13 2.34�0.09 2.29�0.08 �0.03 (�0.10 to 0.04) 0.01 (�0.04 to 0.06)

Phosphate, mmol/L 1.1�0.2 1.2�0.2 1.2�0.2 �0.20 (�0.34 to �0.06)** �0.1 (�0.2 to �0.002)

PTH,† pmol/L 7.9 (5.6 to 13.9) 11.4 (7.8 to 20.2) 11.4 (9.1 to 14.3) 1.16 (0.79 to 1.72) 1.12 (0.64 to 1.95)

cFGF23,† RU/mL 306 (231 to 443) 322 (187 to 685) 178 (132 to 424) 1.72 (1.02 to 2.90)* 1.49 (1.01 to 2.21)*

iFGF23,† pg/mL 129 (60 to 200) 206 (73 to 572) 120 (113 to 288) 1.28 (0.85 to 1.95) 1.22 (0.91 to 1.64)

Electrolytes

Sodium, mmol/L 142�2 139�4 140�3 �2.5 (�15.0 to 10.0) �2.5 (�11.3 to 6.3)

Potassium, mmol/L 4.4�0.3 4.5�0.4 4.4�0.4 0.33 (�0.09 to 0.75) 0.03 (�0.26 to 0.32)

Inflammation

hs-CRP,† mg/dL 3.0 (2.0 to 7.5) 3.0 (1.3 to 7.0) 5.5 (2.0 to 10.8) 1.65 (0.31 to 8.90) 1.28 (0.48 to 3.42)

IL-6,† pg/mL 3.14 (2.67 to 6.62) 3.69 (1.65 to 6.81) 3.13 (2.76 to 3.76) 1.42 (0.82 to 2.47) 1.22 (0.83 to 1.81)

Mean�SD or median (interquartile range) are shown. Samples were collected at weeks 0, 2, 26, and 50. cFGF23 indicates C-terminal fibroblast growth factor 23; eGFR, estimated
glomerular filtration rate; EPO, erythropoietin; Hb, hemoglobin; hs-CRP, high-sensitive C-reactive protein; iFGF23, intact fibroblast growth factor 23; IL-6, interleukin-6; MCV, mean
corpuscular volume; NT-proBNP, N-terminal-pro–brain natriuretic peptide; PTH, parathyroid hormone; RDW, red cell distribution width; TSAT, transferrin saturation.
P-values: ***<0.001, **<0.01, *<0.05.
†Due to skewed distribution, the treatment effect is seen as a relative increase on a natural logarithm scale.
‡Calculated with Modification of Diet in Renal Disease equation.
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reported in this patient setting.29 Baseline natural log-
transformed (ln) cFGF23 was univariately positively associated
with increased mortality risk (hazard ratio [HR] 1.85; 95% CI,
1.27–2.70; P=0.001). No effect modification by group ran-
domization was noted (P=0.27). After adjustment for age, sex,
and estimated glomerular filtration rate, the association
between baseline ln cFGF23 and mortality remained materially
unchanged (HR 2.02; 95% CI, 1.35–3.00; P=0.001). Further
adjustment for the presence of diabetes mellitus, hypertension,
and smoking did also not materially alter the positive
association between ln cFGF23 and mortality (HR 2.44; 95%
CI, 1.54–3.87; P<0.001). Finally, the positive association
between ln cFGF23 and mortality remained independent of
additional adjustment for ln ferritin, hemoglobin, and ln EPO
levels (HR 2.20; 95% CI, 1.35–3.59; P=0.002). In contrast, ln
iFGF23 levels were univariately not associated with increased
risk of mortality (HR 1.17; 95% CI, 0.69–2.00; P=0.57).

In linear regression analyses, baseline ln cFGF23 levels
were inversely associated with biplane left ventricular ejec-
tion measurement by echocardiography after 50 weeks
(b=�0.50, P<0.001) as assessed in a subset of 28 patients.
No effect modification by group randomization was noted
(P=0.96). After adjustment for age, sex, and estimated
glomerular filtration rate, baseline cFGF23 levels remained
inversely associated with ejection fraction (b=�0.49,
P=0.01). As for mortality, ln iFGF23 levels were univariately
not associated with ejection fraction (b=0.03, P=0.88).

Sensitivity Analyses
As a sensitivity analysis, we performed a per-protocol analysis
(49 patients by excluding the 6 patients who were lost to
follow-up during the study) instead of intention-to-treat
analysis and reassessed the mixed models analysis on the

Figure. Effect of erythropoietin on C-terminal fibroblast growth factor 23 and intact fibroblast growth
factor 23. Median levels with interquartile range of both cFGF23 and iFGF23 levels are shown over time.
cFGF23 indicates C-terminal fibroblast growth factor 23; EPO, erythropoietin; Hb, hemoglobin; iFGF23,
intact fibroblast growth factor 23.
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association of EPO treatment with cFGF23 and iFGF23. Again,
after 50 weeks of EPO treatment cFGF23 levels significantly
increased from 188 (100–358) RU/mL to 311 (210–541)
RU/mL as a response to EPO treatment (P<0.05), whereas
iFGF23 levels increased nonsignificantly from 98 (47–165)
pg/mL to 149 (67–394) pg/mL (P=0.14). The rise in cFGF23
between 50 weeks and baseline assessed by contrast
analysis was significant in the EPO hemoglobin-rise group
(P=0.03) and a statistical trend in the EPO hemoglobin-stable
group (P=0.07), whereas the decline of cFGF23 levels in the
control group was not significant (P=0.53).

Discussion
In this study we have shown that exogenous EPO is
associated with increased cFGF23 levels out of proportion
to iFGF23 levels, implicating an upregulated production and
concomitant increased cleavage of FGF23. As expected, the
effect of EPO treatment resulted in an increment in hemat-
ocrit and hemoglobin level and a tendency to decrease in
ferritin level.30 No important differences were observed in
parameters representing inflammation, kidney function, and
electrolytes. The current study underlines the essential role of
EPO in FGF23 physiology and provides a speculative mech-
anism, linking the use of exogenous EPO with a higher risk of
cardiovascular events because increased cFGF23 levels were
associated with increased mortality risk in the current study,
reiterating the association of elevated cFGF23 levels with
many other reported adverse outcomes.

To date, the underlying mechanism of the association
between use of exogenous EPO and detrimental outcomes is
unknown. In 2007 Fishbane and Besarab suggested a set of
hypotheses that could explain the link between exogenous
EPO and adverse outcomes, all of which currently still appear
to be valid.31 The hypotheses are that the detrimental
outcomes are the result of either the achieved hemoglobin
level itself or the (high-dose) ESA therapy in EPO-resistant
patients. In the current study we add to these proposed
mechanisms that ESA therapy increases levels of cFGF23,
which is known to be strongly associated with increased
cardiovascular disease events, kidney disease progression,
and death among individuals with CKD.17,32,33 The current
study is the first to extend these findings to a human setting
with combined CKD and CHF. Also in the current patient
setting, baseline cFGF23 levels were associated with an
increased risk of adverse outcomes and reduced left ventric-
ular ejection fraction, emphasizing the effect of EPO treat-
ment in further increasing cFGF23 levels.

Our study is in line with recent experimental studies
describing the positive association between EPO and cFGF23.
Clinkenbeard et al have shown in experimental models that

recombinant EPO acutely increases circulating FGF23 levels in
mice with a normal kidney function and in mice with
diminished kidney function.8 The authors described that
EPO stimulated FGF23 production in hematopoietic progen-
itor cells and in cortical bone. Furthermore, exogenous EPO
was shown to increase FGF23 levels in humans with normal
kidney function. Recently, Rabadi et al showed that acute
blood loss with a subsequent increase in EPO levels increases
cFGF23 levels. In addition, exogenous EPO administration led
to an increase in cFGF23 levels similar to the effect of acute
blood loss.10 In keeping with this finding Flamme et al
identified that administration of exogenous EPO in experi-
mental rat models induces a steep increase in cFGF23 levels
within 1 hour following intravenous administration. FGF23
mRNA expression was strongly induced in bone and bone
marrow after recombinant EPO treatment and was even
independent of 2-week pretreatment with EPO or saline.11

Furthermore, Toro et al reported that exogenous EPO
increased bone marrow FGF23 mRNA in vivo and in vitro via
EPO receptor activity in erythroid progenitor cells; they further
extended this result with the notion that blockade of the EPO
receptor prevented induction of FGF23 and suppressed
circulating FGF23 levels.12 Intriguingly, Agoro et al recently
described a converse direct relationship between cFGF23 and
EPO in CKD mice in which inhibition of FGF23 signaling
decreased erythroid cell apoptosis and induced renal and
bone marrow EPO expression by creating a hypoxic environ-
ment that activated EPO-induced erythropoiesis.34 Further-
more, FGF23 inhibition ameliorated iron deficiency by
reducing inflammation, and hence decreasing serum hepcidin,
leading to restoration of iron status parameters. The present
findings together with the reported studies point at pivotal
direct relationships among EPO, iron deficiency, and FGF23.

In our study, EPO increased cFGF23 out of proportion to
iFGF23. These elevated cFGF23 levels represent mainly C-
terminal fragments because the cFGF23 immunometric assay
measures both the intactmolecule as the C-terminal fragments,
whereas the iFGF23 assay detects only the intact molecule. The
C-terminal fragments are allegedly assumed to be inactive.
Contrary to this prevailing view are observationsmade by Goetz
et al that showed that C-terminal FGF23 fragments may
function as FGF23 antagonists by competing with iFGF23 for
binding to the FGF23 receptor.35 Furthermore, it has been
shown in vitro by Courbebaisse et al that C-terminal FGF23 in
itself can increase the cell surface area of adult rat ventricular
cardiomyocytes by binding to the FGF23 receptor.36 Future
studies will need to further unravel the biologic activity of the
C-terminal fragments. Finally, because the net result of EPO
administration resulted in a decrease in phosphate levels after
50 weeks, this suggests that EPO administration led to an
increased production of FGF23 with somewhat increased
iFGF23 levels (that are physiologically active) along with out-
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of-proportion increases in cFGF23 levels, which implies an
increased cleavage of the intact molecule.

Our study has both strengths and limitations. The major
strength of the study is that it comprises a randomized trial
setting in which we could visualize by means of multiple
consecutive blood samples the effect of EPO treatment for
50 weeks. For about half of the treatment duration, the
groups were treated distinctly, and we performed all analyses
stratified for the 3 groups to prevent an unrecognized effect
due to difference in hemoglobin handling that could have been
introduced by pooling the 2 EPO treatment groups. Further-
more, because iron status decreased in the EPO treatment
arms of the randomized controlled trial, it might be that the
increment in cFGF23 levels is at least partly due to induced
iron deficiency. As a limitation, the association between
FGF23 and mortality in the current study can be considered a
post hoc analysis. Furthermore, the current study comprises a
relatively small sample size, albeit the largest number of
patients with both CHF and CKD in which this association has
been investigated to date. Due to the relatively small sample
size, we cannot exclude that more modest effects of EPO on
iFGF23 would have been identified with a greater number of
subjects. The small sample size and missing values in follow-
up did not let us perform a useful DcFGF23 analysis to assess
whether DFGF23 was a stronger predictor of mortality than
baseline FGF23 levels alone, as shown by Isakova et al.37

Finally, we cannot exclude the possibility that renal phosphate
handling might have influenced the currently identified results
of FGF23 induction and cleavage, although phosphate levels
were similar at baseline between the arms of the trial.

In conclusion, we have demonstrated that administration
of exogenous EPO over a time course of 50 weeks is
associated with increased cFGF23 levels out of proportion to
iFGF23 levels. Baseline cFGF23 levels were strongly associ-
ated with an increased risk of mortality. The currently
identified association between exogenous EPO and cFGF23
levels could be the potential link between exogenous EPO and
detrimental outcomes in this patient setting. Further research
is needed to establish whether adverse outcomes associated
with EPO treatment are truly attributable to a direct effect of
exogenous EPO on cFGF23 levels.
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