
sensors

Article

EXPLORA: Interactive Querying of Multidimensional
Data in the Context of Smart Cities

Leandro Ordonez-Ante * , Gregory Van Seghbroeck , Tim Wauters , Bruno Volckaert
and Filip De Turck

Department of Information Technology, Ghent University-imec, IDLab, Technologiepark Zwijnaarde 126,
9052 Ghent, Belgium; Gregory.VanSeghbroeck@UGent.be (G.V.S.); Tim.Wauters@UGent.be (T.W.);
Bruno.Volckaert@UGent.be (B.V.); Filip.DeTurck@UGent.be (F.D.T.)
* Correspondence: Leandro.OrdonezAnte@UGent.be

Received: 6 April 2020; Accepted: 8 May 2020; Published: 11 May 2020
����������
�������

Abstract: Citizen engagement is one of the key factors for smart city initiatives to remain sustainable
over time. This in turn entails providing citizens and other relevant stakeholders with the latest data
and tools that enable them to derive insights that add value to their day-to-day life. The massive
volume of data being constantly produced in these smart city environments makes satisfying this
requirement particularly challenging. This paper introduces EXPLORA, a generic framework for
serving interactive low-latency requests, typical of visual exploratory applications on spatiotemporal
data, which leverages the stream processing for deriving—on ingestion time—synopsis data structures
that concisely capture the spatial and temporal trends and dynamics of the sensed variables and serve
as compacted data sets to provide fast (approximate) answers to visual queries on smart city data.
The experimental evaluation conducted on proof-of-concept implementations of EXPLORA, based on
traditional database and distributed data processing setups, accounts for a decrease of up to 2 orders
of magnitude in query latency compared to queries running on the base raw data at the expense of
less than 10% query accuracy and 30% data footprint. The implementation of the framework on real
smart city data along with the obtained experimental results prove the feasibility of the proposed
approach.

Keywords: interactive querying; spatiotemporal data; smart city data; sensor data; synopsis data
structures; continuous views; microservices

1. Introduction

The increasing pervasiveness of data in the world is currently leading to a new era of human
progress, which has been referred to as the Fourth Industrial Revolution. As part of this new dynamic,
initiatives in the context of smart cities have emerged, aiming at harnessing the power of data to
connect with citizens, to build public awareness, to drive urban development and local public policy,
and to answer pressing problems such as how to lighten the huge strain that human development has
historically placed on the environment and Earth’s natural resources. The burgeoning information
technology (IT) industry has played a major role in bringing forth these kind of initiatives: big data,
Internet of Things (IoT), and cloud computing technologies are at the core of the smart city strategies
being implemented nowadays around the world [1].

Harrison et al. [2] argue how, by building on the advances in IT, the traditional physical city
infrastructure is extended to an integrated framework allowing cities to gather, process, analyze,
and make decisions based on detailed operational data. These authors define smart cities through
three IT aspects:

Sensors 2020, 20, 2737; doi:10.3390/s20092737 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-1215-9209
https://orcid.org/0000-0001-9459-7407
https://orcid.org/0000-0003-2618-3311
https://orcid.org/0000-0003-0575-5894
https://orcid.org/0000-0003-4824-1199
http://dx.doi.org/10.3390/s20092737
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/9/2737?type=check_update&version=2

Sensors 2020, 20, 2737 2 of 33

• lInstrumented systems that enable capturing live real-world data describing the operation of both
physical and virtual systems of the city (sensors, smartphones, cameras, and social media,
among others.)

• lInterconnected systems enabling the instrumented systems to communicate and interact not only
among themselves but also with the multiple IT systems supporting the operation of the city’s
services.

• Intelligent systems able to analyze, model, and visualize the above interconnected data and to
derive from the valuable insights that drive decisions and actions to optimize the operation of the
city’s services and infrastructure.

Aligned with these aspects, many cities around the world have committed a large amount of
resources involving both public and private investment in an effort towards the realization of the smart
city vision, yet only few of these initiatives have attained a level of maturity to remain sustainable
over time. Research states that one of the key requirements and major challenges for ensuring the
sustainability of smart city projects lies in achieving citizen engagement, that is getting communities
involved as prosumers of the city’s data and services [3–5]. This in turn involves providing citizens
and other relevant stakeholders with prompt and reliable access to smart city data, enabling them
to contribute to the construction and further development of the abovementioned city’s intelligent
systems.

In this context, data management systems are required to handle the massive amounts of data
being continuously generated by smart devices. Typically, said data is defined by spatiotemporal
dimensions, e.g., weather, air quality, traffic congestion, parking availability, social media streams, etc.
Coping with this large volume of spatiotemporal information while supporting time critical end-user
applications—such as those enabling responsive data exploration and visualization—is essentially a big
data problem that exceeds the ability of traditional offline data processing methods [6,7]. The nature
of this data and requirements of the stated problem call for a more proactive approach where data
is processed during ingestion in response to recurrent user requests, instead of waiting for it to be
accumulated and persisted into an ever-growing database to make it queryable [8,9].

In that sense, the work reported in this paper aims at answering the research question on how
to serve common data exploration tasks over live smart city data coming from nonstationary sensors under
interactive (low-latency) time constraints. To address the stated aim, the approach presented herein
explores the use of the stream processing over the sequence of readings coming from mobile sensor
devices deployed in an urban environment to aggregate the data of those readings into rich summaries
for further querying and analysis. The motivation behind this is two-fold:

1. Typical visual exploration applications for this kind of georeferenced time series present the user
with a sort of dashboard containing a map and a number of controls allowing them to perform
visual queries on said data on a per region (e.g., by interacting with the map) and a per time
period (e.g., by setting an interval of dates) basis [10]. However, these applications are not able
to deliver sensible and predictable response times when operating over highly dynamic data
such as the raw readings coming from smart city sensors due to its unbounded size: queries can
take from several seconds to minutes over a few million sensor measurements. Considering that
these queries define restrictions on the spatial and temporal dimensions of data, it is appealing to
establish a fragmentation strategy over these two dimensions in order to reduce the cardinality
of the search space by computing continuous data summaries. These summaries amount to
a fraction of the number of raw observations, allowing data exploration applications to remain
responsive to user queries at the expense of some accuracy.

2. These summaries being proactively derived out of the incoming stream of sensor readings enables
data management systems to provide client applications with information about the current
state of the measured variables without incurring expensive scan operations over the whole raw
data. For said summaries to be relevant, frequent user requests as well as interaction patterns
when visually exploring spatiotemporal data should be considered to drive the design of the

Sensors 2020, 20, 2737 3 of 33

stream processing pipeline and to determine which technologies could support its operation.
By abstracting a generic framework embracing these requirements, it is possible to test to
what extent existing data technologies support time-sensitive applications and to estimate their
limitations in terms of scalability and reliability.

Aligned with these considerations, the main contributions of the work introduced in this paper
are (1) the formulation of a technology-agnostic approach for the continuous computation of data
summaries over a live feed of sensor readings by applying a spatiotemporal fragmentation scheme
to the sequence of observations, (2) the formal definition of a uniform interface for querying said
summaries based on recurrent user interaction patterns, and (3) the realization of the proposed
approach by implementing a complete stream processing pipeline able to operate over real-world
sensor readings coming from a smart city setup deployed in the city of Antwerp in Belgium. For this,
a number of existing open source data technologies running on commodity hardware have been used,
being able to test their ability to serve visual exploration applications under different configurations.
Results show that, by implementing the proposed continuous aggregation approach on centralized
and distributed data stores, it is possible to outperform a traditional time series database bringing
down query response times by up to two orders of magnitudel, reaching sub-second performance
for requests made over one year’s worth of data (nearly 14+ million observations). This document
provides a detailed description of the components and design decisions behind the definition of this
approach. Section 2 addresses the related work. Section 3 focuses on the main contribution of this work
and elaborates on the framework for supporting data exploration on spatiotemporal data through
continuous computation of data summaries. Section 4 describes the implementation of the proposed
approach, while Section 5 discusses the experimental setup and results. Finally, conclusions and
pointers towards future work are provided in Section 6.

2. Related Work

Recent surveys on big spatiotemporal data by Yang et al. [11] and He et al. [12] argue that most of
the existing tools for visual exploration serve a single specific use case, acknowledging the need for
more flexible data visualization approaches that allow users to examine the behavioral changes in the
information over the temporal and spatial domains while having sensible storage requirements
and improving query performance. The approach described in this paper has been precisely
formulated to comply with those requirements, considering smart cities as a meaningful use-case
scenario. This section discusses existing literature regarding spatiotemporal data management, visual
exploratory analysis on smart city data, and big data frameworks for smart cities.

2.1. Spatiotemporal Data Management

The problem of speeding up spatial queries has been studied extensively from the data
management perspective. Ganti et al. [13] propose MP-trie, a mechanism that reduces the problem
of spatial indexing to that of prefix-matching over binary strings by encoding spatiotemporal
data into a data structure they call Space-Time Box (STB) [14]. According to the authors, MP-trie
provides a 1000× performance improvement over traditional indexing approaches (specifically
R*-tree [15]), though it only reaches said performance when implemented using hardware acceleration
(ternary content-addressable memory or TCAM [16]). MP-trie is described as an indexing mechanism
intended to speed up spatial queries such as finding all the objects within a distance r from a point p
(range queries) or finding the top-K nearest neighbors from p (kNN queries). Similarly, SATO [17] and
AQWA [18] proposed by Vo et al. and Aly et al., respectively, are two data-synopsis-based mechanisms
aiming at finding the optimal partitioning scheme in order to lower the response time of spatial queries
in distributed spatial datasets. However, these and other similar approaches dealing with spatial
indexing and partitioning [19–21] overlook the temporal dimension of the data typical of smart city
applications and, in consequence, might fall short in supporting requests intended to explore the
historical behaviour from a given sequence of observations.

Sensors 2020, 20, 2737 4 of 33

This issue has also been addressed in the context of Wireless Sensor Networks (WSN). Wan et al. [22]
present a promising technique for high-dimensional indexing of the sensor data produced within large
WSNs, based on the Voronoi Diagram data structure. The mechanism that Wan et al. propose includes
a hierarchical in-network storage which is capable of answering different range monitoring queries,
based on the devised indexing scheme. However, given the restrictions in terms of power, storage, and
computing resources typical of WSN nodes, pushing a large volume of queries down to the sensing
devices for processing could compromise the availability of the network. The approach proposed in
this paper deals with delivering interactive-level performance for basic exploratory tasks. In this use
case, it is not uncommon to serve multiple users, each one issuing several queries during a session of
data exploration, which would entail a prohibitive computational expense for a WSN.

2.2. Visual Exploratory Analysis on Smart City Data

Research on visualization techniques for interactive exploration of smart city data is mainly
focused on enhancing user experience by providing them with responsive client-side applications.
Doraiswamy et al. [10] proposed Raster join, a technique to speed up spatial join queries supporting
the interactive exploration of multiple spatiotemporal data sets at the same time. The Raster join
technique—that leverages current generation graphics processing units (GPU)—was integrated to
Urbane [23], a 3D visual framework to support the decision making for designing urban development
projects. By integrating the proposed technique, Urbane is able to handle requests over hundreds of
millions of observations with nearly sub-second performance. Similarly, Murshed et al. [24] introduced
a web-based application for analysis and visualization spatiotemporal data in smart city applications
called 4D CANVAS. This application enables users to perform interactive exploration on both space (3d)
and time dimensions over a data set stored on disk by leveraging on a WebGL-based framework known
as Cesium [25]. Also, under these visual data exploration approaches, Li et al. developed SOVAS [26],
a visual analytics system for query processing of massive array-based climate data, which works
on top of Hadoop and provides an SQL-based language for users to express their information needs
and to conduct spatial analytics tasks. One common feature platforms described in this section (and
related solutions like References [27,28]) do not incorporate is the ability to process data in a streaming
format. These solutions expect the spatiotemporal data they operate on to be residing on the file system
(whether local or distributed), some of them requiring additional offline preprocessing to be able to
deliver the functionality they advertise.

In contrast to the approaches above, Cao et al. present a visual interactive system known as
Voila [29], able to process a stream of traffic flow data and to assist users in detecting anomalous
events. Voila assigns an anomaly score for a given region at a certain point in time by examining
changes in patterns’ occurrence-likelihoods. Then, users can indicate whether the system has accurately
identified anomalous events, and Voila incorporates their judgement, recomputing the anomaly scores
by using a bayesian approach. In the same vein, Chen et al. proposed ADF [30], an open framework
for anomaly detection over fine particulate matter measurements (PM2.5), coming from a network
of low-cost sensors rolled out on an urban environment. The ADF framework is able to identify
spatiotemporal anomalous sensor readings as new data comes in, thanks to a statistical-based method
called time-sliced anomaly detection (TSAD), which thrives on contrasting the readings from each sensing
device with those from neighboring sensors to detect and label atypical observations. While the systems
proposed by Cao et al. and Cheng et al. were designed with the anomaly-detection use case in mind,
the approach described herein was devised for serving a more general purpose, i.e., enabling basic
exploratory analysis tasks on live smart city data—regardless of the kind of environmental information
being ingested, the number or type of sensor devices, or their location (fixed or mobile)—considering
both spatial and temporal data dimensions under interactive response time constraints. It is worth
mentioning that one of the main features of the approach introduced in this paper is that of being
an extensible, technology-agnostic data analysis pipeline, and as such, it would be able to integrate

Sensors 2020, 20, 2737 5 of 33

the anomaly detection methods implemented in systems like Voila and ADF while offering interactive
querying capabilities over their resulting outcome.

2.3. Big Data Frameworks for Smart Cities

As stated earlier, handling spatiotemporal data in the context of smart cities is inherently a big
data problem which has become a prolific research field over the last few years. This section addresses
some recent advances and initiatives in this regard. Osman A. proposes the Smart City Data Analytics
Panel (SCDAP) [31], a framework for big data analytics tailored to the specific requirements of smart
city environments. SCDAP has been laid out in a 3-layered architecture encompassing multiple
stages in the data analysis pipeline ranging from data acquisition, cleansing, and transformation to
online and batch data processing, including the management and aggregation of data analysis models
serving smart city applications. The author outlines a prototype implementation of a big data analytics
platform adopting the artifacts defined in SCDAP, using a number of existing open source technologies.
However, no indication is provided with regards to its actual application and performance on real or
synthetic smart city data.

Badii et al. [32,33] introduce Snap4City, a visual programming environment along with a suite
of microservices allowing users to create event-driven IoT applications in the context of smart cities.
The platform runs on top of Node-RED [34] and offers a comprehensive set of visual constructs
through which users can assemble complex data flows supporting smart city applications (dashboards,
route planning, data analytics, etc.). Another platform intended to facilitate the development of
smart city applications is InterSCity proposed by Del Esposte et al. [35]. InterSCity also advocates for
a microservice architecture and provides a Web service middleware that enables the integration of
heterogeneous IoT devices, services, and resources. While enabling interactive data exploration is not
the main concern of platforms like Snap4City, InterSCity, and other similar approaches [36], their focus
on microservices allows for the integration of data management solutions like the one presented in
this paper, aiming at supporting time-sensitive smart city applications.

Aguilera et al. [37] propose IES Cities, a data integration platform that enables the creation
of citizen-centered applications in the context of smart cities. This approach is founded on the
premise that the smart city vision should be achieved through the organic coalescence of government
data (linked open data), IT infrastructure in place throughout the city (IoT), and citizen initiative and
contributions mediated through smartphone applications (crowd-sourced data). While the IES Cities
platform is able to integrate smart city data sourced in structured formats such as RDF, JSON, and
CSV and relational databases, it does not specifically tackle the issue of enabling interactive data
exploration over live streams of spatial-time series data being continuously produced within a smart
city environment.

3. EXPLORA: Interactive Exploration of Spatiotemporal Data through Continuous Aggregation

The previous section discussed existing approaches addressing the issue of handling
spatiotemporal data to support visual exploratory applications in the context of smart cities. Most of
the studies in this review tackle specific aspects of the problem, neglecting in some cases the time
dimension of the data; others deal with mechanisms for optimizing display and interaction features,
but fall short when processing data as it comes in; and others are concerned with frameworks and
guidelines for building smart city applications from the perspective of big data. The proposal addressed
in this paper builds on top of the mentioned approaches and introduces a generic framework called
EXPLORA (Efficient eXPLORation through Aggregation) intended for speeding up spatiotemporal queries
supporting visual exploratory analysis conducted on mobile sensor data. This section discusses the key
requirements and features driving the design of the devised framework, then introduces the enabling
techniques adopted to support the framework requirements, elaborates on the framework components
and architecture, and finally details the formal definition of the data processing pipeline lying at the
core of the framework.

Sensors 2020, 20, 2737 6 of 33

3.1. Framework Requirements and Features

User interaction patterns typical in visual data exploration have been identified in a former study
by Andrienko et al. [38], distinguishing two main categories of exploratory actions on spatiotemporal
data: (i) elementary tasks, aiming at describing the state of the observed variable(s) at a particular instant
(time) over a given region (space), and (ii) general tasks, intended for describing how the state of the
observed variable(s) in a given region (space) changes over time. By composing these basic tasks, it is
possible to support more elaborate workflows to help answer different questions about the data at
hand. This is why the set of categories by Andrienko et al. has become commonplace benchmark tasks
to assess the quality of user interactive exploration on spatiotemporal data [39]. On the other hand,
a related study by Liu and Heer [40] addressing the effects of latency on visual exploratory analysis
states that high delay reduces the rate at which users make observations, draw generalizations, and generate
hypotheses. Considering these findings, two key requirements have been derived to drive the design of
the EXPLORA framework proposed herein:

R1. Support elementary and general visual exploratory tasks on spatiotemporal data generated by mobile
sensors in a smart city setup.

R2. Provide fast answers (sub-second timescales as target) to queries serving the two basic visual exploratory
tasks stated in R1.

In addition to these key requirements—and following the steps of several of the big data
frameworks for smart cities discussed earlier in this document—a microservices approach has been
adopted to profit from features such as modularity, extensibility, and scalability. As a generic framework,
EXPLORA should be able to incorporate different sources of sensor readings as well as multiple methods
for storing, partitioning, and querying said data. Microservices advocate for establishing a clear
separation of concerns and for identifying the functional building blocks that support the framework
capabilities. This componentization facilitates the overall system development and deployment and
further promotes other appealing features such as extensibility and maintainability, reducing the amount
of effort required to introduce modifications, since it would involve making said changes to certain
individual microservices.

Likewise, an implementation of EXPLORA should be flexible enough to cope with the increasing
volumes of sensor data coming in as well as seasonal load variations (e.g., user activity and data influx
are expected to peak during certain time periods). The effective modularization into independent
deployable components enables these implementations to elastically react to system load; this is,
they are able to dynamically scale-up or down the number of microservice instances they need to
efficiently deal with the volume of requests at a given moment.

Lastly, as a consequence of adopting a microservices approach, the EXPLORA framework benefits
from two other highly desirable features, namely availability and portability. By relying on microservices,
the framework components are designed to be self-contained and interchangeable, which helps in
timely spotting system failures when they occur, introducing changes to the relevant components and
redeploying them without incurring in any major system downtime. Microservices also encourage
the use of well-defined interfaces exposing the capabilities of each component and mediating the
interaction with other system modules and the underlying infrastructure. This way, as long as modules
comply to said interfaces, details such as the language they are written in and the software frameworks
they use are not relevant.

3.2. Enabling Techniques

To comply to the committed requirements, the EXPLORA framework relies on two enabling
techniques: query categorization and data synopsis.

Sensors 2020, 20, 2737 7 of 33

3.2.1. Query Categorization

Requests serving elementary and general exploratory tasks (requirement R1.) query spatiotemporal
data on different attributes and satisfy different information needs. When conducting elementary
tasks, users are interested in visualizing the state of the observed variable over a particular region at
a given moment in time. For instance, a user might want to know the concentration of particulate
matter (PM) over their neighbourhood during peak hours. Queries serving these kind of tasks expect
the requested time (in terms of timestamps) and the geographic area of observation (in terms of
longitude and latitude) as input parameters and provide as output a sort of snapshot accounting for the
value of the observations aggregated over discretized units of space covering the region of interest.
Typical examples of the kind of visualizations that might be presented to the user as a result of these
elementary exploratory tasks are the choropleth maps shown in Figure 1. Queries falling into this
category have been labeled as Snapshot-temporal queries (ST).

480000 485000 490000 495000 500000

6655000

6660000

6665000

6670000

6675000

0

50

100

150

200

(a) Tile-based choropleth

480000 485000 490000 495000 500000

6655000

6660000

6665000

6670000

6675000

0.00 - 23.40
23.40 - 67.22
67.22 - 110.00
110.00 - 241.91

(b) Street-block-based choropleth
Figure 1. Examples of visualizations expected from an elementary exploratory task: These choropleth
maps show the concentration of nitrogen dioxide (NO2) over the city of Antwerp, BE through a
one-month period.

On the other hand, the intent behind general exploratory tasks consists in comparing the state of
the observed variable over a given region along different points in time. Users might conduct these
kind of tasks, for instance, by selecting an arbitrary geographic area on a map and by choosing the
period of time they are interested in reviewing. This way, queries supporting general exploratory tasks
expect as inputs a specification of the region of interest along with the inspection time period and
yield as answer the value of the observed variable aggregated over discretized units of time (minutes,
hours, days, etc.), revealing the historical behaviour of the measured variable. Queries belonging to
this category are referred to as Historical-spatial queries (HS). Figure 2 below outlines a common outcome
of a general exploratory task.

Sensors 2020, 20, 2737 8 of 33

480000 485000 490000 495000 500000

6655000

6660000

6665000

6670000

6675000

(a) Polygonal selection from a 2D map.

31 21:00 31 21:30 31 22:00 31 22:30 31 23:00 31 23:30
0

20

40

60

80

100

120 NO2 (1 hour)

08-31 00 08-31 03 08-31 06 08-31 09 08-31 12 08-31 15 08-31 18 08-31 21
0

20

40

60

80

100

120 NO2 (1 day)

2019-08-25 2019-08-26 2019-08-27 2019-08-28 2019-08-29 2019-08-30 2019-08-31
0

20

40

60

80

100

120 NO2 (1 week)

(b) Time series corresponding to the selected region.

Figure 2. Example of a general exploratory task: (a) the visual query prompted by the user: How have
the NO2 emissions historically evolved within the traced perimeter? (b) Three time series charts reporting on
the concentration of the NO2 over the past one hour, 24 h, and one week.

It is worth noting that a general exploratory task can be fulfilled as well by sequentially executing
multiple elementary tasks. Consider for instance the case in Figure 3, where a progression of choropleths
is displayed, as the result of running a series of snapshot-temporal queries requesting the state of the
observed variable over several months. While in practice this sequence of requests serve a general
task intent, in cases like this, the proposed framework deals with each individual query in isolation,
regardless of the overall purpose of the exploratory task.

Figure 3. Example of a general exploratory task as a composite of multiple elementary tasks.

3.2.2. Data Synopsis and Spatiotemporal Fragmentation

Both historical-spatial and snapshot-temporal queries are expensive and time-consuming when
running on large spatiotemporal data, since they involve executing demanding scan, sort, and
aggregate operations. Reducing the data-to-insight time in visual exploratory applications requires
speeding up this kind of query (requirement R2.). The temporal and spatial dimensions of smart city
data along with the specific features of HS and ST queries make this problem appealing for synopsis
data structures [41]. Synopsis structures are by definition substantially smaller than the base data
set they are derived from. They represent a summarized view of the original data intended to serve
certain predefined types of queries. In a streaming setting, synopsis structures are created as data
comes in; this way, users can submit queries on the data stream at any point in time and get prompt
(and often approximate) answers based only on the data available thus far in the synopsis structures.

As stated in the previous section, the outcome of queries supporting visual exploratory
applications is typically delivered in discretized units of time (HS queries) or space (ST queries).

Sensors 2020, 20, 2737 9 of 33

EXPLORA takes advantage of such discretization to assemble synopsis structures—namely, continuous
views—that are incrementally computed as new sensor observations arrive. Consider the choropleth
maps presented back in Figure 1, reporting on the concentration of nitrogen dioxide (NO2) over
the city of Antwerp, Belgium, for a period of one month. To build these visualizations, raw sensor
readings occurring during the requested period are aggregated according to the spatial fragment
(i.e., tile/street-block) which they fall into. Then, the value of said aggregate is encoded in the color
displayed for each fragment, providing the user with insight about the state of the observed variable.
Similarly, the time series charts shown in Figure 2b are laid out by aggregating raw observations
into specific time resolutions or bins (i.e., minutes, hours, and days) in correspondence to the time
said observations occurred. Instead of computing these aggregates on request over the raw sensor
observations, EXPLORA sets a spatial fragmentation schema upfront and applies multiple aggregate
operations (e.g., average, sum, and count) for a number of time resolutions (from one-minute to monthly)
over the incoming stream of sensor readings. The collection of aggregates corresponding to an
individual spatial fragment over a single time bin has been labeled as data summary. This way,
continuous views are assembled for each of the supported time resolutions by persisting the resulting
data summaries into an structure that can be seen as a sort of dynamic spatiotemporal raster. Figure 4
below shows a schematics of this structure, in which a regular tile grid is used as spatial fragmentation
strategy for illustrative purposes.

Latitude

Tim
e

t0

t1

t2

t3

t4

t5

t6

t7

Data summaries

Spatial fragment

Data summary for T=__ t6

Aggregates
MIN
MAX
...

AVG
SUM
COUNT

Longitude

Spatial fragments

Figure 4. Spatiotemporal fragmentation for continuous computing of data summaries.

Notice that, regardless of the volume of sensor readings being ingested, the size of the continuous
views only depends on the size of the spatial fragments and time bins being used, this is, the lower
the resolution of the spatiotemporal fragmentation scheme, the smaller the size of the corresponding
view. By querying these synopsis structures instead of the raw sensor data, users of visual exploratory
applications can experience a more responsive feedback at the expense of some accuracy. It is worth
noting as well how, thanks to the way these continuous views are structured, answering HS and ST
queries comes down to cutting longitudinal (i.e., along the time axis) and transverse slices (i.e., along
the longitude/latitude plane), respectively, and further aggregates their constituent data summaries
afterwards, as illustrated below in Figure 5.

Sensors 2020, 20, 2737 10 of 33

Lati
tude Tim

e

t0

t1

t2

t3

t4

t5

t6

t7

Longitude

Lati
tude Tim

e

t0

t1

t2

t3

t4

t5

t6

t7

Longitude

HSQuery(Qregion= , Qtime<= t7) STQuery(Qregion= , Qtime= t2)

Figure 5. Query resolution on continuous views: The diagram on the left describes an HS query
requesting the historical behaviour of the observed variable over Qregion, while the one to the right
shows an ST query requesting the state of the observed variable at instant Qtime = t2.

3.3. The EXPLORA Framework: Components and Architecture

This section deals with the definition of the framework’s building blocks and how they fit together
to meet the requirements stated earlier. As Figure 6 illustrates, the EXPLORA framework adopts
a layered architecture approach, where functional modules are organized into logical tiers, namely
processing on ingestion, storage, query processing, and serving layers. Besides these functional layers,
three supporting layers are defined for decoupling the system from the available sensor data sources
(event log) and for providing monitoring capabilities and infrastructure resources for the components in
the functional tiers to operate with (performance monitoring and container orchestration). The description
of these layers and their associated components is addressed next.

Da
ta

 in
ge

st
io

n

Data
sources

Q
ue

ry
in

g

Figure 6. Components and architecture of the EXPLORA framework.

Sensors 2020, 20, 2737 11 of 33

Event log This layer serves as an interface between the framework and the sensor data providers.
It collects the raw sensor data and hands it over to the upper layers for scalable and reliable
consumption and further processing. This tier can be realized through a distributed append-only
log that implements a publish–subscribe pattern, allowing data producers to post raw sensor
observations to logical channels (topics) that are eventually consumed by client applications in
an asynchronous way.

Processing on ingestion This layer subscribes to the event log to consume the stream of raw sensor
observations and processes them to continuously generate the data synopsis structures that the
framework thrives on. The stream processing mechanism this layer implements is subject to the
particular designated spatiotemporal fragmentation strategy and the set of supported aggregate
functions used to compute the corresponding data summaries. This layer represents one of the
core components of the EXPLORA framework, as it comprises the modules in charge of applying
the ingestion procedure that will be further discussed later in this section (Algorithm 1).

Storage layer This tier comprises the artifacts responsible for providing persistent storage for
both the continuous views generated in the ingestion layer and the stream of raw sensor
observations being consumed from the event log, along with the corresponding programming
interfaces (APIs) for enabling modules in adjacent tiers to conduct basic data retrieval tasks.
Complex requests—such as those supporting the elementary and general exploratory tasks
discussed back in Section 3.1—might be handled in cooperation with the serving layer at the top,
depending on querying capabilities offered by the data storage technologies implemented in
this layer.

Serving layer This tier provides an entry point for visual exploratory applications to interact with the
framework and to access the available sensor data. The serving layer implements a uniform API
allowing client applications to issue historical-spatial and snapshot-temporal queries against the
data persisted in the storage layer (both raw observations and continuous views). Depending on
the storage technologies used in the underlying storage layer, the serving tier might also take part
in the query resolution process. This is why query processing is represented as a separate layer,
sitting in between the two upper tiers.

Query processing As stated above, responsibilities of this tier overlap those from the contiguous
layers (serving and storage). The processing performed in this layer supports query answering
for both historical-spatial and snapshot-temporal inquiries (according to the procedures detailed
in Algorithms 2 and 3, discussed later in Section 3.4). Where this processing takes place
is determined by the capabilities of query API provided by the data storage being used.
Thus, for instance, a data store offering an expressive SQL interface would be able to handle
most of the query processing tasks, while a typical key-value store offering simple lookup
operations would require a large part of the query processing to be performed programmatically
in the serving layer.

Container orchestration All the functional components of the EXPLORA framework are implemented
as containerized microservices. The container orchestration layer is in charge of the automatic
deployment, scaling, load balancing, networking, and life-cycle management of the containers
that these components operate on. Examples of existing technologies able to support the
functionality required from this layer are Kubernetes [42]—deemed as the de facto standard for
container orchestration to date—OpenShift [43], and Apache Mesos [44].

Performance monitoring The role of this layer is to keep track of a number of metrics accounting
for the computing requirements (memory and CPU usage) and overall performance of a

Sensors 2020, 20, 2737 12 of 33

system implementing the EXPLORA framework (query response time and accuracy). To that
end, this layer relies on tools provided by the container orchestrator, the operating system, and
third-party libraries for statistical analysis and data visualization. Performance information such
as that reported later in Section 5 is compiled in this layer.

Client applications Finally, visual exploratory applications consume the API available through the
serving layer to support different data exploration use cases based on the two abstracted categories
of exploratory tasks: elementary and general. Section 4 provides a number of examples of said use
cases, presented as part of proof-of-concept implementations of the proposed framework.

3.4. The EXPLORA Framework: Formal Methods and Algorithms

The formal definition of the query resolution mechanism along with the ingestion procedure at
the core of the EXPLORA framework are detailed next.

3.4.1. Data Ingestion: Continuous Computation of Data Synopsis Structures

Let us represent a mobile sensor observation (reading) as the following tuple:

r = 〈t, x, y, s, v, a0, a1, . . . , an〉 (1)

where t is the timestamp indicating when the observation was made, x and y being respectively the
longitude and latitude where the observation took place; s is the observed (sensed) variable; v is the
observed value as measured by the sensor; and ai is additional attributes and metadata (device identifier,
measurement units, etc.).

Then, a continuous view for a given observed variable, s, can be represented as a function V that
maps a spatial fragment, φ, and a temporal bin, τ, to its corresponding data summary σ (collection of
aggregates), as follows:

V〈s,Φ,Ω〉 : (φ, τ) 7→ σ; σ = {σAVG, σSUM, σCOUNT, . . . } (2)

where φ is one of the discretized units of space into which a geographic area is partitioned, according
to a certain spatial fragmentation strategy Φ (e.g., tiles, hexagons, street blocks, etc.) and τ identifies
one of the temporal buckets resulting from setting a regular frequency, Ω, at which the incoming sensor
observations are aggregated (e.g., minutely, hourly, daily, etc.).

Similarly, the mechanism for assigning a sensor observation r to its corresponding data summary
can be defined as a function F that takes the spatial and temporal attributes from r and returns the
spatial fragment and temporal bin identifying the data summary to which r belongs:

F : r〈t, x, y〉 7→ (φ, τ) (3)

With these definitions in place, the formal procedure for data ingestion in EXPLORA is presented
below in Algorithm 1. The process starts by first setting a spatial fragmentation strategy (Φk),
a frequency of aggregation (Ωk), and a set of aggregate methods to be supported (Σk) (lines 3–6).
Then, persistent storage for a new continuous view is allocated (assuming it does not exist yet) (line 7),
and the sensor observations coming from a stream S are taken in, one after the other. To determine
the data summary into which each sensor reading has to be aggregated, the spatial fragment and
temporal bin are computed by applying the function F on each of the incoming readings. With this
input, the corresponding data summary is retrieved from the view (lines 9 and 10). Then, the collection
of aggregates from the data summary gets updated and the changes are persisted in the continuous
view (lines 11–19). In practice, the type of each one of the aggregate functions in Σk (i.e., distributive,
algebraic, or holistic [45]) determines how the update procedure in line 16 is implemented. Later, in
Section 4, two prototypes are presented for illustration and proof of concept.

Sensors 2020, 20, 2737 13 of 33

Algorithm 1 EXPLORA ingestion procedure.

1: Let S be a stream of sensor observations of a variable ŝ
2: S = {r0, r1, r2, . . . }; ri = 〈ti, xi, yi, ŝ, vi, a0i, a1i, a2i, . . . 〉 . Unbounded set of sensor readings
3: Let Φk be a spatial fragmentation strategy
4: Φk = {φ0, φ1, φ2, . . . , φn}
5: Let Ωk be the frequency of aggregation . e.g., minutely, hourly, daily
6: Let Σk be a set of aggregate operations . e.g., AVG, SUM, COUNT
7: Create persistent storage for view V〈ŝ,Φk ,Ωk〉
8: for each reading ri in S do
9: (φi, τi)← F (ri〈ti, xi, yi〉); φi ∈ Φk . Get the spatial fragment and temporal bin for ri

10: σi ← V〈ŝ,Φk ,Ωk〉(φi, τi) . Get the data summary ri should be aggregated into
11: for each operation AGGR in Σk do . Update data summary aggregates
12: σAGGR ← σi [AGGR]
13: if σAGGR = ∅ then . If there is no aggregate for AGGR yet, then initialize it with ri
14: σAGGR ← AGGR(ri〈vi〉)
15: else . Otherwise, update the current aggregate for AGGR with ri
16: Update σAGGR with ri〈vi〉
17: end if
18: Update σAGGR in σi
19: Persist σi in V〈ŝ,Φk ,Ωk〉 . Finally, update the continuous view
20: end for
21: end for

As soon as sensor observations start being ingested, EXPLORA is capable of processing queries
issued against the continuous views. The mechanism for query resolution varies from HS queries to ST
queries. The subsections below detail the procedure for each category of queries, starting by defining
their corresponding functions.

3.4.2. Query Processing: Historical-Spatial Queries

Let us defineHS—for historical-spatial queries—as a function that takes as inputs a specification of
an arbitrary polygonal selection, φq, from a 2-dimensional map (e.g., as an array of vertex coordinates)
and optionally an interval of dates, τq〈start,end〉, and delivers as output an array containing the data
summaries aggregated over all the spatial fragments φi lying inside the perimeter defined by φq, for all
the temporal bins τi in τq:

HS
∣∣∣
V〈s,Φ,Ω〉

: (φq, τq〈start,end〉) 7→{〈τm, σm〉, 〈τm+1, σm+1〉, 〈τm+2, σm+2〉, . . . , 〈τn, σn〉};

τm ≥ τq〈start〉 ∧ τn ≤ τq〈end〉

(4)

where V〈s,Φ,Ω〉 is the continuous view that the HS function is evaluated against and each σk is the
aggregated summary that results from combining the data summaries corresponding to the spatial
fragments covered by φq, for temporal bin τk. The procedure for deriving said aggregated summaries
is formally defined below in Algorithm 2. First, the set of spatial fragments Φq lying inside φq is
computed (this operation has been represented as the set intersection in line 6). Then, the boundary
temporal bins, τm and τn, are defined by truncating the τq〈start〉 and τq〈end〉 dates, respectively,
according to the frequency of aggregation Ωk (lines 7 and 8). This is, for instance, if Ωk is set
to hourly, then the dates are truncated to the exact hour (e.g., 2019-09-22T12:47:32.767Z →
2019-09-22T12:00:00.000Z). Once these time boundaries have been determined, the data summaries
corresponding to the fragments in Φq are retrieved from the view and aggregated for each of the
temporal bins in the interval [τm, τn] (lines 11–21). Finally, the resulting aggregated summaries,

Sensors 2020, 20, 2737 14 of 33

along with their corresponding temporal bins, are paired together and incrementally appended to the
result set to assemble the summary time series returned as output (RHS) (lines 24–26).

Algorithm 2 EXPLORA query processing for historical-spatial queries.

1: Let V〈ŝ,Φk ,Ωk〉 be a continuous view being fed with sensor observations from a variable ŝ, with

spatial fragmentation Φk and aggregation frequency Ωk
2: Let Σk be a set of aggregate operations . e.g. AVG, SUM, COUNT
3: procedureHS(φq, τq〈start,end〉)
4: input: an arbitraty polygonal selection from a 2D map (φq) and a time interval (τq〈start,end〉)
5: output: summary time-series (RHS)
6: Φq ← Φk ∩φq . Get the set of spatial fragments inside φq
7: τm ← truncateΩk (τq〈start〉) . Starting temporal bin
8: τn ← truncateΩk (τq〈end〉) . Ending temporal bin
9: RHS ← {} . Initialize result set

10: for τi = τm to τn do
11: σi ← {} . Initialize empty aggregated summary for τi
12: for each fragment φj in Φq do
13: σj ← V〈ŝ,Φk ,Ωk〉(φj, τi) . Get the data summary for φj and τi
14: for each operation AGGR in Σk do
15: σAGGR ← σi [AGGR]
16: if σAGGR = ∅ then . If there is no aggregate for AGGR yet, then initialize it with σj
17: σAGGR ← σj [AGGR]
18: else . Otherwise, combine the existing aggregate for AGGR with σj
19: Combine σAGGR with σj [AGGR]
20: end if
21: Update σAGGR in σi . Update the aggregated summary σi
22: end for
23: end for
24: Append 〈τi, σi〉 to RHS
25: end for
26: return RHS . The time series of aggregated summaries
27: end procedure

3.4.3. Query Processing: Snapshot-Temporal Queries

On the other hand, ST—for snapshot-temporal queries—is a function that takes as inputs the
timestamp τq at which a snapshot of the state of the observed variable would be taken and optionally
a polygonal selection, φq, from a 2-dimensional map (if not provided, the snapshot would be computed
over the entire region for which data is available). With these inputs, ST returns the collection of data
summaries that correspond to the spatial fragments lying inside of φq (if provided) for the temporal
bin τx, where τq falls into:

ST
∣∣∣
V〈s,Φ,Ω〉

: (τq, φq) 7→{〈φa, σa〉, 〈φb, σb〉, 〈φc, σc〉, . . . };

φx ∈ Φ ∩φq

(5)

where V〈s,Φ,Ω〉 is the continuous view that the ST function is evaluated against and each σx is a data
summary registered under the temporal bin τx (namely, the one τq fits into). The generic sequence
of steps followed by this function is detailed below in Algorithm 3. The procedure is similar to the
one defined for theHS function. It also starts by computing the set of spatial fragments lying under
the selected polygonal region and by determining τx from the provided timestamp (τq) by applying
a truncate operation (lines 5 and 6). Then, the data summaries available in the view are filtered, so that
only those corresponding to the spatial fragments covered by φq and registered under τx are retrieved

Sensors 2020, 20, 2737 15 of 33

(lines 8–14). These summaries and their corresponding spatial fragments are coupled together and
appended to a collection of tuples (RST), representing a temporal snapshot of the observed variable.

Algorithm 3 EXPLORA query processing for snapshot-temporal queries.

1: Let V〈ŝ,Φk ,Ωk〉 be a continuous view being fed with sensor observations from a variable ŝ, with

spatial fragmentation Φk and aggregation frequency Ωk
2: procedure T S(τq, φq)
3: input: a snapshot timestamp (τq) and a polygonal selection from a 2D map (φq)
4: output: temporal snapshot (RST)
5: Φq ← Φk ∩φq . Get the set of spatial fragments inside φq
6: τx ← truncateΩk (τq) . Get the querying temporal bin
7: RST ← {} . Initialize result set
8: for each fragment φx in Φq do
9: σx ← V〈ŝ,Φk ,Ωk〉(φx, τx) . Get the data summary for φx and τx

10: if σx 6= ∅ then . If there is a data summary under (φx, τx)
11: Append 〈φx, σx〉 to RST
12: end if
13: end for
14: return RST . Snapshot of ŝ, over φq at τx
15: end procedure

The three algorithms formulated in this section lie at the core of EXPLORA, allowing for
interactive exploration of mobile sensor data. It is worth noting that, since these algorithms operate
on discretized units of space and time, in most of the cases, they would only manage to deliver
approximate query answers; this is, the gain in speed this framework brings in entails a loss in
accuracy. Nevertheless, for use cases in visual exploratory analysis, these estimates are able to provide
relevant insights on the state and historical behaviour of the observed variables. Later, in Section 5,
a metric is introduced to measure accuracy of queries issued against continuous views—under several
spatiotemporal fragmentation strategies—w.r.t. queries running on the base raw data.

To recap, this section developed a thorough description of the framework devised for enabling
interactive exploration of mobile sensor data in smart cities. It started by identifying the framework
requirements and features. Then, a description of the key techniques behind the formulation of the
proposed framework was discussed. Next, the definition of the layered architecture adopted for the
proposed framework along with the description of its constituent modules were addressed, and finally,
a comprehensive presentation of the mechanisms behind the stream processing pipeline that enables
the continuous generation of data synopsis structures as well as the procedures defined to speed up
spatiotemporal queries, which profit from said data synopsis structures, were made.

4. Prototype Implementation

This section explores the applicability of the EXPLORA framework for enabling interactive
exploration of live and historical smart city data by harnessing existing open source data technologies.
First, an application scenario within the context of mobile sensor data in smart cities is described.
Then, three target use cases of visual exploratory applications are defined, incorporating the elementary
and general exploratory tasks identified in the previous section to provide more elaborate interaction
workflows. Lastly, two implementations aimed at supporting the defined use cases are detailed,
one based on a traditional spatial time-series database approach and another using a distributed
stream processing approach.

Sensors 2020, 20, 2737 16 of 33

4.1. Application Scenario: The Bel-Air Project

The Bel-Air project is part of the City of Things (CoT) [46] initiative that is being implemented
in the city of Antwerp, Belgium, in a joint effort that involves businesses, government, and
academia. This initiative aims at putting together a city living lab and technical testbed environment,
which allows researchers and developers to easily set up and validate IoT experiments. Within CoT,
the Bel-Air project is particularly concerned with finding efficient mechanisms to accurately measure
the air quality over the city. Since the costs of rolling out a dense network of fixed sensors across a large
urban area could be prohibitively expensive, the Bel-Air project established a partnership with the
Belgian Postal service (Bpost) to attach highly sensitive sensors to the roofs of the mail delivery vans
that traverse the city on a daily basis (see Figure 7). These sensors conduct periodic measurements
on environmental variables such as temperature, humidity, and air pollution (particulate matter,
nitrogen dioxide, etc.), which are timestamped and geotagged before being sent over the network to
a persistent storage. This mobile sensor setup together with some additional sensors deployed at fixed
locations allow mapping the air quality of the entire city of Antwerp in a cost-effective way.

Figure 7. Setup of air quality sensors installed on the roofs of the Bpost delivery vans as part of the
Bel-Air project.

Efficient mechanisms for visual exploratory analysis over the data delivered by the mobile-sensor
setup of the Bel-Air project can help get relevant insights regarding the status of air quality across
the urban area of Antwerp, which would further allow to timely take the proper course of action to
mitigate the problems caused by elevated levels of pollution. This scenario serves as the context for
a proof-of-concept realization for the proposed framework. The next section describes a number of
target use cases to test the applicability of the EXPLORA approach.

4.2. Target Use Cases for Visual Exploratory Applications on Spatiotemporal Data

4.2.1. Visualizing the Temporal Change of an Observed Variable over a Certain Region

This use case has to do with allowing users to pose visual queries aimed at examining the
historical behaviour of an air quality variable by defining a polygonal selection on a 2-dimensional
map. Queries are further parameterized, allowing users to specify traits such as the aggregate function
they want to be applied on the data, the time resolution (per-minute, per-hour, or per-day) or time period
(last 5 minutes, last hour, etc.) they want the results to be displayed on, and whether the query should
be issued against the raw sensor data or run against the continuous views computed during data
ingestion. Figure 2 (in Section 3.2.1) and Figure 8 below portray examples of this use case.

Sensors 2020, 20, 2737 17 of 33

Figure 8. Application allowing users to examine the change over time of an air quality measure on a
certain geospatial region: Notice at the right hand side how tiles and street-blocks would approximate
the area of the provided polygonal selection.

4.2.2. Progressive Approximate Query Answering

Aiming at improving the user experience in terms of perceived responsiveness, queries supporting
visual exploratory actions can profit from the reduced latency expected from synopsis data structures.
In this sense, users can be presented first with an approximate answer to their requests, which then
is continuously refined as time goes on, until the exact result—computed on the raw data—is finally
displayed. To this end, multiple continuous views are required to be computed during data ingestion,
featuring progressively finer geospatial resolution. Consider for instance the time series charts in
Figure 9, corresponding to the polygonal selection in Figure 8 over a period of 4 months. Notice how
the resulting time series is progressively refined from the chart at the top to the one at the bottom,
which corresponds to the final exact answer derived from the raw sensor observations.

Figure 9. Progressive approximate query answering: The approximate time series at the top gets
gradually refined until the exact answer is presented to the user.

4.2.3. Dynamic Choropleth Map

This use case concerns the visualization of the historical behaviour of a given variable, this time by
displaying a sequence of successive temporal snapshots and by allowing the user to transition between
them on command using interactive controls (e.g., back and forward buttons or a time slider). An

Sensors 2020, 20, 2737 18 of 33

example of this use case was presented earlier in Figure 3 when discussing the execution of a general
exploratory task as a composite of multiple elementary tasks.

4.3. Proof-of-Concept Implementations of EXPLORA

This section describes two realizations of the Explora framework: the first one harnesses a
series of extensions of the PostgreSQL open-source relational database management system (RDBMS),
which endow this database engine with capabilities for efficiently storing and indexing time-series
and geospatial data. The second implementation draws on the distributed stream processing engine
provided by Apache Kafka [47] to process the feed of sensor observations from the Bel-Air project
setup. Figure 10 presents two diagrams mapping the technologies used in both implementations to
each of the tiers and components of the EXPLORA framework. Let us first consider the modules which
are common to both implementations and then proceed to a detailed description of those that are
specific to each approach.

Data
sources

Kafka Broker

Flask API

Da
ta

 in
ge

st
io

n
Q

ue
ry

in
g

Ku
be

rn
et

es

Tiles
Time bins AVG COUNT SUM

PSQL Triggers

TimescaleDB

PostgreSQL

PipelineDB

Flask APP ...

REST Endpoints

Jupyter-Notebook Jupyter-Notebook Jupyter-Notebook

PostGIS

Street blocks

NGINX + uWSGI

Flask APP

NGINX + uWSGI

Flask APP

NGINX + uWSGI

Ba
sh

Ju
py

te
r-N

ot
eb

oo
k

Ku
be

ct
l t

op
Pa

nd
as

M
at

pl
ot

lib

(a) Spatial time-series database approach.

Kafka Broker

Ku
be

rn
et

es

Geohashing Time bins AVG COUNT SUM

Kafka Streams Application

Kafka Topics

Kafka

RocksDB Key-Value store

Jetty Servlet
Container

...Jetty Servlet
Container

Jetty Servlet
Container

REST Endpoints

Jupyter-Notebook Jupyter-Notebook Jupyter-Notebook

Kafka Streams Application

Ba
sh

Ju
py

te
r-N

ot
eb

oo
k

Ku
be

ct
l t

op
Pa

nd
as

M
at

pl
ot

lib

(b) Distributed stream processing approach.
Figure 10. Proof-of-concept implementations of EXPLORA.

Event log Apache Kafka is used to implement this layer of the architecture. Kafka provides a number
of tools for processing and analyzing streams of data, including a distributed message broker
that adopts the publish–subscribe pattern. This Kafka broker allows for registering each of the
incoming sensor observations into a partitioned append-only log, maintaining them over a fixed
configurable retention period, which enable multiple consumers (as many as the number of
partitions) to read and process the collected data in an asynchronous-concurrent way.

Container orchestration The components in the serving, storage, and processing on ingestion layers are
built as Docker containers and are deployed on a Kubernetes cluster, consisting of one master
node and three working nodes, all of them running Ubuntu 18.04.3 LTS.

Performance monitoring Data regarding query response time, query accuracy, and computing
resources usage for all the components of the system is captured via bash and Python scripting.

Sensors 2020, 20, 2737 19 of 33

Once collected, this information is analyzed and visualized through a series of Jupyter notebooks
that make use of the Pandas and Matplotlib Python libraries.

Serving Layer A REST API is implemented for serving client applications. In the PostgreSQL-based
implementation (see Figure 10a), this API is provided by using the Flask web framework for
Python and NGINX+uWSGI as an application server, while in the distributed stream processing
approach (Figure 10b), this API runs on a Jetty servlet container. This REST API consists of two
endpoints: one for handling historical-spatial queries and the other for snapshot-temporal queries.
The specification of each of the API endpoints is presented below in Table 1. Multiple instances
of the API server are deployed to balance the load and to provide high availability.

Table 1. API specification for the serving layer (default values are shown in underlined text).

HS queries: GET /airquality/{metric_id}/aggregate/{aggregate}/history

Path parameters • metric_id: (required) one of the air quality metrics available from the
Bel-Air setup (no2|pm25|pm10|o3|...).

• aggregate: (required) one of the available aggregate function
(AVG|SUM|COUNT).

Query paramenters • q_polygon: (required) Well-Known Text (WKT) representation of the
polygon selected by the user, e.g.: “POLYGON ((1.0 0.0, 1.0 1.0, 0.0
0.0, 1.0 0.0))”.

• source: tile grid (tiles), street blocks (street_blocks) or raw sensor
data (raw).

• time_res: min|hour|day|month.

• grid_precision: in case multiple continuous views corresponding to
multiple values of geohash precision have been computed, via this
parameter it is possible to specify the desired precision for the query at
hand (default: 6).

• from: the start of the query interval as a timestamp in milliseconds.

• to: the end of the query interval (exclusive) as a timestamp in
milliseconds.

• interval: optionally it is possible to use one of five predefined intervals:
5min|1hour|1day|1week|1month.

ST queries: GET /airquality/{metric_id}/aggregate/{aggregate}/snapshot

Path parameters Same as for the previous endpoint
Query paramenters • bbox: (required) comma-separated string of coordinates corresponding to

the bounding box over which the snapshot would be taken.

• source, time_res, grid_precision: same as for the previous
endpoint.

• snap_ts: timestamp in milliseconds corresponding to the instant the
snapshot would be taken.

Client applications Two Jupyter notebooks are deployed as client applications, one implementing the
first two use cases described in Section 4.2 and another implementing the third use case. Figure 11
shows screen captures taken from these implementations.

These notebooks consume the API available in the serving layer to resolve the historical-spatial
and snapshot-temporal queries that support the interaction with end users.

Sensors 2020, 20, 2737 20 of 33

(a) Use cases 4.2.1 and 4.2.2. (b) Use case 4.2.3.
Figure 11. Screen captures of the Jupyter notebooks implementing the target use cases defined in
Section 4.2.

4.3.1. Spatial Time-Series Database Approach

Processing on ingestion PostgreSQL triggers are used to implement the ingestion procedure
described in Algorithm 1. These trigger functions are invoked for each of the sensor readings
being consumed from the Kafka broker, relaying them to the corresponding continuous views
for aggregation before being persisted into the time-series storage. Two spatial fragmentation
schemas have been laid over the region covered by the mobile sensors, namely a tile grid built
according to the geohash encoding algorithm by Niemeyer G. [48] (see Figure 1a for reference)
and a grid corresponding to the street-blocks of the city of Antwerp (see Figure 1b). Additionally,
four aggregation frequencies were considered, fragmenting time into minutely, hourly, daily, and
monthly bins. In consequence, under this setup, eight continuous views (2-spatial fragmentation
schemas × 4-aggregation frequencies) are computed, holding data summaries that comprise the
results of three aggregate functions applied over the incoming stream of sensor observations:
the arithmetic average of the measured values (AVG), the sum of the measurements (SUM),
and number of reported readings (COUNT).

Storage and query processing layer For these layers, three open-source extensions of PostgreSQL are
set up on top of this database engine, enabling it to store and query time-series data, to support
geospatial operations, and to incrementally create and persist continuous views:

• TimescaleDB [49] is a time-series database working on top of PostgreSQL, thus being able
to offer a full SQL querying interface while supporting fast data ingestion. Raw sensor
readings consumed from the Kafka broker are formatted and stored into a TimescaleDB
Hypertable, which partitions data in the temporal dimension for efficient ingestion and fast
retrieval.

• PostGIS [50] is a spatial extension that allows PostgreSQL to store and query information
about location and mapping. With PostGIS in place, the GeoJSON specifications of the tile
and street-block grids are stored as two spatial tables, for which the records correspond to
individual tile/street-block from the spatial fragmentation schemes. Likewise, each one of
the records from the TimescaleDB Hypertable are augmented with a PostGIS geography
object that corresponds to the sensor reading location. This enables the execution of spatial
join operations required later during the querying stage to address calculations such as
point-in-polygon and polygon intersection.

• PipelineDB [51] is an extension that enables the computation of continuous aggregates on
time-series data, storing the results into regular PostgreSQL tables. The eight continuous
views mentioned earlier are created in PipelineDB and incrementally computed as
continuous queries running against the stream of sensor observations being handed in
through the trigger functions in the ingestion layer. For illustration, Listing 1 presents

Sensors 2020, 20, 2737 21 of 33

the SQL statement used in PipelineDB for creating a view that computes the three stated
aggregates on a per-minute basis.

Listing 1: Example of a view creation statement in PipelineDB.
CREATE VIEW aq_no2_minutely_view WITH (action=materialize) AS
SELECT fragment_id , observed_var , minute(time) AS ts,
COUNT (*) AS count ,
SUM(value) AS sum_value ,
AVG(value) AS avg_value
FROM aq_no2_stream -- stream of NO2 sensor measurements
GROUP BY fragment_id , observed_var , ts;

Since PostgreSQL is the underlying storage technology used in this setup, it is possible to
translate the procedures for handling historical-spatial and snapshot-temporal queries (from
Algorithms 2 and 3, respectively) into declarative SQL statements, leveraging the expressiveness
of this language along with the capabilities of the implemented extensions. An example of said
statements is presented below in Listing 2.

Listing 2: Example of a HS query statement running on PipelineDB.
SELECT observed_var , ts, combine(avg_value) AS avg_value
FROM aq_no2_minutely_view
INNER JOIN tile_grid ON aq_no2_minutely_view.fragment_id = tile_grid.id
WHERE ST_Contains(ST_GeomFromText(’<QUERY_POLYGON >’), tile_grid.geom)
GROUP BY observed_var , ts
ORDER BY ts; -- QUERY_POLYGON: Well -Known Text (WKT) representation
-- of the user ’s polygonal selection.

4.3.2. Distributed Stream Processing Approach

Processing on ingestion A Kafka streams application is implemented for this layer, according to the
procedure in Algorithm 1. The Kafka streams library provides an API for conducting distributed
stateful transformations on the feed of sensor observations being pushed to the Kafka broker
by enabling multiple stream processor instances to consume the partitioned Kafka topics that
the sensor readings are being written to. In consequence, the global application state is also
partitioned into a distributed key-value store, instances of which are collocated with the working
stream processors. Since Kafka streams does not support spatial operations out-of-the-box,
in order to set up a statiotemporal fragmentation schema, a compound record key was associated
to each of the incoming sensor observations, consisting of their geohash code (a base 32 sequence
of 12 characters encoding the latitude and longitude of the measurement), along with their
correponding timestamp, formatted as in the example shown below:

geohash︷ ︸︸ ︷
u14dhqs4cpbp︸ ︷︷ ︸

{lat:51.012818, lon:3.707970}

#

timestamp︷ ︸︸ ︷
20191101︸ ︷︷ ︸

date: 2019/11/01

: 143115︸ ︷︷ ︸
time: 14:31:15

: 344︸︷︷︸
milliseconds

By augmenting sensor observations with keys structured in this way, the implemented ingestion
procedure is able to set up a geohash-based spatial grid, leveraging the fact that readings sharing
the first k-geohash characters fall into the same geospatial region identified by such k-character
prefix. Likewise, the same procedure uses timestamp prefixes to set up a time-partitioning
layout over the incoming stream of sensor readings, pushing records into minutely, hourly, daily,
and monthly bins. Thereafter, data summaries are continuously computed on each of the
geohash-based spatial fragments for each of the time partitions, and their results are persisted

Sensors 2020, 20, 2737 22 of 33

into the distributed state store. As an illustration, Listing 3 presents an example of the continuous
views generated by the Kafka streams application.

Listing 3: Example of a continuous view with hourly time bins in Kafka Streams. The segment
presented corresponds to the spatial fragment identified by the geohash prefix u14dhq.

...
u14dhq #20191101:140000:000: {AVG: 54.32, SUM: 182678.16 , COUNT :3363} ,
u14dhq #20191101:150000:000: {AVG: 32.10, SUM: 111964.80 , COUNT :3488} ,
u14dhq #20191101:160000:000: {AVG: 45.13, SUM: 147755.62 , COUNT :3274} ,
u14dhq #20191101:170000:000: {AVG: 90.08, SUM: 304560.48 , COUNT :3381} ,
...

Storage layer This layer is also supported by tools provided by Kafka: raw sensor observations are
stored into Kafka topics, while continuous views generated in the ingestion layer are stored into
a distributed key-value database known as RocksDB [52], which Kafka uses as the default state
store for stream applications. While records stored in Kafka topics are not directly queryable,
continuous views in RocksDB allow simple key-based lookup and range queries. This is why
a major part of the query processing needs to be conducted in the serving layer, when handling
the client application requests.

Query processing and serving layer In this distributed setup, an instance of the REST API serving
client requests is hosted on each of the Kafka stream processors. Each of these instances is only
capable of answering queries on the portion of the application state available to the hosting
stream processor. Therefore, resolving a query on the global state requires combining the results
computed on the state available to each of the stream processor thus far. Consider for instance
the example presented in Figure 12, illustrating the procedure for a setup with three stream
processors, resolving a historical-spatial query: (1) The query reaches one of the instances of the
serving layer API. This instance processes the query against the version of the continuous view
persisted on its own state store. (2) Then, the query is relayed to a second instance to retrieve
the data summaries from its corresponding state store and to combine them with those obtained
from the first instance. (3) This process is repeated until the query reaches the last API instance.
Finally, the resulting sequence of aggregated data summaries is retrieved to the client application.

It is worth noting that the simplicity of the querying interface offered by the state stores—limited
basically to key-based lookups and range queries—along with the key-value data model
they adopt pay off in terms of query processing time, as will be shown when discussing the
performance of these proof-of-concept implementations in the following section.

HS(,t≤t5)
Instance 1

Jetty Servlet
Container

Instance 2

Jetty Servlet
Container

Instance 3

Jetty Servlet
Container

RBD

RBD

RBD

State store 1

State store 2

State store 3

AVG: 10
SUM: 1000
COUNT: 100

AVG: 15
SUM: 3000
COUNT: 200

AVG: 20
SUM: 2000
COUNT: 100

AVG: 50
SUM: 10000
COUNT: 200

AVG: 11
SUM: 1100
COUNT: 100

AVG: 10
SUM: 1000
COUNT: 100

AVG: 30
SUM: 9000
COUNT: 300

AVG: 60
SUM: 6000
COUNT: 100

t0 t1 t2 t3 t4 t5

1

2

3

Stream processors

Figure 12. Procedure for distributed query resolution.

5. Experimental Evaluation

The previous section explored two proof-of-concept implementations of the EXPLORA framework,
proving its ability to support typical use cases for visual exploratory applications on mobile sensor

Sensors 2020, 20, 2737 23 of 33

data. This section addresses a performance evaluation conducted on both implementations on a feed
of air quality sensor observations collected from the Bel-Air smart city setup.

5.1. Query Accuracy Metric

The performance evaluation reported herein is mainly focused on determining to what extent
the continuous computation of data summaries applied in EXPLORA effectively reduces the query
response time on spatiotemporal data and what is the cost of such increase in responsiveness in terms
of query accuracy. The latter was determined by defining a metric accounting for the average distance
between the elements of the result sets obtained when querying continuous views—i.e., approximate
answer—against those retrieved when querying the base raw sensor data—i.e., exact answer. Let X q

and Y q be two result sets obtained from running a query q against both a continuous view V and the
base sensor data R, respectively. X q and Y q can be regarded as relations since they designate a set of
ordered pairs:

X q = {〈kx1, vx1〉, 〈kx2, vx2〉, . . . , 〈kxm, vxm〉}
Y q = {〈ky1, vy1〉, 〈ky2, vy2〉, . . . , 〈kyn, vyn〉}

(6)

With kxi and kyi being spatial-fragment identifiers or timestamps and vxi and vyi being aggregate
values. Ideally, X q and Y q should have the exact same set of keys and values; this is, the distance
between them (tuple-wise) should be zero. However, due to the applied spatiotemporal fragmentation
scheme, data summaries—upon which queries are resolved—can only match spatial and temporal
query predicates in an approximate manner. In consequence, key-value sets might differ from X q to
Y q. To estimate the average tuple-wise distance—henceforth, distance—between these two result sets,
first, a full outer-join operation is computed:

Zq = X q ./ Y q

= {〈kz1, (vxz1, vyz1)〉, 〈kz2, (vxz2, vyz2)〉, 〈kz3, (vxz3, vyz3)〉, . . . }
vxzi = 0, if kzi /∈ X q ∧ vyzi = 0, if kzi /∈ Y q

(7)

Then, the distance (d) between these two result sets is estimated as follows:

d : X q ×Y q 7→ [0, 1],

d(X q,Y q) =
1
|Zq|

|Zq |

∑
i

|vxzi − vyzi|
|vxzi|+ |vyzi|

(8)

where |Zq| denotes the cardinality of the set resulting from the outer-join operation in Equation (7).
One appealing feature of this distance metric is that it provides a normalized symmetrical measure of
the dissimilarity between two result sets, which makes it more easily interpretable than alternative
distance metrics such as dynamic time warping (DTW) [53] used for measuring the similarity between
two temporal sequences.

5.2. Experimental Setup

The data set collected for this performance evaluation covers about one-year’s worth of sensor
measurements (from August 2018 to August 2019) made to map the situation of air pollutant emissions
over the city of Antwerp. The two proof-of-concept setups detailed in Section 4 were deployed to
a Kubernetes cluster consisting of one master and three worker nodes, set up on the imec/IDLab Virtual
Wall environment [54]. Table 2 lists the versions of the software tools used in these implementations.

Sensors 2020, 20, 2737 24 of 33

Table 2. Versions of the software used in the experimental setup.

Software Version

Kubectl 0.15.10
Linux Kernel 4.15.0-66-generic
Operating System Ubuntu 18.04.3 LTS
Container Runtime Version containerd://1.2.6
PostgreSQL (TimescaleDB + PostGIS + PipelineDB) 11.5 (1.4.2 + 2.5.2 + 1.0.0)
Apache Kafka 2.3.0
NGINX + uWSGI 1.14.2 + 2.0.17.1
Jetty Server 9.4.20.v20190813
Java (OpenJDK) 14-ea
Python 3.7.5

The process for collecting performance information on both proof-of-concept setups started
by recording the queries generated during one user session on the first setup. This collection of
queries—designated henceforth as workload—amounts to 222 statements comprising a wide range of
query predicates (polygonal selections, timestamps, time intervals, etc.), 64% of which correspond
to historical-spatial queries while the remaining 36% are snapshot-temporal requests. The collection
of historical-spatial queries can be further divided into statements with a predicate in the temporal
dimension (i.e., those querying over a certain period of time provided by the user) and queries without
said predicate (namely, those querying over the whole period of available data thus far). Table 3 shows
the final composition of the query workload, considering the discussed classification.

Table 3. Composition of the test workload used for the performance evaluation.

Query Type # Queries

HS (w/ temporal predicate) 90
HS (w/o temporal predicate) 52
ST 80
Total 222

To determine how each of the EXPLORA implementations performs as the amount of ingested
data increases, the test air quality data was fed to both setups in batches of one-month’s worth of data.
This way, at the end of each batch increment, the sequence of request included in the workload was
run on both implementations while monitoring query response time and query accuracy. Each batch
of raw sensor data was ingested and aggregated into a geohash-based tile grid (for which precision
was set to a six-character geohash prefix) and—only for the spatial time-series database setup—a
street-blocks based grid, which partitions the urban area of Antwerp into 12.230 polygonal regions.

5.3. Results

5.3.1. Continuous Views Storage Footprint

The continuous views generated through EXPLORA are by definition redundant data structures
for read optimization [55] and, as such, entail a storage overhead. In this sense, Figure 13a illustrates
the proportion of the number of records (i.e., data summaries) registered in the views w.r.t. the total
count of raw sensor observations ingested per month for both tile and street-block grids. On average,
tile grid views and street-block views amount, respectively, to 26.5% and 33.8% of the total record
count for sensor readings. Since street-block views rely on a finer (and irregular) spatial fragmentation
strategy than that used for tile views, the number of data summaries placed into the former views is
larger in proportion to the amount of raw sensor observations.

Sensors 2020, 20, 2737 25 of 33

1 2 3 4 5 6 7 8 9 10 11 12 13
months

0

5

10

15

20

Re
co
rd
 c
ou

nt
 (m

illi
on

 re
co
rd
s)

1e6
raw sensor data
tile grid views
street-block views

(a) Views grow proportionally to the ingested raw data.

Minutely

Hourly

Daily

Monthly
street-block views

street-block views

0 10 20 30 40 50 60 70 80 90 100
Percentage (%)

Minutely

Hourly

Daily

Monthly
tile grid views

tile grid views

(b) Minutely views are proportionally the largest.
Figure 13. Storage footprint of continuous views.

In the same vein, Figure 13b shows that most of the storage overhead is due to views with
aggregation frequency set to one minute, accounting—in both tile and street-block views—for more
than 90% of the total amount of generated data summaries. Again, as stated earlier in Section 3.2.2,
the lower the resolution of the spatiotemporal fragmentation scheme, the smaller the size of the
corresponding view: while for one-year’s worth of sensor data, there might be around 8.640 hourly
data summaries per spatial fragment, the corresponding minutely summaries would amount to 518.400,
which explains the stark difference between the minutely view proportions and the second-largest
hourly views.

5.3.2. Query Response Time for HS Queries without Time Predicate

When the serving API receives a historical-spatial request providing only the spatial parameter
(and no conditions on the temporal dimension), the corresponding response is computed over the
full extent of data available thus far. The response time reported for this kind of queries with
regards to the amount of ingested sensor readings is illustrated in Figure 14. Results from multiple
setups are presented in these charts in order to compare both implementations of EXPLORA. For the
spatial time-series database approach (PostgreSQL based), the query response time on the raw sensor
observations (TimescaleDB + PostGIS) and continuous views (PipelineDB + PostGIS) are reported;
while for the distributed stream processing approach (Kafka based), results obtained from running
Apache Kafka with three different partition settings are presented: 3 partitions/3 stream processors
(KSTREAMS 3 Partitions), 6 partitions/6 stream processors (KSTREAMS 6 Partitions), and 9 partitions/9
stream processors (KSTREAMS 9 Partitions). Query processing time from the TimescaleDB + PostGIS
setup serves as reference to estimate the performance gain in query response time for the remaining
setups. These time measurements were conducted along the four considered temporal resolutions,
namely per-minute, per-hour, per-day, and per-month bins. In light of the results obtained, it is worth
highlighting four key facts:

(i) Query response time on the raw data (dashed line in Figure 14) behaves nearly the same along
the four temporal resolutions, displaying a linear increase as the amount of data ingested grows
larger. This describes an expected system’s response, since each of these queries involves
running expensive sequential scan operations over the full collection of raw sensor readings.
This way, response time for these requests increases proportional to the amount of ingested sensor
observations, regardless of the requested temporal resolution.

Sensors 2020, 20, 2737 26 of 33

1001

100

101

Q−
er
y
r−
nt
im

e
(s
e

)
time_res = min

set−)
KSTREAMS 3 Partiti(ns
KSTREAMS 6 Partiti(ns
KSTREAMS 9 Partiti(ns
PSQL (Pi)elineDB + PostGIS)
PSQL (TimescaleDB + PostGIS)
source
Tiles GH6 (Views)
Raw Time-series

time_res = hour

2 4 6 8 10 12 14
Record count 1e6

10−1

100

101

Qu
er
y
ru
nt
im

e
(s
ec

)

time_res = day

2 4 6 8 10 12 14
Record count 1e6

time_res = month

Figure 14. Query response time vs. volume of ingested data: HS queries without time predicate.

(ii) Continuous views (solid lines in Figure 14) in general outperform the base raw data for both
implementations of EXPLORA. Only for views with per-minute temporal bins the performance
benefit from using these synopsis structures is compromised due to the considerable size of said
structures relative to the raw data (and to the remaining views, as evidenced earlier in Figure 13).
However, even in this case, queries perform 1.1–1.3× faster in the 3-partition/3-processors Kafka
setup and 1.8–2.9× faster in the PipelineDB + PostGIS setup compared to queries running against
the raw data. For the other considered time resolutions, queries running on the corresponding
views perform up to two orders of magnitude faster than the reference setup, reaching sub-second
response times in all cases.

(iii) When it comes to distributed stream processing, increasing parallelism—i.e., adding partitions
and stream processors accordingly—actually leads to a slight decline in performance, which can
be attributed to the overhead due to the process of combining the partial aggregates computed on
each of the stream processors, which also implies data exchange among said processors (network
overhead). That said, this approach still delivers a more stable response as the data volume grows
compared to the spatial time-series approach, describing a linear-time trend for which the slope
tends to zero as the temporal resolution of the aggregates decreases—notice the almost constant
time for views with per-month temporal bins.

(iv) For ingested data under 6–8 million sensor observations, queries on the spatial time-series
approach either outperform or closely follow the performance of those from distributed streaming
setups. From 8 million records onwards, the query response time for the PipelineDB + PostGIS
setup branches out, describing an exponential growth. In this situation, given the increased
volume of data, indexed tables can no longer fit in the available memory; in consequence, parts of
the index are repeatedly swap in and out of the database buffer pool, leading to a performance
degradation.

5.3.3. Query Response Time for HS Queries with Time Predicate

This part of the evaluation deals with a more practical and sensible kind of query, namely those
with predicates in both spatial and time dimensions. Figure 15 describes the performance for queries
running on the six considered setups for five predefined time intervals: last 5 minutes and last hour

Sensors 2020, 20, 2737 27 of 33

running on minutely views; last day running on hourly views; and last week and last month running on
daily views.

10 2

10 1

100

Qu
er

y
ru

nt
im

e
(s

ec
)

time_res = min

setup
KSTREAMS 3 Partitions
KSTREAMS 6 Partitions
KSTREAMS 9 Partitions
PSQL (PipelineDB + PostGIS)
PSQL (TimescaleDB + PostGIS)
source
Tiles GH6 (Views)
Raw Time-series

2 4 6 8 10 12 14
Record count 1e6

time_res = hour

2 4 6 8 10 12 14
Record count 1e6

10 2

10 1

100

Qu
er

y
ru

nt
im

e
(s

ec
)

time_res = day

Figure 15. Query response time vs. volume of ingested data: HS queries with time predicate.

The obtained results show how the reference setup (TimescaleDB + PostGIS) is able to deliver almost
constant-time performance for queries requesting hourly and daily time resolutions and outperforms the
alternative implementations based on synopsis data structures with minutely time bins. This behaviour
stems from TimescaleDB taking advantage of the inherent time-ordering of the ingested sensor
observations to only process the most recent data. On the other hand, once again, the distributed stream
processing approach stands out as the system with the most stable performance, featuring a nearly
constant-time response as the amount of ingested data increases and sub-second query latency for
all the considered time intervals. Meanwhile, the performance of the spatial time-series database
(PipelineBD + PostGIS) approach falls behind, as it struggles to deliver a consistent time response as
data grows larger.

5.3.4. Query Response Time for ST Queries

Snapshot-temporal queries provide a time-slice visual of the status of the observed variable over
the geospatial region being displayed on the user’s screen for a given timestamp and for a specific time
resolution determining the span of time covered in the query computation (i.e., one minute, one hour,
one day, or one month). Figure 16 below reports on the performance for this kind of query as the amount
of data ingested increases.

Sensors 2020, 20, 2737 28 of 33

10 2

10 1

100

101

Qu
er

y
ru

nt
im

e
(s

ec
)

time_res = min
setup
KSTREAMS 3 Partitions
KSTREAMS 6 Partitions
KSTREAMS 9 Partitions
PSQL (PipelineDB + PostGIS)

PSQL (TimescaleDB + PostGIS)
source
Tiles GH6 (Views)
Raw Time-series

time_res = hour

2 4 6 8 10 12 14
Record count 1e6

10 2

10 1

100

101

Qu
er

y
ru

nt
im

e
(s

ec
)

time_res = day

2 4 6 8 10 12 14
Record count 1e6

time_res = month

Figure 16. Query response time vs. volume of ingested data: ST queries.

According to this test, the distributed stream processing setups deliver a constant-time response as
data volume grows for all considered time resolutions in contrast to the alternative PostgreSQL setups,
for which response is affected by the amount of data available (notice the linear-time performance for
queries running with one minute time resolution) and the temporal interval over which the query is
computed (notice how, for the reference setup, query latency tends to increase as this interval goes from
one minute to one one month). This behaviour obeys to the fact that the distributed key-value database
storing the partitioned continuous views enables constant-time key-based lookups, making the
procedure implemented for resolving snapshot-temporal queries independent of the amount of data
available and only subject to the size of the visible (or selected) geospatial region. Another significant
result from this test is that, overall, both implementations of the EXPLORA framework deliver
sub-second response times, proving these approaches effective to enable interactive-level performance
for snapshot-temporal queries.

5.3.5. Query Accuracy on Continuous Views

The main caveat of using synopsis data structures for answering spatiotemporal queries is
their inherent loss in accuracy. Figure 17 illustrates the level of accuracy attained in both of the
proof-of-concept implementations of EXPLORA for different setups. In these charts, accuracy is defined
as the complement of the distance metric formulated earlier in Section 5.1:

accuracy = 1− d(X q,Y q)

where X q is a result set obtained upon running a query q on one of the available continuous views and
Y q is a reference result set. For the spatial time-series database implementation, Figure 17a portrays
the accuracy achieved for queries running on tile-based and street-block based views, as a function
of the amount of data ingested. In this case, the reference result sets are those computed on the raw
sensor observations for each query in the test workload. According to these results, the cost incurred
in terms of accuracy is, on average, less than 10% for both types of views. It is also clear from the chart
how using a finer spatial fragmentation schema allows for a more accurate approximation: queries

Sensors 2020, 20, 2737 29 of 33

running on the street-block views are 3.64% closer to the exact answer than those running on the
coarser tile-based views.

2 4 6 8 10 12 14
record_count 1e6

0.0

0.5

0.8

0.9

1.0

ac
cu
ra
cy

 (w
.r.
t.

ex
ac

t a
ns

we
r)

source
tile grid views
street-block views

(a) PipelineDB + PostGIS setup.

KSTREAMS_3P KSTREAMS_6P KSTREAMS_9P KSTREAMS_12P
source

0.0

0.5

0.8
0.9
1.0

ac
cu
ra
cy
 (w

.r.
t.
ap

ro
x.
 a
ns
we

rs
 o
n
PS

QL
 ti
le
 v
ie
ws

)

time_res
min
hour
day
month

(b) Kafka streams implementation.
Figure 17. Query accuracy on the continuous views computed with EXPLORA: (a) Accuracy on both
tile-grid and street-block views is above 90% on average. (b) Accuracy in relation to approximate
answers from the PipelineDB + PostGIS setup: increasing the number of partitions eventually
compromises query accuracy.

On the other hand, for the distributed stream processing implementation, query accuracy is
measured as a function of the number of partitions (and stream processors) used to split the ingested
data and to generate the distributed continuous views under the premise that increasing parallelism
implies increased error probability. Since views from this setup are based on the same geohash tiles
from the PipelineDB + PostGIS implementation, the query accuracy obtained in said implementation
defines an upper bound for the distributed processing approach in this particular setup. That is why
query accuracy in Figure 17b is estimated in relation to the approximate answers derived from the tile
views of the PostgreSQL-based setup. The reported results indicate an effective drop in the expected
accuracy once data and processing are split up into more that six partitions, evidencing that increased
parallelism not only impacts query latency but also can eventually compromise the accuracy of the
answers computed on continuous views.

6. Conclusions

Supporting visual-interactive exploration on top of the massive volumes of smart city data being
generated nowadays remains largely an open problem. The stringent latency requirements typical of
these kind of applications call for proactive and flexible data management mechanisms able to serve
users with prompt answers to their information requirements, based on the most recent data available.
In this sense, this paper introduced EXPLORA, a microservice-based data management framework for
spatiotemporal data produced in smart city environments (i) that leverages stream processing methods
to continuously compute synopsis data structures over the live feed of measurements coming from
mobile sensor, (ii) that defines a uniform interface to query said structures based on recurrent user
interaction patterns, and (iii) that monitors system and query performance.

The experimental evaluation conducted on two proof-of-concept implementation of
EXPLORA—one based on a traditional spatial time-series database approach and another using
a distributed stream processing pipeline—proved the feasibility of the proposed framework, being able
to serve expensive spatiotemporal queries with sub-second performance over a continuously increasing
amount of sensor data (reaching up to 2 orders of magnitude speedup in comparison to queries running
on the base raw observations) at the expense of less than 10% loss in accuracy and around 30% of
storage overhead.

A current limitation of the EXPLORA framework is that the set of aggregate operations used
for building the continuous synopsis structures (e.g., average, sum, and count in the described
implementations) has to be defined upfront. In this sense, future work on this research will extend

Sensors 2020, 20, 2737 30 of 33

the framework to incorporate a pluggable mechanism that enables developers/users to provide
custom aggregates as extensions that would be integrated to the running data ingestion pipeline.
Additionally, the query processing component of the framework will be further developed to enable
features such as predictive caching to anticipate the queries that are likely to be issued next, according
to user’s interaction behaviour, and federated querying by implementing a linked data fragments
interface, which boosts system scalability by pushing part of the query computation to the client-side
application [56,57].

Author Contributions: Conceptualization, L.O.-A. and G.V.S.; methodology, L.O.-A., G.V.S., and T.W.; software,
L.O.-A.; formal analysis, L.O.-A.; investigation, L.O.-A.; writing—original draft, L.O.-A.; writing—review and
editing, G.V.S., T.W., B.V., and F.D.T. supervision, G.V.S., T.W., B.V., and F.D.T. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by the Research Foundation Flanders (FWO) under grant number
G059615N—“Service oriented management of a virtualised future internet”.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

API Application programming interface
CSV Comma-separated values
JSON Javascript object notation
RDF Resource description framework
SQL Structured query language

References

1. Sánchez-Corcuera, R.; Nuñez-Marcos, A.; Sesma-Solance, J.; Bilbao-Jayo, A.; Mulero, R.; Zulaika, U.;
Azkune, G.; Almeida, A. Smart cities survey: Technologies, application domains and challenges for the cities
of the future. Int. J. Distrib. Sens. Netw. 2019, 15. [CrossRef]

2. Harrison, C.; Eckman, B.; Hamilton, R.; Hartswick, P.; Kalagnanam, J.; Paraszczak, J.; Williams, P.
Foundations for smarter cities. IBM J. Res. Dev. 2010, 54, 1–16. [CrossRef]

3. Lea, R.; Blackstock, M.; Giang, N.; Vogt, D. Smart cities: Engaging users and developers to foster innovation
ecosystems. In Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and
Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers,
Osaka, Japan, 7–11 September 2015; pp. 1535–1542.

4. Veeckman, C.; Van Der Graaf, S. The city as living laboratory: Empowering citizens with the citadel toolkit.
Technol. Innov. Manag. Rev. 2015, 5, 6–17. [CrossRef]

5. Gascó-Hernandez, M. Building a Smart City: Lessons from Barcelona. Commun. ACM 2018, 61, 50–57.
[CrossRef]

6. Chauhan, S.; Agarwal, N.; Kar, A.K. Addressing big data challenges in smart cities: A systematic literature
review. Info 2016, 18. [CrossRef]

7. Silva, B.N.; Khan, M.; Han, K. Towards sustainable smart cities: A review of trends, architectures,
components, and open challenges in smart cities. Sustain. Cities Soc. 2018, 38, 697–713. [CrossRef]

8. Marcu, O.C.; Costan, A.; Antoniu, G.; Pérez-Hernández, M.; Tudoran, R.; Bortoli, S.; Nicolae, B. Storage and
Ingestion Systems in Support of Stream Processing: A Survey; RT-0501; INRIA Rennes-Bretagne Atlantique and
University of Rennes 1: Rennes, France, December 2018.

9. Zoumpatianos, K.; Palpanas, T. Data Series Management: Fulfilling the Need for Big Sequence Analytics.
In Proceedings of the 2018 IEEE 34th International Conference on Data Engineering (ICDE), Paris, France,
16–19 April 2018; pp. 1677–1678. [CrossRef]

10. Doraiswamy, H.; Tzirita Zacharatou, E.; Miranda, F.; Lage, M.; Ailamaki, A.; Silva, C.T.; Freire, J. Interactive
Visual Exploration of Spatio-Temporal Urban Data Sets Using Urbane. In Proceedings of the 2018
International Conference on Management of Data, Hoston, TX, USA, 10–15 June 2018; pp. 1693–1696.
[CrossRef]

http://dx.doi.org/10.1177/1550147719853984
http://dx.doi.org/10.1147/JRD.2010.2048257
http://dx.doi.org/10.22215/timreview/877
http://dx.doi.org/10.1145/3117800
http://dx.doi.org/10.1108/info-03-2016-0012
http://dx.doi.org/10.1016/j.scs.2018.01.053
http://dx.doi.org/10.1109/ICDE.2018.00211
http://dx.doi.org/10.1145/3183713.3193559

Sensors 2020, 20, 2737 31 of 33

11. Yang, C.; Clarke, K.; Shekhar, S.; Tao, C.V. Big Spatiotemporal Data Analytics: A research and innovation
frontier. Int. J. Geogr. Inf. Sci. 2019, 34, 1–14. [CrossRef]

12. He, J.; Chen, H.; Chen, Y.; Tang, X.; Zou, Y. Diverse visualization techniques and methods of
moving-object-trajectory data: A review. ISPRS Int. J. Geo-Inf. 2019, 8, 63. [CrossRef]

13. Ganti, R.; Srivatsa, M.; Agrawal, D.; Zerfos, P.; Ortiz, J. MP-Trie: Fast Spatial Queries on Moving Objects.
In Proceedings of the Industrial Track of the 17th International Middleware Conference, Trento, Italy,
12–16 December 2016. [CrossRef]

14. Agrawal, D.; Ganti, R.; Jonas, J.; Srivatsa, M. STB: Space time boxes. CCF Trans. Pervasive Comput. Interact.
2019, 1, 114–124. [CrossRef]

15. Beckmann, N.; Kriegel, H.P.; Schneider, R.; Seeger, B. The R*-tree: An efficient and robust access method for
points and rectangles. In Proceedings of the 1990 ACM SIGMOD International Conference on Management
of Data, Atlantic City, NJ, USA, 23–25 May 1990; pp. 322–331.

16. Kempke, R.A.; McAuley, A.J. Ternary CAM Memory Architecture and Methodology, 1998. US5841874A,
19 February 1998.

17. Vo, H.; Aji, A.; Wang, F. SATO: A spatial data partitioning framework for scalable query processing.
In Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, Dallas, TX, USA, 4–7 November 2014; pp. 545–548.

18. Aly, A.M.; Mahmood, A.R.; Hassan, M.S.; Aref, W.G.; Ouzzani, M.; Elmeleegy, H.; Qadah, T. AQWA:
Adaptive query workload aware partitioning of big spatial data. Proc. VlDB Endow. 2015, 8, 2062–2073.
[CrossRef]

19. Pavlovic, M.; Sidlauskas, D.; Heinis, T.; Ailamaki, A. QUASII: QUery-Aware Spatial Incremental Index.
In Proceedings of the 21st International Conference on Extending Database Technology (EDBT), Vienna,
Austria, 26–29 March 2018; pp. 325–336.

20. García-García, F.; Corral, A.; Iribarne, L.; Vassilakopoulos, M. Voronoi-diagram based partitioning for
distance join query processing in spatialhadoop. In Proceedings of the International Conference on Model
and Data Engineering, Marrakesh, Morocco, 24–26 October 2018; pp. 251–267.

21. Zacharatou, E.T.; Šidlauskas, D.; Tauheed, F.; Heinis, T.; Ailamaki, A. Efficient Bundled Spatial Range
Queries. In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, Chicago, IL, USA, 5–8 November 2019; pp. 139–148. [CrossRef]

22. Wan, S.; Zhao, Y.; Wang, T.; Gu, Z.; Abbasi, Q.H.; Choo, K.K.R. Multi-dimensional data indexing and range
query processing via Voronoi diagram for internet of things. Future Gener. Comput. Syst. 2019, 91, 382–391.
[CrossRef]

23. Ferreira, N.; Lage, M.; Doraiswamy, H.; Vo, H.; Wilson, L.; Werner, H.; Park, M.; Silva, C. Urbane: A 3D
framework to support data driven decision making in urban development. In Proceedings of the 2015 IEEE
Conference on Visual Analytics Science and Technology (VAST), Chicago, IL, USA, 25–30 October 2015;
pp. 97–104.

24. Murshed, S.M.; Al-Hyari, A.M.; Wendel, J.; Ansart, L. Design and implementation of a 4D web application
for analytical visualization of smart city applications. Isprs. Int. J. Geo-Inf. 2018, 7, 276. [CrossRef]

25. Cesium-Consortium. CesiumJS-Geospatial 3D Mapping and Virtual Globe Platform. Available online:
https://cesium.com/cesiumjs/ (accessed on 3 February 2020).

26. Li, Z.; Huang, Q.; Jiang, Y.; Hu, F. SOVAS: A scalable online visual analytic system for big climate data
analysis. Int. J. Geogr. Inf. Sci. 2019, 34, 1–22. [CrossRef]

27. Ramakrishna, A.; Chang, Y.H.; Maheswaran, R. An Interactive Web Based Spatio-Temporal Visualization
System. In Proceedings of the Advances in Visual Computing, Crete, Greece, 29–31 July 2013; pp. 673–680.

28. Zhang, X.; Zhang, M.; Jiang, L.; Yue, P. An interactive 4D spatio-temporal visualization system for
hydrometeorological data in natural disasters. Int. J. Digit. Earth 2019, 1–21. [CrossRef]

29. Cao, N.; Lin, C.; Zhu, Q.; Lin, Y.R.; Teng, X.; Wen, X. Voila: Visual anomaly detection and monitoring with
streaming spatiotemporal data. IEEE Trans. Vis. Comput. Graph. 2017, 24, 23–33. [CrossRef] [PubMed]

30. Chen, L.J.; Ho, Y.H.; Hsieh, H.H.; Huang, S.T.; Lee, H.C.; Mahajan, S. ADF: An anomaly detection framework
for large-scale PM2.5 sensing systems. IEEE Internet Things J. 2017, 5, 559–570. [CrossRef]

31. Osman, A.M.S. A novel big data analytics framework for smart cities. Future Gener. Comput. Syst. 2019,
91, 620–633. [CrossRef]

http://dx.doi.org/10.1080/13658816.2019.1698743
http://dx.doi.org/10.3390/ijgi8020063
http://dx.doi.org/10.1145/3007646.3007653
http://dx.doi.org/10.1007/s42486-019-00006-1
http://dx.doi.org/10.14778/2831360.2831361
http://dx.doi.org/10.1145/3347146.3359077
http://dx.doi.org/10.1016/j.future.2018.08.007
http://dx.doi.org/10.3390/ijgi7070276
https://cesium.com/cesiumjs/
http://dx.doi.org/10.1080/13658816.2019.1605073
http://dx.doi.org/10.1080/17538947.2019.1701110
http://dx.doi.org/10.1109/TVCG.2017.2744419
http://www.ncbi.nlm.nih.gov/pubmed/28866547
http://dx.doi.org/10.1109/JIOT.2017.2766085
http://dx.doi.org/10.1016/j.future.2018.06.046

Sensors 2020, 20, 2737 32 of 33

32. Badii, C.; Belay, E.G.; Bellini, P.; Marazzini, M.; Mesiti, M.; Nesi, P.; Pantaleo, G.; Paolucci, M.; Valtolina, S.;
Soderi, M.; et al. Snap4City: A scalable IOT/IOE platform for developing smart city applications.
In Proceedings of the 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted
Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People
and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Guangzhou, China,
8–12 October 2018; pp. 2109–2116.

33. Badii, C.; Bellini, P.; Difino, A.; Nesi, P.; Pantaleo, G.; Paolucci, M. MicroServices Suite for Smart City
Applications. Sensors 2019, 19, 4798. [CrossRef]

34. Node-Red, A. Visual tool for wiring the Internet-of-Things. Available online: http://nodered.org (accessed on
3 February 2020).

35. Del Esposte, A.d.M.; Santana, E.F.; Kanashiro, L.; Costa, F.M.; Braghetto, K.R.; Lago, N.; Kon, F. Design and
evaluation of a scalable smart city software platform with large-scale simulations. Future Gener. Comput. Syst.
2019, 93, 427–441. [CrossRef]

36. Scattone, F.F.; Braghetto, K.R. A Microservices Architecture for Distributed Complex Event Processing in
Smart Cities. In Proceedings of the 2018 IEEE 37th International Symposium on Reliable Distributed Systems
Workshops (SRDSW), Salvador, Brazil, 2–5 October 2018; pp. 6–9.

37. Aguilera, U.; Peña, O.; Belmonte, O.; López-de Ipiña, D. Citizen-centric data services for smarter cities.
Future Gener. Comput. Syst. 2017, 76, 234–247. [CrossRef]

38. Andrienko, N.; Andrienko, G.; Gatalsky, P. Exploratory spatio-temporal visualization: An analytical review.
J. Vis. Lang. Comput. 2003, 14, 503–541. [CrossRef]

39. Roth, R.E.; Çöltekin, A.; Delazari, L.; Filho, H.F.; Griffin, A.; Hall, A.; Korpi, J.; Lokka, I.; Mendonça, A.;
Ooms, K.; et al. User studies in cartography: Opportunities for empirical research on interactive maps and
visualizations. Int. J. Cartogr. 2017, 3, 61–89. [CrossRef]

40. Liu, Z.; Heer, J. The effects of interactive latency on exploratory visual analysis. IEEE Trans. Vis. Comput.
Graph. 2014, 20, 2122–2131. [CrossRef] [PubMed]

41. Liu, L.; Özsu, M.T. Encyclopedia of Database Systems; Springer: New York, NY, USA, 2009.
42. Kubernetes, I. Kubernetes: Production-grade container orchestration. Available online: https://kubernetes.

io/ (accessed on 3 March 2020).
43. Red Hat OpenShift. Available online: https://www.openshift.com/ (accessed on 3 March 2020).
44. Apache, S.F. Apache Mesos. Available online: http://mesos.apache.org/ (accessed on 3 March 2020).
45. Han, J.; Kamber, M.; Pei, J. (Eds.) Chapter 4 Data Warehousing and Online Analytical Processing. In Data

Mining, 3rd ed.; Elsevier: Waltham, MA, USA, 2012; pp. 125–185. [CrossRef]
46. Latre, S.; Leroux, P.; Coenen, T.; Braem, B.; Ballon, P.; Demeester, P. City of things: An integrated and

multi-technology testbed for IoT smart city experiments. In Proceedings of the 2016 IEEE International
Smart Cities Conference (ISC2), Trento, Italy, 12–15 September 2016; pp. 1–8. [CrossRef]

47. Apache, S.F. Apache Kafka. Available online: https://kafka.apache.org/ (accessed on 3 March 2020).
48. Niemeyer, G. Geohashing. Available online: https://obelisk.ilabt.imec.be/api/v2/docs/documentation/

concepts/geohash/ (accessed on 3 March 2020).
49. Timescale, I. TimescaleDB: An Open Source Time-Series SQL Database Optimized for Fast Ingest and

Complex Queries, Powered by PostgreSQL. Available online: https://www.timescale.com/products
(accessed on 3 March 2020).

50. PostGIS. Spatial and Geographic Objects for PostgreSQL. Available online: https://postgis.net/ (accessed on
3 March 2020).

51. Nelson, D.; Ferguson, J. PipelineDB: High-Performance Time-Series Aggregation for PostgreSQL. Available
online: https://www.pipelinedb.com (accessed on 3 March 2020).

52. Facebook, O.S. RocksDB: A Persistent Key-Value Store for Fast Storage Environments. Available online:
https://rocksdb.org/ (accessed on 3 March 2020).

53. Gold, O.; Sharir, M. Dynamic time warping and geometric edit distance: Breaking the quadratic barrier.
Acm Trans. Algorithms (TALG) 2018, 14, 1–17. [CrossRef]

54. imec/IDLab. Virtual Wall: Perform Large Networking and Cloud Experiments. Available online: https:
//doc.ilabt.imec.be/ilabt/virtualwall/index.html (accessed on 11 March 2020).

55. Ordonez-Ante, L.; Van Seghbroeck, G.; Wauters, T.; Volckaert, B.; De Turck, F. A Workload-Driven Approach
for View Selection in Large Dimensional Datasets. J Netw. Syst. Manag. 2020. [CrossRef]

http://dx.doi.org/10.3390/s19214798
http://nodered. org
http://dx.doi.org/10.1016/j.future.2018.10.026
http://dx.doi.org/10.1016/j.future.2016.10.031
http://dx.doi.org/10.1016/S1045-926X(03)00046-6
http://dx.doi.org/10.1080/23729333.2017.1288534
http://dx.doi.org/10.1109/TVCG.2014.2346452
http://www.ncbi.nlm.nih.gov/pubmed/26356926
https://kubernetes.io/
https://kubernetes.io/
https://www.openshift.com/
http://mesos.apache.org/
http://dx.doi.org/10.1016/B978-0-12-381479-1.00004-6
http://dx.doi.org/10.1109/ISC2.2016.7580875
https://kafka.apache.org/
https://obelisk.ilabt.imec.be/api/v2/docs/documentation/concepts/geohash/
https://obelisk.ilabt.imec.be/api/v2/docs/documentation/concepts/geohash/
https://www.timescale.com/products
https://postgis.net/
https://www.pipelinedb.com
https://rocksdb.org/
http://dx.doi.org/10.1145/3230734
https://doc.ilabt.imec.be/ilabt/virtualwall/index.html
https://doc.ilabt.imec.be/ilabt/virtualwall/index.html
http://dx.doi.org/10.1007/s10922-020-09526-z

Sensors 2020, 20, 2737 33 of 33

56. Verborgh, R.; Vander Sande, M.; Colpaert, P.; Coppens, S.; Mannens, E.; Van de Walle, R. Web-Scale
Querying through Linked Data Fragments. In Proceedings of the 7th Workshop on Linked Data on the Web,
Seoul, Korea, 8 April 2014.

57. Rojas Melendez, J.A.; Sedrakyan, G.; Colpaert, P.; Vander Sande, M.; Verborgh, R. Supporting sustainable
publishing and consuming of live Linked Time Series Streams. In Proceedings of the European Semantic
Web Conference, Heraklion, Greece, 3–7 June 2018; pp. 148–152.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Spatiotemporal Data Management
	Visual Exploratory Analysis on Smart City Data
	Big Data Frameworks for Smart Cities

	Explora: Interactive Exploration of Spatiotemporal Data through Continuous Aggregation
	Framework Requirements and Features
	Enabling Techniques
	Query Categorization
	Data Synopsis and Spatiotemporal Fragmentation

	The Explora Framework: Components and Architecture
	The Explora Framework: Formal Methods and Algorithms
	Data Ingestion: Continuous Computation of Data Synopsis Structures
	Query Processing: Historical-Spatial Queries
	Query Processing: Snapshot-Temporal Queries

	Prototype Implementation
	Application Scenario: The Bel-Air Project
	Target Use Cases for Visual Exploratory Applications on Spatiotemporal Data
	Visualizing the Temporal Change of an Observed Variable over a Certain Region
	Progressive Approximate Query Answering
	Dynamic Choropleth Map

	Proof-of-Concept Implementations of Explora
	Spatial Time-Series Database Approach
	Distributed Stream Processing Approach

	Experimental Evaluation
	Query Accuracy Metric
	Experimental Setup
	Results
	Continuous Views Storage Footprint
	Query Response Time for HS Queries without Time Predicate
	Query Response Time for HS Queries with Time Predicate
	Query Response Time for ST Queries
	Query Accuracy on Continuous Views

	Conclusions
	References

