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Abstract

To characterize the genetic variation of alternative splicing, we develop GLiMMPS, a robust statistical method for
detecting splicing quantitative trait loci (sQTLs) from RNA-seq data. GLiMMPS takes into account the individual
variation in sequencing coverage and the noise prevalent in RNA-seq data. Analyses of simulated and real RNA-seq
datasets demonstrate that GLiMMPS outperforms competing statistical models. Quantitative RT-PCR tests of 26
randomly selected GLiMMPS sQTLs yielded a validation rate of 100%. As population-scale RNA-seq studies become
increasingly affordable and popular, GLiMMPS provides a useful tool for elucidating the genetic variation of
alternative splicing in humans and model organisms.
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Background
Alternative splicing (AS) is the process by which exons
from precursor mRNA transcripts are differentially
included during splicing, resulting in different mature
mRNA isoforms from a single gene locus [1]. AS is a
major contributor to the control of gene expression and
protein diversity. More than 90% of human genes are
alternatively spliced [2]. Changes in the relative ratio of
alternatively spliced isoforms of a single gene can have
significant phenotypic consequences and cause various
diseases [3,4].
The control of AS is mediated through extensive pro-

tein-RNA interactions involving cis regulatory elements
and trans acting factors [5]. Genetic polymorphisms that
alter cis splicing regulatory elements can result in differ-
ence of alternative splicing among human individuals
and subsequently affect gene expression or protein activ-
ity. Increasing evidence suggests that such natural varia-
tion of alternative splicing can influence complex traits
or modify disease risks [6]. For example, genetic variation
of alternative splicing in the sodium channel gene

SCN1A can influence the response to antiepileptic drugs
[7]. To date, most genome-wide surveys of alternative
splicing variation in human populations were carried out
on the HapMap lymphoblastoid B cell lines (LCLs),
whose genomic variants have been extensively character-
ized by the HapMap [8] and 1000 Genomes projects [9].
The first few studies utilized the Affymetrix exon array
with approximately 6 million exon-targeted probes
[10-12]. In these studies, the microarray probe intensities
of individual exons were compared to those of whole
genes to quantify exon inclusion levels and then associa-
tions with single-nucleotide polymorphisms (SNPs) were
tested to identify splicing Quantitative Trait Loci
(sQTLs). Another study used the same exon array plat-
form to characterize tissue-specific control of alternative
splicing in brain and peripheral blood mononuclear cell
samples [13]. These studies have shed light on the preva-
lence and functional importance of alternative splicing
variation in human populations. The development of the
high-throughput RNA sequencing (RNA-seq) technology
has provided a powerful alternative to splicing sensitive
microarray for exon level expression quantification.
RNA-seq has several advantages compared to microarray,
including a greater dynamic range of exon expression
levels, the ability to detect novel transcripts not probed
on the array, the ability to better quantify exon inclusion

* Correspondence: yxing@ucla.edu
1Department of Microbiology, Immunology, and Molecular Genetics,
University of California, Los Angeles, CHS 33-228, 650 Charles E. Young Drive
South, Los Angeles, CA 90095, USA
Full list of author information is available at the end of the article

Zhao et al. Genome Biology 2013, 14:R74
http://genomebiology.com/2013/14/7/R74

© 2013 Zhao et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

GLiMMPS: obust statistical model for regulatory

mailto:yxing@ucla.edu
http://creativecommons.org/licenses/by/2.0


n

levels, single nucleotide level resolution, and less con-
founding effects from polymorphisms on the target exons
[14,15]. Several studies have used the RNA-seq technol-
ogy to characterize transcriptome variation in HapMap
LCLs at the whole-gene and/or individual exon level.
Pickrell et al. and Montgomery et al. used low-coverage
(4-25 million short reads per individual) single-end and
paired-end RNA-seq to characterize gene expression and
splicing in LCLs derived from 69 Nigerian [16] and 60
CEU (Utah residents of European descent from CEPH-
Centre d’Etude du Polymporphisme Humain) [17] indivi-
duals. Cheung et al. independently generated an RNA-
seq dataset on 41 CEU individuals at a deeper coverage
of 28.4-66 million single-end reads per individual,
although the authors restricted their data analysis to
expression QTLs [18].
Despite the novel findings in these pioneering RNA-seq

studies, the statistical models applied for sQTL detection
were simple linear regression models (lm) and did not
model all the relevant information contained in the com-
plex RNA-seq data. Montgomery et al. used the exon read
counts as the phenotype and carried out spearman corre-
lation analysis with the genotypes [17], while Pickrell et al.
used the percentage of the exon read counts over total
gene read counts as the quantitative trait and carried out
linear regression over genotypes [16]. Neither approach
directly estimated the percent inclusion levels of target
exons. Moreover, by treating the exon expression mea-
surement as a point estimate, neither approach considered
the variability of RNA-seq read count that strongly affects
the uncertainties in estimates of exon splicing activities
[14]. Here we report a novel method GLiMMPS (General-
ized Linear Mixed Model Prediction of sQTL) for robust
detection of sQTLs from RNA-seq data. The GLiMMPS
model takes into account the individual variation of exon-
specific read coverage as well as the prevalent overdisper-
sion of simple statistical models when applied to RNA-seq
data [19,20]. Importantly, GLiMMPS uses the reads infor-
mation from both exon inclusion and skipping isoforms to
model the estimation uncertainty of exon inclusion level,
instead of treating the exon inclusion level as a point esti-
mate in sQTL analysis (see Materials and methods and
Figure 1 for details). Using both simulated and real RNA-
seq datasets, we demonstrate that GLiMMPS outperforms
competing statistical models (linear model and generalized
linear model), and identifies sQTLs at a low false positive
rate as indicated by extensive RT-PCR tests.

Results
AS in the human population measured from RNA-seq
data
We obtained the RNA-seq data from two published
studies on the CEU population (of European ancestry)
by Cheung et al. [18] and Montgomery et al. [17].

Cheung et al. generated 28.4-66 million 50 bp single-
end reads per individual on 41 CEU samples, while
Montgomery et al. generated 3.5-17.1 million 37 bp
paired-end reads per individual on 60 CEU samples.
Twenty-nine individuals were shared between the two
datasets. Because of the higher sequencing depth in the
Cheung et al. dataset, the analysis in this manuscript
was primarily conducted on the Cheung et al. data
(referred to hereafter as the CEU dataset). We also used
the low-coverage Montgomery et al. data (referred to
hereafter as the CEU2 dataset) to evaluate the concor-
dance of results between the two CEU sample datasets.
The RNA-seq reads were mapped to the human gen-

ome (hg19) and transcriptome (Ensembl gene annota-
tion r65) using the software Tophat [21]. To estimate
the exon inclusion level (denoted as ψ for PSI, that is
Percent Spliced In) from RNA-seq data, we used
sequence reads mapped to splice junctions compiled
from both the splice junctions in Ensembl gene annota-
tions as well as the novel junctions found by Tophat.
Based on the AS patterns, we classified the AS events
into four categories (Figure S1 in Additional file 1):
skipped exon (SE), alternative 5’ splice site (A5SS), alter-
native 3’ splice site (A3SS), and mutually exclusive
exons (MXE). Using all splice junction reads, we can
obtain a point estimate of the exon inclusion level (ψ̂).
We illustrate the estimate of ψ in our model using the
SE event as the example (Figure 1a). Suppose IJ and SJ
represent read counts of inclusion and skipping splice
junctions, respectively, because IJ can come from both
the upstream junction and the downstream junction, we
treat the effective read count from the exon inclusion
isoform y = IJ/2 and the effective read count from the
exon skipping isoform as SJ. Given an observed total
junction read count of = IJ/2+SJ , the point estimate
of ψ̂ = y/n. The median and coefficient of variation (CV)

of ψ̂ of skipped exons from CEU and CEU2 (with
|�ψ | ≥ 0.1 within each of the two populations, see
Materials and methods) are highly correlated with a
Pearson correlation coefficient of 0.99 and 0.90, respec-
tively, suggesting that the point estimate of ψ̂ provides a
reasonable approximation to the exon inclusion level.
However, we also noted that the total counts of splice
junction reads for the same alternatively spliced exon
typically vary substantially across different individuals
(Figure S2 in Additional file 1), possibly due to the
intrinsic randomness of RNA-seq technology as well as
individual variation in gene expression levels. Such
variability of read depth is expected to differentially
affect the reliability of ψ̂ estimates across individuals.
This motivated us to develop an improved statistical
model that explicitly considers the variation of RNA-seq
read depth across individuals.
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Statistical model and simulation study of GLiMMPS
We first attempted to handle the individual variation of
RNA-seq read depth by extending the previously used
linear model (lm) [16] to a generalized linear model
(glm) with a logit link function, which assumes the read
count from the exon inclusion isoform (y) follows a
binomial distribution y|ψ ∼ Binomial(n,ψ), and logit(ψ)
is linearly modeled by the SNP effect. This simple logis-
tic regression model assumes that ψ is correctly mod-
eled and thus: E(yi) = niψi, and Var(yi) = niψi(1 − ψi).
However, we found that overdispersion (inflation of var-
iance) is widespread in the experimental data (Supple-
mentary Methods in Additional file 1). For the top
sQTLs (Type I error <1% based on permutation) identi-
fied from glm in the CEU dataset, >90% sQTLs have sig-
nificant overdispersion (Figure S3 in Additional file 1).
To model the overdispersion, we developed GLiMMPS,

a generalized linear mixed model for detecting sQTLs.
To deal with the overdispersion in the generalized linear
model, we model the extra variance of ψ as a random
effect for each individual i in the regression model with

random effects, uij ∼ N(0, σ 2
uj) [22]. Let uij = σujzij, where

zij ∼ N(0, 1), bj denoting the fixed effect for SNP j, the
second level of the model can be written as:
ψi = logit−1(β0 + βjgij + σujzij). GLiMMPS is essentially a

hierarchical model that considers both the read depth
variation and the exon inclusion level variation within
the same genotype groups (Figure 1b). Details of the lm,

glm, and GLiMMPS models were described in Materials
and methods and Supplementary Methods in Additional
file 1.
We first conducted simulation studies to compare the

power and robustness of GLiMMPS to lm and glm. We
simulated splice junction read counts with various levels
of read depth, difference of exon inclusion levels among
genotype groups, and overdispersion mimicking the
parameter distributions in the CEU dataset (Figure S4 in
Additional file 1). We simulated 10,000 data points for
each read depth with mean total splice junction reads
ranging from 5 to 80. Data were simulated with 20%
data points having genotype effects as distributed from
the CEU dataset and the remaining 80% having no dif-
ference in exon inclusion levels among genotypes (see
details in Supplementary Methods in Additional file 1).
Note that the simulation data generated through this
procedure are not inherently biased towards any of the
statistical models tested. Using the 80% simulated data
points with no SNP effect under various read depth, we
evaluated the false positive rates (type I errors) at 5%
significance level. The false positive rates of GLiMMPS
and lm are always close to the nominal significance
level, while glm has a highly inflated false positive rate,
especially for data with large total splice junction reads
(Figure 2a). This confirms that it is essential to incorpo-
rate overdispersion in the hierarchical model to avoid
the inflation of P values. We also computed the receiver
operating characteristic (ROC) curves by combining all

Figure 1 Schematic outline of GLiMMPS. (a) RNA-seq reads mapped to splice junctions of alternatively spliced exons are used for estimating
exon inclusion levels ψ. Shown here is a schematic illustration using the skipped exon (SE) type of alternative splicing events as the example.
White, sQTL target exon; black and gray, flanking exons. The inclusion junction (IJ) reads consist of reads mapped to the upstream and
downstream splice junctions of the exon inclusion isoform, while the skipping junction (SJ) reads are reads mapped to the skipping splice
junction of the exon skipping isoform. (b) Illustration of the GLiMMPS statistical model. SNP genotype effect is modeled as fixed effect bj. The
overdispersion is modeled as individual level random effect uij.

Zhao et al. Genome Biology 2013, 14:R74
http://genomebiology.com/2013/14/7/R74

Page 3 of 15



the simulated data with or without SNP effects. The
ROC curves show that GLiMMPS outperforms the lm
and glm models (Figure 2b), especially in the most criti-
cal part of the ROC curve where the false positive rate
is low. The true positive rate of GLiMMPS is approxi-
mately 5% to 20% higher than those of lm and glm
when the false positive rate ranges from 0.01 to 0.1
(Figure 2b, inset). Furthermore, to model the non-
uniformity and bias in sequence-specific sequencing pre-
ferences in RNA-seq data, we performed an additional
simulation analysis. Specifically, for each exon inclusion
or skipping splice junction we rescaled the original
simulated count by a random scaling factor ranging
from 0.5 to 2, with 10% variation in the scaling factor for
the same splice junction across different individuals. We
observed no change in the performance of GLiMMPS as
compared to lm and glm (data not shown).

Performance of GLiMMPS in real human RNA-seq data
To further assess the performance of GLiMMPS, we ana-
lyzed the two human RNA-seq datasets on CEU LCL sam-
ples (CEU and CEU2) using the GLiMMPS, lm, and glm
models. As previous studies suggested that the signal
SNPs for most sQTLs are near the target exons [11,16],
we carried out sQTL analysis for all common SNPs
(minor allele frequency >0.05) within 200 kb from alterna-
tively spliced exons with a median of at least 5 total splice

junction reads in both CEU and CEU2 samples. We used
permutation to determine the null distribution of minimal
P values of SNPs near exons. Subsequently we applied the
false discovery rate (FDR) correction to establish a cutoff
P value corresponding to the FDR level of 0.1 (see details
in Supplementary Methods and Figure S5 in Additional
file 1). This yielded 140 unique AS events in 106 genes
with significant sQTL signals in the CEU dataset (Addi-
tional file 2). Because of the lower sequencing depth, there
were a smaller number (56) of significant sQTLs identified
by GLiMMPS in the CEU2 dataset. Nonetheless, the sig-
nificant sQTL signals identified by GLiMMPS are strongly
correlated between the two datasets (Figure 3a). Among
the 56 significant sQTLs (FDR ≤0.1) in CEU2, 39 (70%)
are also significant in CEU. Although there is a larger
proportion of significant sQTLs in CEU showing no signif-
icance in CEU2, it is most likely due to the lower sequen-
cing depth in CEU2. To quantitatively compare the
relative rankings of sQTLs identified by different models
(GLiMMPS, lm, and glm) in CEU and CEU2, we calcu-
lated the proportion of sQTL exons among the top n most
significant in CEU that were also among the top n in
CEU2 (n ranges between 20 and 160). Compared to lm
and glm, GLiMMPS produces a much higher concordance
of rankings between the two datasets, especially for the
top 60 sQTLs which correspond to approximately 10%
FDR in the CEU2 dataset (Figure 3b).

Figure 2 Performance evaluation of different statistical models using simulated data. (a) The observed false positive rate at the
significance level of 0.05 for the linear model (lm), generalized linear model (glm), and GLiMMPS. Data were simulated with different sequencing
depth with mean total junction reads ranging from 5 to 80, as described in Supplementary Methods in Additional file 1. (b) Receiver operating
characteristic (ROC) curve analysis demonstrates that GLiMMPS outperforms the lm and glm models. The ROC curve plots the fraction of true
positives called correctly and the fraction of false positives called incorrectly using P-values from each model. The zoomed-in figure shows the
part of the ROC curve where the false positive rate is in the range of (0, 0.2).
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To experimentally assess the robustness of GLiMMPS
predictions, we randomly selected 24 SE (skipped exon)
type and 2 A5SS (alternative 5’ splice site) type of
sQTLs out of the 140 significant sQTLs detected in the
CEU dataset and performed RT-PCR validation using
quantitative fluorescent RT-PCR (Materials and meth-
ods). For the validation experiments, we used an inde-
pendent panel of 86 HapMap LCLs covering diverse
worldwide populations (Additional file 3). All 26 sQTLs
were validated, yielding a validation rate of 100% (Addi-
tional file 4; Figure S6 in Additional file 1). In eight indi-
viduals analyzed by both RNA-seq and RT-PCR, the
exon inclusion levels estimated by RNA-seq were highly
correlated with RT-PCR measurements (Pearson corre-
lation coefficient r = 0.87). It is noteworthy to mention
that these 26 selected sQTLs have a wide range of
P value rankings among the 140 significant sQTLs, as
opposed to being selected from the top of the significant
sQTL list. The interquartile range of their rankings is 38
to 95. This suggests that the vast majority of the sQTLs
identified by GLiMMPS represent true signals of spli-
cing variation in human populations.

GLiMMPS reveals positional features of sQTLs
Next we examined the positional distribution of SNPs
associated with significant sQTL signals in the CEU

dataset. It should be noted that the genotype informa-
tion for the CEU dataset came from both HapMap and
1000 Genomes project data, thus they capture the
vast majority of common SNPs in the human genome.
Consistent with previous sQTL studies using arrays and
lower-density HapMap SNPs [11,12], sQTL signal SNPs
with a GLiMMPS P value ≤3.70E-06 (corresponding to
FDR ≤0.1) are centered around the splice sites (SS) of
target exons. A local examination of the SNP positions
for the 140 significant GLiMMPS sQTLs indicates that
the precise locations of these SNPs are strongly corre-
lated with their potential impacts on splicing. As we
increased the stringency of the P value cutoff for signifi-
cant sQTLs, we observed a steady increase of the pro-
portion of sQTLs with at least one significant signal SNP
within 300 bp of the splice sites (Figure 4a). The turning
point is around FDR = 0.1, where only around 20% of
sQTLs have no significant signal SNPs discovered within
300 bp of the splice sites. To further evaluate the correla-
tion between SNP positions and potential impacts on
splicing, we classified all cis SNPs within 200 kb of the
sQTL exons into five categories according to the SNP
location relative to the splice site, where 5’ SS represent
the nine bases of the 5’ splice site including six bases in
intron and three bases in exon, and 3’ SS represent the
23 bases of the 3’ splice site including 20 bases in intron

Figure 3 Concordance of sQTLs in two RNA-seq datasets of the Caucasian (CEU) population as obtained by different statistical
models. (a) Comparison of GLiMMPS P values for the most significant SNP of each alternatively spliced exon in the CEU and CEU2 datasets.
X-axis shows the -log10(P value) in CEU. Y-axis shows the -log10(P value) in CEU2. Red lines show the FDR cutoff of 10%. (b) Concordance of
sQTL rankings between CEU and CEU2 based on different statistical models. The x-axis represents the number of top n ranked sQTLs in each
dataset, while the y-axis represents the percentage of sQTLs in common between the two datasets among the top n sQTLs in CEU, based on
P value rankings calculated by the linear model (lm), generalized linear model (glm), and GLiMMPS.
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and three bases in exon [23]. We observed a striking dif-
ference in the distribution of sQTL P values for cis SNPs
located in different regions (Figure 4b). Specifically, cis
SNPs located within the 5’ SS have the smallest overall
P values, followed by SNPs within the 3’ SS and exons,
and intronic SNPs within 300 bp of the splice sites. SNPs
located in the distal intronic regions (>300 bp from the
splice sites) have the biggest overall sQTL P values, sug-
gesting that they are least likely to affect splicing. This
trend is consistent with the observation by Pickrell et al.
showing the enrichment of sQTL signal SNPs in splice
sites [16], but with a finer classification of SNP locations.
To definitively identify causal SNPs underlying signifi-

cant sQTLs, we tested the effects of individual SNPs on
splicing using minigene reporter assays. It should be noted
that since multiple SNPs can be in high linkage disequili-
brium (LD) with each other, an sQTL signal SNP with
high association to exon splicing may not necessarily be
the causal SNP that affects splicing regulation. In fact, the
140 significant sQTLs (FDR ≤0.1) have on average 63 sig-
nificant SNPs. Of the 26 RT-PCR validated sQTLs, the
causal SNPs in four genes (CAST, DHRS1, HMSD, and
ATP5SL) were confirmed previously in work by us [24]
and others [11]. The causal SNPs in CAST, DHRS1, and
HMSD are located in the 5’ SS [24], while the causal SNP
in ATP5SL is located in the exon and disrupts two putative
exonic splicing enhancers [11]. For the remaining RT-PCR
confirmed sQTLs, we randomly selected 14 for minigene

experiments. Briefly, the target exon and 350-500 bp of
surrounding intronic sequences on each side of the exon
were sub-cloned into the minigene expression vector and
site-directed mutagenesis was carried out to generate the
alternative alleles. After transiently transfecting these plas-
mids into HEK293 cells, we performed quantitative RT-
PCR analysis of wild-type and mutant minigene reporters
to determine the effect of the SNPs on exon inclusion
levels (see details in Materials and methods). In 10 of the
14 exons analyzed (NTPCR, KIAA1841, SP140, ITM2C,
PARP15, PTK2B, BCL2A1, SHMT1, ITPA, and ARFGAP3),
the minigene experiments identified at least one SNP that
caused >10% change of the minigene exon inclusion levels,
with the direction of change matching the RNA-seq/RT-
PCR data (Figure S7 in Additional file 1). These include
two exons where we found multiple SNPs with additive
effects on splicing within one LD block (KIAA1841) or
multiple LD blocks (ITPA). In another two exons (PPIL3
and NCAPG2), the minigene experiments failed to identify
any SNP with strong effect on splicing. For PPIL3, the
SNP rs111292412 in the 3’ SS affected splicing of the mini-
gene reporter in the same direction as in the RNA-seq
data, but the change was minor (from 9% in AA to 5% in
GG). In NCAPG2, the closest sQTL SNP was an intronic
SNP 347 bp away from the splice sites, and it did not have
any measurable impact on the splicing of the minigene
reporter. It is possible that another proximal or distal SNP
or indel not genotyped yet is responsible for this sQTL

Figure 4 Positional distribution of sQTL SNPs. (a) The fraction of sQTL exons with significant SNPs within 300 bp of the splice sites as a
function of the P value cutoffs for significant sQTLs. X-axis is the -log10(P value) for cutoffs to define significant sQTLs. Y-axis is the fraction of
sQTL exons with any SNP called significant within 300 bp of the splice sites. (b) The boxplot of GLiMMPS P values for all SNPs around the 140
significant sQTLs (FDR ≤0.1), grouped into five categories based on the positions of SNPs with respect to the splice sites.
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signal. Finally, in the last two exons analyzed (CLEC2D
and MX1), the minigene exon inclusion levels were close
to 100% for all alleles, suggesting that the cloned minigene
reporters transfected to the HEK293 cells did not faithfully
recapitulate endogenous exon splicing activities in the
LCLs. Taken together, despite the inherent limitations of
minigene reporter systems [25], we were able to use mini-
gene experiments to identify the causal SNPs underlying
10 of the 14 sQTL signals analyzed. In all 10 exons, the
causal SNPs confirmed by minigene analysis were located
proximal to the alternatively spliced exons (that is, within
300 bp of the splice sites).

sQTLs explain GWAS signals of human traits and diseases
A powerful application for characterizing human tran-
scriptome variation such as eQTLs and sQTLs is to inter-
pret signals from GWAS studies [26-28]. Although
GWAS have had great success in identifying numerous
disease susceptibility loci, the peak signal SNPs identified
by GWAS provided little information about the underly-
ing causal variants or the molecular mechanisms respon-
sible for the observed association [29]. Compelling
evidence indicates that a large fraction of the underlying
causal variants affect phenotypes via non-coding (for
example, influencing gene regulatory processes such as
transcription and RNA processing) as opposed to coding
(direct amino acid changes) mechanisms [30,31]. The
important role of alternative splicing in shaping the
human transcriptome diversity suggests sQTL SNPs may
represent the causal variants underlying many observed
GWAS signals. Indeed, previous studies of alternative
splicing variation using RT-PCR, array, and sequencing
based technologies have identified candidate sQTLs
linked to GWAS signals [11-13,32-36]. We investigated
all significant sQTL SNPs (GLiMMPS FDR ≤0.1) in high
(r2 >0.8) linkage disequilibrium (LD) with GWAS signal
SNPs listed in the Catalog of Published Genome-Wide
Association Studies [37] (see Materials and methods).
We identified 10 sQTLs strongly linked to GWAS SNPs
of human traits or diseases (Table 1). The list include
known splicing altering SNPs for CAST, ERAP2, and
ATP5SL, as well as novel findings with intriguing biologi-
cal and medical implications.
In a previous GWAS study, the SNP rs13160562 near

CAST was discovered to be significantly associated with
alcohol dependence [38]. However, no functional impli-
cation of this SNP was discussed in the original study.
Here, GLiMMPS identified this SNP as an sQTL signal
SNP in CAST. It is significantly associated with the spli-
cing of CAST exon 13 located 45 kb upstream of the
SNP position. It is also in an LD block (r2 = 0.53) with
another SNP rs7724759 located in the 5’ SS of exon 13,
which has been confirmed experimentally to alter the
splicing of this exon [11,24]. Thus, genetic variation of

alternative splicing is the likely causal mechanism
underlying the reported association of CAST and alcohol
dependence. In ERAP2, GLiMMPS identified SNP
rs2248374 as an sQTL signal SNP for exon 10. This
SNP disrupts the activity of the 5’ SS [11]. This sQTL
SNP is in high LD (r2 = 0.83) with a GWAS SNP
rs2549794, previously identified as significantly asso-
ciated with Crohn’s disease [39]. The skipping of this
alternatively spliced exon from ERAP2 introduces a pre-
mature stop codon, resulting in nonsense-mediated
decay of the exon skipping isoform and a dramatic
reduction of overall transcript levels, which subsequently
impacts antigen representation [40]. Haplotype analysis
of the sQTL SNP and its linked SNPs revealed evidence
of strong balancing selection during human evolution
[40], suggesting the functional and evolutionary impor-
tance of this sQTL. A third example is ATP5SL, identi-
fied as a GWAS locus associated with height in multiple
populations [41]. The peak signal SNP reported by
GWAS is rs17318596 but the mechanism of this SNP
was unclear in the original study. GLiMMPS identified a
significant sQTL for exon 5 of ATP5SL. The sQTL SNP
rs1043413 is strongly linked to the GWAS signal SNP
rs17318596 (r2 = 0.84) (Figure S8 in Additional file 1).
This sQTL SNP rs1043413 is located in exon 5 and dis-
rupts two exonic splicing enhancers (ESEs) [11]. Together,
these data indicate that even at a very modest sequencing
depth (28.4-66 million 50 bp single-end reads per indivi-
dual), GLiMMPS recovered previously reported associa-
tions between SNP and splicing that may contribute to
phenotypic variation in humans.
We also identified novel sQTL signals with interesting

functional and disease implications. For example, we
identified a novel sQTL signal in SP140 associated with
previously identified GWAS signals for chronic lympho-
cytic leukemia [42], multiple sclerosis [43], and Crohn’s
disease [39]. SP140 is a tissue-specific gene whose expres-
sion is restricted to lymphoid cells [44]. Its protein
domain structure suggests a role in chromatin-mediated
regulation of gene expression [45]. A previous GWAS
analysis of chronic lymphocytic leukemia identified a risk
SNP rs13397985 located in intron 1 of SP140. It was pro-
posed that this GWAS signal SNP affects SP140 gene
transcription [42], but a recent replication study indicates
that the association of this SNP to SP140 steady state
gene expression levels is only marginal (FDR = 0.157
after adjusting for multiple testing) [46]. It should be
noted that the difference in gene expression levels among
genotype groups is minor and marginal according to the
CEU RNA-seq data as well (P value = 0.07). On the other
hand, GLiMMPS found a novel significant sQTL signal
for exon 7 of SP140 (Figure 5a). The peak sQTL signal
SNP rs28445040 (GLiMMPS P value = 1.69E-14) located
in exon 7 is in high LD with the GWAS signal SNPs for
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chronic lymphocytic leukemia (rs13397985, r2 = 1), mul-
tiple sclerosis (rs10201872, r2 = 0.92), and Crohn’s dis-
ease (rs7423615, r2 = 1). The C to T mutation in
rs28445040 does not lead to any amino acid change.
However, according to RNA-seq data, the average exon
inclusion levels for the CC, CT, and TT genotypes were
96%, 77%, and 44%, respectively (Figure 5b). This trend
was robustly validated by RT-PCR experiments (Figure 5c).
Furthermore, minigene assays confirmed the causal role
of rs28445040 in regulating the splicing of SP140 exon 7
(Figure S7 in Additional file 1). Collectively, these data
strongly suggest that the SNP that alters the splicing of
SP140 exon 7 is the causal genetic variant responsible for
the reported associations with these diseases. The skipping
of exon 7 causes an in-frame deletion of a 26 amino acid
peptide segment from the SP140 protein product. Interest-
ingly, this peptide segment is located within an intrinsically
disordered region as predicted by IUPred [47]. Intrinsically
disordered regions are enriched for sites of post-transla-
tional modifications and protein-protein interactions, and
two recent studies [48,49] show that alternative splicing of
exons encoding disordered protein sequences frequently
rewires protein-protein interaction networks in the pro-
teome. In the future, it will be interesting to determine
how alternative splicing of SP140 exon 7 regulates SP140

protein functions and influences downstream cellular
phenotypes.
The identification of sQTLs can also help resolve appar-

ent confusions about the causal mechanisms of GWAS
signals. For example, the SNP rs11697186 located in gene
DDRGK1 near the ITPA gene (Inosine Triphosphate Pyro-
phosphohydrolase) was significantly associated with
response to hepatitis C treatment in a GWAS study, and
later was found to be in high LD with SNP rs1127354 on
ITPA exon 2 by fine mapping [50]. Of note, this C-to-A
SNP (rs1127354) on exon 2 has been well established in
the pharmacogenetics field to be associated with ITPA
enzyme deficiency or low-activity [51,52], but the molecu-
lar mechanism was unclear. This non-synonymous SNP
causes a proline to threonine change (P32T) in the IPTA
protein product. However, based on the crystal structure
of the human ITPA protein, the proline residue was far
away from the active site of the enzyme [53]. Moreover,
recent biochemical studies of ITPA showed that the puri-
fied mutant protein with the P32T change has the same
activity as the wild-type protein [54]. Others have pro-
posed the alternative mechanism that this exon 2 SNP
causes mis-splicing of ITPA [55], but the properties of
the gene product resulting from mis-splicing have not
been examined. Our analysis of the CEU RNA-seq data

Table 1 The list of sQTL signals linked to GWAS signals.

Gene AS
typea

Target exonb (hg19) sQTL
SNPc

SNP type GWAS trait (SNP) GWAS
references

ACADM SE +chr1:76194085-76194173 rs7524467 < = 300
bp

Metabolic traits (rs211718) [78]

DRAM2 SE -chr1:111682122-
111682288

rs3762374 5’ SS Liver enzyme levels (gamma-glutamyl transferase)
(rs1335645)

[79]

SP140 SE +chr2:231110577-
231110655

rs28445040 Exon Chronic lymphocytic leukemia (rs13397985) [42]

Multiple sclerosis (rs10201872) [43]

Crohn’s disease (rs7423615) [39]

CAST SE +chr5:96076448-96076487 rs7724759 5’ SS Alcohol dependence (rs13160562) [38]

ERAP2 A5SSd +chr5:96235824-96235949 rs2248374 5’ SS Crohn’s disease (rs2549794) [39]

Ankylosing spondylitis (rs30187) [80]

MRPL11 A5SSd -chr11:66206102-66206319 rs11110 Exon Bipolar disorder (rs2242663) [81]

ARL6IP4 A3SSe +chr12:123466117-
123466426

rs55742290 3’ SS Platelet counts (rs7296418, rs1727307) [82]

ULK3 MXEf -chr15:75130091-75130139 rs12898397 5’ SS Coffee consumption (rs6495122) [83]

Coronary heart disease (rs2472299) [84]

ATP5SL SE -chr19:41939176-41939339 rs1043413 Exon Height (rs17318596) [41]

ITPA SE +chr20:3193814-3193872 rs1127354 Exon Response to hepatitis C treatment (rs11697186,
rs6139030)

[50]

Ribavirin-induced anemia (rs1127354) [85]
aAS type: SE, skipped exon; A5SS, alternative 5’ splice site; A3SS, alternative 3’ splice site; MXE, mutually exclusive exons.
bExon coordinates are in hg19 with the start position 0 based and the end position 1 based. The direction (+/-) of transcription is denoted before the
coordinates.
cThe significant sQTL SNP (FDR≤0.1) closest to the target exon. SNP position and P value from GLiMMPS can be found in Additional file 2.
dAlternative 5’ SS: ERAP2, chr5:96235893; MRPL11, chr11:66206180.
eAlternative 3’ SS: ARL6IP4, chr12:123466141.
fMutually exclusive alternative exon: ULK3, chr15:75130492-75130533.
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identified the same ITPA exon 2 SNP as a significant
sQTL signal SNP (P value = 5.80E-09) associated with the
combined skipping of exons 2 and 3. This prediction is
robustly validated by RT-PCR (Figure S9 in Additional
file 1). Minigene experiments further confirmed that
this exonic SNP as well as an adjacent intronic SNP
(rs7270101) both reduced the inclusion levels of exons 2
and 3 (Figure S7 in Additional file 1). These results rein-
force the proposed effect of this ITPA SNP at the RNA
level [55], and suggest that future studies on the causal
mechanism of this ITPA gene variant should compare the
activities of the full-length protein isoform to the trun-
cated isoform that lacks exons 2 and 3.

Discussion
We have developed GLiMMPS, a generalized linear
mixed model to detect genotype-splicing associations
from RNA-seq data. The key advantage of GLiMMPS
over previously used methods is that it models: (1) var-
iation in exon-specific read coverage across individuals;
and (2) overdispersion in RNA-seq read counts. Both
issues are important for accurate exon-level expression
quantitation. The coverage of RNA-seq reads for any
given alternative exon is a critical factor for the preci-
sion of the exon inclusion level estimate [14,56].

The importance of accounting for overdispersion in
RNA-seq data analysis has also been well recognized
[57]. Methods based on the negative binomial model
[58,59] or the generalized linear model with Cox-Reid
dispersion estimators [19,20] have been developed for
modeling dispersion in detecting differential gene or
exon expression between biological states. Here in the
sQTLs analysis, by modeling these two levels of varia-
tion in RNA-seq read counts, GLiMMPS achieves super-
ior performance over competing statistical models, as
demonstrated by analyses of simulated and real RNA-
seq data. Importantly, even at a low coverage we
observed a high level of concordance in the GLiMMPS
results between the two human datasets (CEU and
CEU2). Additionally, RT-PCR tests of 26 randomly
selected significant sQTLs yielded a validation rate of
100%. Together, these results demonstrate that
GLiMMPS is a robust and improved method to detect
sQTLs from RNA-seq data.
Fine-scale analysis of sQTLs reveals positional features

of SNPs that alter exon splicing. We found that the
location of the SNPs is strongly correlated with potential
impact on splicing (Figure 4b). Specifically, SNPs located
within the 5’ and 3’ splice sites have the smallest (most
significant) overall GLiMMPS P values, consistent with

Figure 5 An example of sQTL signal overlapping with GWAS signal near gene SP140. (a) The distribution of GLiMMPS P values around the
sQTL exon (exon 7) in gene SP140. The black horizontal dashed line reflects the 10% FDR cutoff and red vertical lines mark the location of the
sQTL exon. SNPs in linkage disequilibrium (r2 >0.8 in the CEU population) with the GWAS SNPs (blue asterisks) are shown in solid black dots,
while other SNPs are shown in grey circles. The causal splicing SNP in exon 7 is shown in red triangle. Exon-intron structure is shown in the
bottom with GWAS SNPs and the causal splicing SNP (rs28445040) marked at corresponding locations. (b) Boxplot showing the significant
association of rs28445040 with exon inclusion level (ψ) of the SP140 exon 7 estimated by the CEU RNA-seq dataset. The size of each dot is
scaled by the total number of splice junction reads for that individual. (c) The same boxplot using exon inclusion level (ψ) measured by
quantitative RT-PCR.
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the importance of the splice sites in exon recognition
during pre-mRNA splicing. Interestingly, the significance
level of sQTLs is positively correlated with the proximity
of the sQTL signal SNPs to target exons. As we
increased the significance level cutoff for sQTLs, we
observed a progressive increase of the proportion of
sQTLs with at least one significant signal SNP within
300 bp of the splice sites (Figure 4a). The causal roles of
these proximal sQTL SNPs on exon splicing were
further confirmed by minigene splicing reporter assays.
Collectively, these results support the hypothesis that
the majority of cis regulatory information controlling
alternative splicing is encoded in close proximity (for
example, within 300 bp) of the target exons, consistent
with a recent analysis of the mammalian splicing code
[60]. Nonetheless, it should also be noted that 20% of the
significant sQTLs (FDR ≤0.1) lack any significant signal
SNP within 300 bp of the splice sites, including sQTLs
confirmed experimentally by RT-PCR (in NCAPG2 and
PIGQ, see Figure S6 in Additional file 1). For such
sQTLs, it is possible that the causal SNPs are indeed
proximal, but are missing from current SNP annotations
or fail to reach the significance level cutoff due to small
sample size. Alternatively, we cannot rule out the possibi-
lity that a small fraction of sQTLs are indeed due to
SNPs disrupting distal splicing regulatory elements, given
that the physical binding sites of splicing factors on the
pre-mRNA can be located deep into the introns [61]. In
the future, it would be interesting to confirm the identity
and elucidate the regulatory mechanisms of causal sQTL
SNPs acting in introns distal to target exons.
The detection of sQTLs is useful for interpreting sig-

nals from GWAS studies. Despite the success of GWAS
in revealing the genetic basis of complex traits and
diseases, elucidating the mechanistic implications of
GWAS findings remains a major challenge [29]. As
many functional SNPs may affect gene expression and
regulation instead of the final protein sequence, inte-
grating transcriptome information with GWAS signals
has proven to be an effective approach for pinpointing
the functional causal variants underlying GWAS signals
[62-64]. Here, from the CEU RNA-seq dataset we iden-
tified 140 unique sQTLs, including 10 significantly
linked to previously identified GWAS signals (Table 1).
This is probably only scratching the surface of trait-
associated sQTLs, due to the low sequencing depth
(28.4-66 million single-end reads per individual) and the
small sample size (41 individuals). We anticipate that
with more and deeper RNA-seq data generated for
diverse human tissues and cell types, the catalog of
sQTLs linked to phenotypic traits and diseases will
rapidly expand in the near future.
The GLiMMPS framework provides the basis for sev-

eral aspects of future extensions. Currently, GLiMMPS

uses reads mapped to splice junctions to estimate exon
inclusion levels. This is a commonly used approach in
alternative splicing quantitation from RNA-seq data
[56,65,66]. However, with proper normalization for
lengths of isoform-specific segments, it is feasible to also
incorporate reads mapped within the exons, which may
further improve the power in detecting sQTLs. This
could be particularly useful for strand-specific RNA-seq,
where the origins of exon body reads can be unambigu-
ously assigned to sense or antisense transcripts. Addi-
tionally, in paired-end RNA-seq data with tight
distribution of insert size, reads that map to flanking
constitutive exons can also provide useful information
about the exon inclusion level [14]. Furthermore, RNA-
seq reads often display non-uniform distribution along
mRNA transcripts due to sequence-specific bias in RNA
sequencing, and several methods have been developed
to model and correct for such biases [67-70]. In princi-
ple, we can use a suitable bias correction method to
adjust the raw RNA-seq read counts, prior to analysis
by GLiMMPS. However, we tested two well-known bias
correction methods [67,68] using a deep RNA-seq data-
set with matching quantitative RT-PCR data for over
100 exons in two cell lines [66,71], but did not observe
improvement in the RNA-seq estimates of exon inclu-
sion level as judged by the correlation of RNA-seq esti-
mates with the RT-PCR measurements. Another area of
improvement is to consider the potential impact of spe-
cific SNPs on exon splicing as the prior in the statistical
model, an idea previously used for detecting expression
QTLs [72-74]. For example, our results show a signifi-
cant association between the SNP position and the
potential impact on splicing (Figure 4), with SNPs
located in the 5’ and 3’ splice sites most likely to influ-
ence exon splicing. It is possible to incorporate such
positional information or more advanced predictive
models of exon splicing [60] as the prior information to
guide the detection of sQTLs.

Conclusions
RNA-seq has become a powerful and increasingly
affordable technology for population-scale analysis of
transcriptome variation. Here we report GLiMMPS, a
robust statistical method for detecting splicing quantita-
tive trait loci (sQTLs) from RNA-seq data. GLiMMPS is
applicable to all major patterns of alternative splicing
events. The GLiMMPS source code and user manual are
freely available for download at [75]. As the cost of
high-throughput sequencing continues to decline, we
anticipate that combined sequencing of genomes and
transcriptomes will become a popular design in large-
scale studies of traits and diseases. GLiMMPS provides a
useful tool for genome-wide identification of sQTLs
from population-scale RNA-seq datasets.
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Materials and methods
RNA-seq datasets
We downloaded the RNA-seq datasets produced by [18]
and [17]. Both datasets came from the lymphoblastoid B
cell lines from the Caucasian (CEU) population in the
HapMap project [8]. There were 28.4-66 million 50 bp
single end reads sequenced for 41 individuals by Cheung
et al., while there were only 3.5-17.1 million 37 bp
paired end reads for 60 individuals by Montgomery et
al. We denote the datasets from Cheung et al. and Mon-
tgomery et al. as CEU and CEU2, respectively. Because
the sequencing depth in CEU is much higher than in
CEU2, we focused our analysis on the CEU dataset, but
also carried out comparison between CEU and CEU2.
RNA-seq sequence reads were mapped to the reference
human genome (hg19) using Tophat [21] with Ensembl
gene annotations (Ensembl genes r65). The CEU and
CEU2 datasets were mapped with the single end or the
paired end mode respectively. Only uniquely mapped
reads were retained for downstream analysis.
To search for sQTLs, we first identified all alternative

splicing events and RNA-seq reads mapped to splice
junctions using the MATS pipeline as described pre-
viously [66]. We then focused our analysis on four types
of alternative splicing events: skipped exon (SE), alterna-
tive 5’ splice site (A5SS), alternative 3’ splice site (A3SS),
and mutually exclusive exons (MXE). Using splice junc-
tion reads, we can obtain a point estimate of the exon
inclusion level (ψ). Given that we have an observed
number of splice junction reads for one isoform (y) and
total splice junction read counts (n), then ψ = y/n (see
Figure S1 in Additional file 1). We then filtered out
exons with no or little change in exon inclusion level
(|�ψ | < 0.1) or few total junction read counts (median
n <5) in the population, and obtained 18,267 AS events
from CEU and 7,747 AS events from CEU2 for the
downstream sQTL analysis.

Genotype data
The genotype data for the 41 individuals in the CEU
dataset were taken from the latest HapMap3 release
(#28). Of these 41 individuals, 23 were also genotyped
in the 1000 Genomes project [9]. For SNPs uniquely
reported by the 1000 Genomes project, we imputed the
genotypes for individuals not in the 1000 Genomes pro-
ject using Beagle [76]. We filtered out low frequency
SNPs with MAF (minor allele frequency) <0.05. For
each alternatively spliced exon, we tested cis SNPs
within 200 kb upstream or downstream of the target
exon splice sites when searching for sQTLs. For the
CEU2 dataset, the 60 individuals were all included in
the 1000 Genomes project. Fifty-eight of them were
sequenced in low coverage and two were in high

coverage. To avoid genotype calling bias, we only
included the 58 low-coverage individuals with genotypes
taken directly from the 1000 Genomes project data (10/
2010 release). The same MAF filtering was used as in
the CEU dataset.

Statistical models for sQTL analysis
All statistical analyses were done in the R statistical
environment [77]. We evaluated three different models
for sQTL analysis: linear model (lm), generalized linear
model (glm), and our proposed generalized linear mixed
model (GLiMMPS). The model details were provided in
Supplementary Methods in Additional file 1. Here we
only briefly describe the GLIMMPS model. GLiMMPS
is a hierarchical model that uses the reads information
from both exon inclusion and skipping isoforms instead
of only a point estimate of exon inclusion level (as
in the lm model used in [16,17]) in sQTL analysis.
Given the observed junction read counts as in Figure S1
in Additional file 1 we assume that these junction reads
supporting two alternative isoforms follow a binomial
distribution: yi|ψi ∼ Binomial(ni,ψi). To deal with the
overdispersion in the generalized linear model, we model
the extra variance of ψ as a random effect for each indivi-
dual i in the regression model with random effects,
uij ∼ N(0, σ 2

uj) [22]. Let uij = σujzij, where zij ∼ N(0, 1), bj
denoting the fixed effect for SNP j, the second level of the
model can be written as: ψi = logit−1(β0 + βjgij + σujzij).
Thus the joint likelihood for b, σuj is given by:

L(β , σuj) =
m∏

i=1

(
ni

yi

) ∫
exp

{
(β0 + βjgij + σujzij)

}yi

[
1 + exp

{
(β0 + βjgij + σujzij)

}]ni
N(zij)dzij

where N(·) is the standard normal density. Function
glmer() from R package lme4 was used to fit the model,
where Laplace approximation is used for the parameter
estimations and a likelihood ratio test was used to
obtain the P values for the fixed effect bj for each SNP j.
For both the CEU and CEU2 datasets, using each of

the statistical models (lm, glm, and GLiMMPS) men-
tioned above, we carried out the analysis for each exon
with SNPs within 200 kb of the exon. To estimate the
false discovery rate, we used the same permutation
approach as in [16] to obtain the null distribution of the
P values. The details are in Supplementary Methods in
Additional file 1.

RT-PCR validation
To validate the sQTLs found in the CEU datasets, we
randomly selected 26 significant sQTL exons (FDR ≤0.1)
for RT-PCR validation. We performed the validation
experiments on an independent panel of 86 lymphoblas-
toid cell lines from the HapMap3 project (Additional
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file 3), which were purchased from the Coriell Institute
for Medical Research, Camden, NJ, USA. Total RNA
was extracted using TRIzol (Invitrogen, Carlsbad, CA,
USA) and reverse transcribed by the High-Capacity
cDNA Reverse Transcription Kit (Applied Biosystems,
Foster City, CA, USA). Fluorescently labeled RT-PCR
was carried out as described before [24]. Capillary elec-
trophoresis (Georgia Genomics Facility, Athens, GA,
USA) and 5% Urea TBE-PAGE were used for resolving
PCR products. In capillary electrophoresis, band peak
area was generated by GeneMapper 4.0 software
(Applied Biosystems, Carlsbad, CA, USA). In 5% Urea
PAGE, the signal was captured by Fujifilm FLA-7000
(Fuji Photo Film Co. Ltd., Tokyo, Japan) and quantified
using the ImageQuant TL7.0 software (General Electric
Company, Waukesha, WI, USA). Final exon inclusion
level was calculated as the peak area or band intensity
of the exon inclusion band(s) divided by the total peak
areas or band intensities of all bands. To test the asso-
ciation of genotypes with the RT-PCR estimated exon
inclusion levels, we used the most significant HapMap3
sQTL SNP for each target exon. A linear regression on
the estimated exon inclusion levels with the SNP geno-
types of the SNP was used to calculate P values and
those with P value <0.05 were called as validated. All
RT-PCR primer sequences are listed in Additional file 4
and individual exon inclusion levels are listed in Addi-
tional file 5.

Minigene analysis
We used the hybrid construct pI-11-H3 (provided by
Dr. Russ P. Carstens, University of Pennsylvania, Phila-
delphia, PA, USA) for our minigene splicing reporter
assays. Genomic DNAs were extracted from LCLs using
UltraClean™ Tissue&Cells DNA Isolation kit (MO BIO
Laboratories, Carlsbad, CA, USA). The target exon and
its flanking 350-500 bp intronic regions were amplified
by PCR (see Additional file 6 for the primer sequences).
In-Fusion™ Advantage PCR Cloning Kit (Clontech,
Mountain View, CA, USA) or restriction enzyme diges-
tion and ligation strategy were used to clone PCR pro-
ducts into the vector. Site-directed mutagenesis was
carried out following the manufacturer’s instructions.
The integrity of all constructs was confirmed by sequen-
cing. To test minigene splicing, plasmids were transiently
transfected into HEK293 cells. Fluorescently labeled RT-
PCR was performed to evaluate the splicing impact of
specific polymorphisms as described before [24].

GWAS signals
We obtained 7,523 GWAS SNPs at genome-wide signifi-
cance level of P value <10-5 from the Catalog of Pub-
lished Genome-Wide Association Studies (accessed 03/
30/2012) [37]. Using all the 1000 Genomes SNPs from

the CEU population, we obtained all SNPs that are in
high linkage disequilibrium with the GWAS SNPs (r2>0.8
in the CEU population and within 200 kb window of the
GWAS SNP). Because of the high SNP density and high
recombination rate around the MHC region, we excluded
genes from this region in this part of the analysis. We
then identified sQTL signal SNPs overlapped with this
expanded list of GWAS linked SNPs.

Data access and source code availability
The GLiMMPS model has been implemented and
released in an easy to use package. The splice junction
read counts, genotypes, and validation datasets, as well
as the source code used for sQTL processing and analy-
sis are provided at the companion website of this article
[75].

Additional material

Additional file 1: Supplementary Methods and Supplementary
Figures S1-S9.

Additional file 2: Supplementary table S1. sQTL exons (FDR ≤0.1) and
information of the most proximal sQTL SNPs.

Additional file 3: Supplementary table S2. HapMap3 samples used for
RT-PCR validation of sQTLs.

Additional file 4: Supplementary table S3. Primers and RT-PCR results
for validation of sQTLs.

Additional file 5: Supplementary table S4. The individual exon
inclusion levels for RT-PCR validation of sQTLs.

Additional file 6: Supplementary table S5. Primers used for
constructing minigene splicing reporters.
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