
Integrated Analysis of MATH-Based
Subtypes Reveals a Novel Screening
Strategy for Early-Stage Lung
Adenocarcinoma
Chang Li1†, Chen Tian1†, Yulan Zeng1, Jinyan Liang2, Qifan Yang1, Feifei Gu1, Yue Hu1* and
Li Liu1*

1Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
2Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,
China

Lung adenocarcinoma (LUAD) is a frequently diagnosed cancer type, and many patients
have already reached an advanced stage when diagnosed. Thus, it is crucial to develop a
novel and efficient approach to diagnose and classify lung adenocarcinoma at an early
stage. In our study, we combined in silico analysis and machine learning to develop a new
five-gene–based diagnosis strategy, which was further verified in independent cohorts and
in vitro experiments. Considering the heterogeneity in cancer, we used the MATH (mutant-
allele tumor heterogeneity) algorithm to divide patients with early-stage LUAD into two
groups (C1 and C2). Specifically, patients in C2 had lower intratumor heterogeneity and
higher abundance of immune cells (including B cell, CD4 T cell, CD8 T cell, macrophage,
dendritic cell, and neutrophil). In addition, patients in C2 had a higher likelihood of
immunotherapy response and overall survival advantage than patients in C1.
Combined drug sensitivity analysis (CTRP/PRISM/CMap/GDSC) revealed that BI-2536
might serve as a new therapeutic compound for patients in C1. In order to realize the
application value of our study, we constructed the classifier (to classify early-stage LUAD
patients into C1 or C2 groups) with multiple machine learning and bioinformatic analyses.
The 21-gene–based classification model showed high accuracy and strong generalization
ability, and it was verified in four independent validation cohorts. In summary, our research
provided a new strategy for clinicians to make a quick preliminary assisting diagnosis of
early-stage LUAD and make patient classification at the intratumor heterogeneity level. All
data, codes, and study processes have been deposited to Github and are available online.
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INTRODUCTION

Non–small cell lung cancer (NSCLC) is the most common variety of lung cancer, which is the leading
cause of cancer-related death worldwide (Bray et al., 2018; Duma et al., 2019). Lung adenocarcinoma
(LUAD) is the major histological type of NSCLC. According to previous studies, lung
adenocarcinoma is often heterogenous. Despite that great advance in the treatment of LUAD
has been made in the past few decades, the 5-years survival is still not satisfactory (Baba et al., 2012;
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Zappa andMousa, 2016; Shroff et al., 2018). Due to the mild early
symptoms, most patients have already reached an advanced stage
when diagnosed, and it results in poor long-term overall survival.
Thus, it is urgent to develop efficient biomarkers or signatures
that could be used in the diagnosis of LUAD. Meanwhile,
understanding the heterogeneity in early-stage lung
adenocarcinoma is critical to select and develop more effective
treatment.

Intratumor heterogeneity refers to the subclones of diverse
genetic background within a tumor, and it is increasingly
identified as a key factor in the treatment failure of human
cancers. With the rise of next-generation sequencing and
machine learning applications in oncology (Cho et al., 2020; Li
et al., 2021; Wang et al., 2021), computational approaches (such
as ABSOLUTE) were developed to quantify intratumor
heterogeneity based on biological information (Thorsson et al.,
2018). MATH (mutant-allele tumor heterogeneity) is a
quantitative approach to depict ITH based on variant allele
frequency information. In brief, mutant-allele fractions among
genomic locus-bearing somatic mutations will be widely
distributed in the tumors with distinct subclones, and MATH
is a quantitative assessment to normalize the width of such
distribution (Rocco, 2015; Ran et al., 2020). In this study, we
used MATH to quantify ITH of early-stage LUAD patients and
intended to find MATH-based subtypes. We have explored not
only the characteristics of these novel subtypes of LUAD but also
the potential treatment for LUAD patients at an early stage.

MATERIALS AND METHODS

Data Pre-processing
RNA sequencing of combined TCGA and GTEx data (free of
computational batch effects) and TCGA-LUAD (lung
adenocarcinoma) data were downloaded from UCSC Xena
(https://xenabrowser.net/datapages/). Relevant clinical
information was also collected from the UCSC Xena browser.
The expression data derived from TCGA database were pre-
processed by the following steps: 1) removing samples without
clinical information; 2) preserving early-stage (stage I and stage
II) samples; and 3) expression data were TPM-normalized and
genes with log2 (TPM+1) >0 were preserved. Additionally, copy
number alteration and somatic mutation MAF data were
downloaded from TCGA data portal (https://portal.gdc.cancer.
gov/).

The independent validation cohorts (including GSE30219,
GSE31210, GSE50081, and GSE72094) were downloaded from
GEO (Gene Expression Omnibus, http://www.ncbi.nlm.nih.gov/
geo/). Detailed information of the study cohorts is shown in the
Supplementary Material.

Construction of the Diagnosis Model
Differential gene expression analysis between non-cancerous
lung tissues and lung adenocarcinoma tissues was conducted
in TCGA-GTEx, GSE30219, and GSE31210 cohorts. DEGs were
identified by having log2fc > 1 and fdr <0.05. Robust rank
aggregation (RRA) was used to identify overlapping DEGs

(Gan et al., 2020), which were used to develop the diagnosis
model. The patients in TCGA-GTEx cohorts were randomly
assigned to the training and validation group at a ratio of 7:3.
The other datasets (GSE30219 and GSE31210) were used as two
independent validation cohorts. Machine learning including
elastic net regression (ElasticNet, binomial, alpha = 0.9),
Random Forest and Bortua (RFB, default), Support Vector
Machine-Recursive Feature Elimination (SVM-RFE, svmRFE
function in R, k = 5, halve. above = 100), and eXtreme
Gradient Boosting (XGBoost, xgboost function in R, default)
was performed to identify the most important predictors. The
expression of the overlapping DEGs was used as the input
variable, and the status of the tissues (tumor or non-cancerous
lung tissue, 1 or 0) was set as the response variable. In the training
group, the intersect genes identified by ElasticNet, RFB, SVM-
RFE, and XGBoost were collected, and logistic regression analysis
was performed on these genes to develop the diagnosis model.
The performance of the diagnosis model (in the training and
validation group, as well as two independent validation cohorts)
was evaluated by receiver operating characteristic (ROC) curves
and AUC values.

Real-Time Quantitative Polymerase Chain
Reaction
Total RNA was extracted with TRIzol reagent (Takara), and the
synthesis of cDNA was conducted with the qPCR RTMaster Mix
(Toyobo). To detect the expression of target genes, PCR was
performed with the SYBR Green Real-Time PCR kit (Takara) on
the StepOnePlus™ Real-Time PCR System (ABI) based on the
manufacturer’s instructions. GAPDH was selected as the internal
control, and the relative expression levels were determined by
comparative Ct (target gene Ct minus GAPDH Ct). Sequences of
the primers are listed as follows:

B3GNT3-F: CTTGCTGTCCCGCTTCAC.
B3GNT3-R: GAGGCAGGCTTCAGTCCC.
GALNT7-F: GAATCGCAGGCATTACCA.
GALNT7-R: AAGCCTCTGATTTCTCCC.
PLEK2-F: CACGGTGGTGAAACAAGG.
PLEK2-R: CAGTGGGAACGCCATTAT.
GAPDH-F: GAGTCAACGGATTTGGTCGT.
GAPDH-R: GACAAGCTTCCCGTTCTCAG.

CCK-8 Assay
The cells were seeded in 96-well plates at 2000 cells per well
(A549) or 1800 cells per well (H1299) with complete medium.
After 1, 2, 3, and 4 days of culture, the CCK-8 kit (Dojindo) was
used to detect cell proliferation, and the absorbance was read at
450 nm.

Calculation of the MATH Value and Gene
Expression–Based Stemness Index
Mutant-allele tumor heterogeneity (MATH) is a quantitative
strategy to quantify the dispersion of allele frequencies of
somatic mutations based on whole-exome sequencing data
(Rocco, 2015; McDonald et al., 2019). MATH score was
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calculated by “inferHeterogenetiy” function (“maftools” package
in R). In this study, MATH score was used to measure intratumor
heterogeneity (ITH), and we compared the MATH score with the
ABSOLUTE score (obtained from Thorsson V et al. study) to
ensure it could reflect the ITH accurately.

To calculate the mRNAsi, Malta et al. built a predictive model
using one-class logistic regression (OCLR) on the Progenitor Cell
Biology Consortium cohort to calculate stemness signatures,
which contains the gene expression profile of 11,774 genes
(Lian et al., 2019). We applied the stemness signature to
calculate the mRNAsi index for patients in our study using
Spearman’s correlation analysis.

Identification of theMATH-BasedMolecular
Subtypes of Lung Adenocarcinoma at an
Early Stage
To classify patients into the MATH-based subtypes, survival
analysis was performed, and X-tile was used to determine the
optimal cutoff of the MATH score (Li et al., 2016). Afterward, the
high-MATH group and low-MATH group were generated, and
differential gene expression analysis was performed to find DEGs
differentially between the two groups. Unsupervised consensus
clustering (kmeans, “ConsensusClusterPlus” package in R)
(Wang et al., 2021) based on these DEGs was conducted to
explore a novel classification of lung adenocarcinoma: the
MATH-based subtypes. This procedure was repeated
1,000 times and sampled 80% in each iteration to ensure
classification stability.

Calculation of CNA Burden, TMB, and
Immunological Characteristics
CNA (copy number alteration) data of TCGA cohort was
obtained from TCGA data portal. Amplified or deleted
genomes in the whole genome were identified by GISTIC 2.0.
The burden of copy number loss or gain was defined as the total
number of genes with copy number changes in each sample at the
arm and focal levels (Shen R et al., 2019).

TMB was defined as the number of non-synonymous
alterations per MB of the genome. Non-synonymous
mutations were defined as “Frame_Shift_Del”,
“Frame_Shift_Ins”, “Missense_Mutation”,
“Nonsense_Mutation”, “Splice_Site”, “In_Frame_Del”,
“In_Frame_Ins”, “Translation_Start_Site”, and
“Nonstop_Mutation”. The exome size was defined as 38 Mb as
described in the previous study. TMB was calculated by this
formula: TMB = non-synonymous mutations/exome size
(38 Mb) (Wang et al., 2019).

The abundance of six immune cells (including B cell,
macrophage, dendritic cell, neutrophil, T cell CD4, and T cell
CD8) was calculated by TIMER (Li et al., 2020). The abundance
of intratumoral immune and stromal cells was predicted using the
ESTIMATE algorithm (“ESTIMATE” package in R) (Yoshihara
et al., 2013). In addition, the enrichment level of 29 immune
signatures (Yang et al., 2018), which represent the immune
activity of tumors, and three signatures (Messina et al., 2012;

Ayers et al., 2017; Jiang et al., 2018), which represent the
immunotherapy response, was quantified by ssGSEA (single-
sample gene set enrichment analysis).

Prediction of TIDE Score and
Immunotherapy Response
TIDE (tumor immune dysfunction and exclusion, http://tide.dfci.
harvard.edu/) score, which was developed based on the
mechanism of tumor immune escape, inducing T cell
dysfunction in tumors with high infiltration of cytotoxic T
lymphocytes (CTL) and inhibiting T cell infiltration in tumors
with low CTL level, was used to predict the clinical response to
immunotherapy of patients involved in our study (Jiang et al.,
2018). The gene expression value had been normalized before
calculation. Then, subclass mapping was processed to realize the
prediction of clinical response to anti-PD1 or anti-CTLA4
therapy (Hubble et al., 2009) (“SubMap” modules in
GenePattern, https://cloud.genepattern.org/gp/pages/index.jsf.
A published dataset with melanoma that responded to
immunotherapy was set as the reference; custom settings were
set as default).

Construction and Validation of the
MATH-Based Subtype Classifier
The TCGA-LUAD patients at an early stage were randomly
assigned to the training and validation group at a ratio of 7:3.
GSE30219, GSE31210, GSE50081, and GSE72094 were used as
external independent validation cohorts. Machine learning
algorithms, including ElasticNet, RFB, SVM-RFE, and XGBoost,
were performed to identify the most important predictors. The
expression of the DEGs was used as the input variable, and the
subtype of the sample (subtype I or subtype II, 0 or 1) was set as the
response variable. In the training group, the intersect genes
identified by ElasticNet, RFB, SVM-RFE, and XGBoost were
collected, and logistic regression analysis was performed on
these genes to develop the classification model. The model was
tested in the validation group. In order to test our classifier
generalization ability in the external independent validation
cohorts (GSE30219, GSE31210, GSE50081, and GSE72094), we
performed the following analysis: 1) performing the same k-means
clustering in each cohort based on the same DEGs; 2) comparing
the expression profile of the subtypes we defined in TCGA cohort
with k-means clustering results in each validation cohort (by using
“SubMap” module in GenePattern); and 3) determining the
clustering subtypes in the validation cohorts. The performance
of the classifier was investigated by AUC values.

Drug Sensitivity Analysis
Three approaches were used to conduct drug sensitivity analysis.
First, we used the CTRP (Cancer Therapeutics Response Portal)
and PRISM (Profiling Relative Inhibition Simultaneously in
Mixtures) to generate drug sensitivity data (Rees et al., 2016;
Corsello et al., 2020). Both databases used AUC values as a
measure of drug/compound sensitivity. Compounds with
missing AUC values > 20% of the samples and cell lines were
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excluded. The “pRRophetic” package was used to predict the
candidate potential drugs in each MATH-based subtype. Then,
we predicted the candidate potential drug response for each
sample based on the GDSC (the Genomics of Drug Sensitivity
in Cancer) database (Yang et al., 2013). IC50 (the samples’ half-
maximal inhibitory concentration) was estimated based on the
GDSC dataset. In addition, we used the CMap (Connectivity
Map) database to explore the drugs targeting the genes associated
with the MATH-based subtypes (Musa et al., 2018). We queried
the CMap database and selected the compound with a negative
enrichment score and p < 0.05. The compound overlapping in the
results of CTRP/PRISM, GDSC, and CMap analyses was
considered important and may serve as a potential treatment
for the certain subtype.

Statistical Analysis
The χ2 test was utilized to evaluate the association between
subtypes and mutations. The Shapiro–Wilk normality test was

used to test the normality of data. Correlations were analyzed
using Spearman’s correlation. Statistical analyses were conducted
using Kruskal–Wallis, Wilcoxon, or Student’s t test. Differences
were thought to be significant at p < 0.05. All analyses were
performed in R (Version: 3.5.3). All data, codes, and workflow
have been deposited to Github.

RESULT

Establishment of the Early-Stage LUAD
Diagnostic Model
The general workflow of this study is shown in Figure 1.
Differential analysis between early-stage lung adenocarcinoma
tissues and non-cancerous lung tissues was performed with
Limma package, and a total of 173 DEGs (differentially
expressed genes) were screened via robust rank aggregation
(Figure 2A). In order to investigate the diagnostic method for

FIGURE 1 | Flowchart of this study.
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early-stage LUAD, the TCGA-GTEx cohort was divided into
training and validation cohorts, and two cohorts (GSE30219 and
GSE31210) were used as the external validation sets (Table 1,

Supplementary Table S1). As described in Materials and
Methods, four machine learning algorithms (including
ElasticNet, RFB, SVM-RFE, and XGBoost) were applied in

FIGURE 2 | Construction of the early-stage LUAD diagnosis model. (A) Heat map showed differentially expressed genes in tumor tissues (abs logFC>1, fdr<0.05)
identified by RRA. Rows represent DEGs and columns represent different datasets. (B) Venn diagram identified five diagnosis genes shared by ElasticNet, SVM-RFE,
RFB, and XGBoost machine learning. (C). Confusion matrix of binary result of the diagnosis model for the internal validation cohort.

TABLE 1 | Clinical information of early-stage LUAD patients in TCGA cohort.

Characteristics No of.cases (N = 389)

Gender Female 213
Male 176

Primary therapy outcome Complete remission/response 236
Partial remission/response 2
Stable disease 19
Progressive disease 36
Unknown 96

Neoadjuvant treatment No 388
Yes 1

Stage Stage I 271
Stage II 118
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TCGA-GTEx training set (Supplementary Figure S1A-F).
Among the 173 DEGs, five genes (Supplementary Table S2,
including B3GNT3, PLEK2, GALNT7, GRK5, and SLC39A8)
were found overlapping in different ML methods (Figure 2B,

Supplementary Table S3). The combination of the five genes was
analyzed using logistic regression to generate the diagnosis model
for early-stage LUAD. The confusion matrix for TCGA-GTEx
validation set and two external validation sets (GSE30219 and

FIGURE 3 | Downregulation of B3GNT3, GALNT7, or PLEK2 suppresses tumorigenesis in lung cancer. (A–B) CCK-8 assay revealed that B3GNT3 silencing
impaired cell proliferation in A549 (A) and H1299 (B) (n = 5). (C–D) B3GNT3 depletion significantly weakened colony-forming capacity of A549 (C) and H1299 (D) (n = 3).
(E–H) GALNT7. (I–L) PLEK2. **p < 0.01 and ***p < 0.001.
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GSE31210) were shown in Figure 2C and Supplementary Figure
S1G, with AUCs of 0.982, 0.817, and 0.850, respectively.

The diagnostic model showed good prediction ability. Among
the five genes involved in the diagnosis formula, the coefficients of
three genes (B3GNT3, GALNT7, and PLEK2) were positive,
indicating that the higher the expression level of these genes,
the higher the likelihood of being diagnosed with cancer. These
three genes might play an oncogene role in lung cancer. To prove
this, we respectively downregulated the expression of B3GNT3,
GALNT7, PLEK2 in A549 and H1299 cells via RNAi treatment
(Supplementary Figure S2). As expected, the silencing of these
genes inhibited lung cancer cell proliferation and growth (Figures
3A–D, B3GNT3, Figures 3E–H, GALNT7, Figure 3I-L, PLEK2).

Association Between MATH and Immune
Infiltration Pattern
First, to explore the overall immune activity of the 389 early-stage
LUAD patients in TCGA cohort, the enrichment abundance of
29 immune-related signatures was quantified using ssGSEA. As
shown in the heatmap (Supplementary Figure S3A), the 389
patients were assigned to three different immune subtypes
according to hierarchical clustering. The immune cluster 1,
containing 134 (34.4%) patients, had the low enrichment level;
the immune cluster 2, containing 74 (19%) patients, had the
highest enrichment scores; and the immune cluster 3,
containing 181 (46.5%) patients, was characterized by the
medium enrichment level. Afterward, immune cell infiltration
pattern was evaluated by the TIMER platform and ESTIMATE
algorithm. The immune cluster 2 had the highest immune scores
and stromal scores (Supplementary Figure S3E-F), indicating its
high immunity, while immune cluster 1 showed the opposite. Six
immune cell abundance (including B cell, macrophage, dendritic
cell, neutrophil, CD4 T cell, and CD8 T cell, quantified by the
TIMER platform) showed a gradual decrease from immune cluster
2 to immune cluster 3 to immune cluster 1 (Supplementary Figure
S3B). Hence, immune clusters 1–3 were defined as low-immunity
group, high-immunity group, and medium-immunity group,
respectively. By using the OCLR algorithm built by Lian et al.
(2019), stemness index (mRNAsi) of 389 LUAD patients was
calculated based on gene expression data. However, mRNAsi
was not different among the three groups (Supplementary
Figure S3C, Kruskal–Wallis test, p-value = 0.61).

According to the previous study (Rocco, 2015), the
heterogeneity in the tumor led to differences among mutated
loci in terms of the fraction of sequence reads that show a
mutant allele. The ratio of the width to the center of the
distribution of mutant allele fractions, which is defined as
MATH (mutant-allele tumor heterogeneity), is a reflection of the
dispersion of variant allele frequencies, thus serving as a measure of
intratumor heterogeneity. The MC3 file for TCGA-LUAD was
analyzed, and MATH score for 389 patients was calculated using
“inferHeterogenetiy” function (“maftool” package in R, Figure 4A).
Then, we investigated the relationship between MATH score and
ABSOLUTE score. A significant positive correlation between
MATH and ABSOLUTE was observed (Figure 4C, p < 0.001),
indicating that the MATH score could well reflect the ITH, so the

MATH score was used to measure intratumor heterogeneity in our
study. Notably, the MATH score seems to be negatively correlated
with immune infiltration: immune cluster 2, which was defined as
the high-immunity group, had the lowest MATH score as
compared to other clusters (Supplementary Figure S3D,
Kruskal–Wallis test, p = 0.005 and 0.074, respectively); and
general negative correlation was observed between the MATH
score and the abundance of immune cells (Figures 4D,F–K),
which supported the notion that tumor-infiltrating immune cells
shape the ITH. In addition, a positive correlation between mRNAsi
and the MATH score was observed (Figure 4E, p < 0.001). To
explore the potential link between the MATH score and clinical
outcome, survival analysis was performed, and the optimal cutoff
point of MATH score was determined by X-tile. Kaplan–Meier plot
indicated that patients classified into the high-MATH group tended
to have a worse overall survival outcome (Figure 4B, Log-rank test,
p = 0.04). Briefly, the abovementioned results indicated that the
MATH score was negatively correlated with tumor immune
infiltration, and high ITH led to worse clinical outcome.

Identification of Two MATH-Based
Subtypes With Distinct Characteristics
Since survival difference was observed between the high- and low-
MATH groups, we conducted differential gene expression analysis.
A total of 104 DEGs were identified (Supplementary Figure S4A),
which were defined as MATH-related DEGs. To unveil theMATH
subtype, we further performed unsupervised consensus clustering
(K-means) for early-stage LUAD patients based on the expression
patterns of MATH-related DEGs (Supplementary Figure S4B,
Supplementary Table S4). Thus, 389 early-stage LUAD patients
were classified into cluster 1 (159 patients, 40.9%) and cluster 2
(230 patients, 59.1%) (Figure 5A), where cluster 1 tended to have a
higher mRNAsi and MATH score (Figure 5G, Supplementary
Figure S4C-D). Subsequently, immune cell abundance was
compared between cluster 1 and cluster 2 (Figure 5B), and the
six immune cells (B cell, CD4 T cell. CD8 T cell, macrophage,
dendritic cell, and neutrophil, quantified by TIMER) were more
abundant in cluster 2. The expression level of immune checkpoint
molecules PD1 and CTLA-4, with its ligands (PDL1/PDL2, and
CD80/CD86), was compared between C1 and C2. The results
showed higher expression of these molecules in C2 (Figure 5C). In
addition, immune cluster 2 had a higher proportion in C2 than C1,
while immune cluster 1 had the opposite (Figure 5H).

To predict the response to ICI (immune checkpoint inhibitor)
therapy for patients in different clusters, the enrichment level of
three immunotherapy-related signatures was quantified using
ssGSEA. As compared to C1, patients in C2 had a significant
higher enrichment of these signatures (CD8. sig, EIGS, 12-
chemokines, Figures 5D–F), indicating that patients in C2
might have better response to ICI therapy. In addition, the
TIDE algorithm was used to predict immunotherapy response.
The result showed that the proportion of responders to
immunotherapy in C2 was significantly higher than that in C1
(Figure 5I, chi-square test, p < 0.001). Next, subclass mapping
was performed (“SubMap” module in GenePattern), and a
melanoma immunotherapy cohort was set as the reference. It
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was found that patients in C2 might have better response to anti-
PD1 or anti-CTLA4 therapy (Figure 6B). Afterward, we
performed GSEA (gene set enrichment analysis) to identify
hallmarks associated with different MATH clusters. GSEA
results revealed that “Glycolysis”, “MYC_target”, “MTORC1
signaling”, and “PI3K-AKT-MTOR signaling” were enriched
in C1, while “IL2-STAT5 signaling”, “inflammatory response”,
“IFN-gamma response”, “P53 pathway”, and “TNFA signaling”
were enriched in C2 (Supplementary Figure S4E-F). In brief, the
abovementioned results indicated that samples in C2 had higher
immune infiltration and immunogenicity, and patients in C2 had
higher likelihood of response to immunotherapy than C1.

The MATH-Based Clusters are Prevalent in
Early-Stage Lung Adenocarcinoma
We analyzed the survival outcome of the two clusters, and the
result revealed that patients in C2 had better overall survival

(Figure 6A, TCGA cohort, log-rank test, p = 0.046). To
investigate whether the two clusters were widespread in early-
stage lung adenocarcinoma, we performed the same unsupervised
consensus clustering (based on MATH-related DEGs) in
GSE30219 (N = 85), GSE31210 (N = 226), GSE50081 (N =
127), and GSE72094 (N = 334). In all four independent
validation sets, the early-stage LUAD patients could be
classified into two groups, and patients in C1 tended to have a
worse survival outcome (Figures 6C–F, log-rank test, p-value
GSE30219: 0.28; GSE31210: 0.013; GSE50081: 0.034; GSE72094:
<0.0001), which was consistent with our previous result. The
survival difference did not reach statistical significance in the
GSE30219 cohort, which might be due to the small sample size.
To prove that the clusters generated in the validation cohorts
were the same as those in TCGA cohort, we further performed
submap analysis. As shown in the figure, the C1/C2 clusters of the
validation cohorts could be well-mapped into the C1/C2 clusters
of TCGA cohort (Supplementary Figure S5, all p-value and FDR

FIGURE 4 |MATH associated with TIME and clinical outcome in early-stage LUAD patients. (A) Calculation of the MATH score in the main cohort and an overview
of association between MATH and mRNAsi and immunity. (B) Survival analysis indicated significantly better overall survival in the low-MATH group. (C) Association
between MATH and subclonal genome fraction quantified by ABSOLUTE. (D) Association between MATH and immune-score quantified by ESTIMATE. (E) Association
between MATH and stemness index calculated by OCLR. (F–K) Association between MATH and tumor-infiltrating immune cells, including B cell, CD4 T cell,
macrophage, CD8 T cell, dendritic cell, and neutrophil.
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<0.01). The result revealed that the MATH-based clusters are
stable and widespread in early-stage lung adenocarcinoma, and
patients in C2 tend to have a better survival outcome.

Construction and Validation of the Cluster
Predictor
Since early-stage LUAD patients could be classified into two
distinct clusters, we attempted to build a classifier to predict
patient groups. TCGA cohort was divided into training and
validation groups at a ratio of 7:3. GSE30219, GSE31210,
GSE50081, and GSE72094 were used as external validation
cohorts. In the training group, ML algorithms were applied to
screen important features based on the expression file of
104 MATH-related DEGs, and a total of 37, 79, 58, and 63
genes were identified by ElasticNet, SVM-RFE, Xgboost, and
RFB, respectively (Supplementary Figure S6, Supplementary
Table S5). Twenty-four genes were found overlapping in

different ML methods (Figure 7A). To construct the classifier,
we reduced the 24 genes to 21 genes that were common to all
datasets. The combination of the 21 genes was analyzed using
logistic regression (Figure 7B), and we built the classifier. The
confusion matrix for the training and validation groups and four
external validation sets (GSE30219, GSE31210, GSE50081, and
GSE72094) are shown in Figures 7C–H. In TCGA validation
group, the accuracy, precision, recall, F1 score, and AUC for the
classifier was 0.94, 0.93, 0.91, 0.92, and 0.94, respectively. In
GSE30219, the accuracy, precision, recall, F1 score, and AUC for
the classifier was 0.91, 0.84, 0.90, 0.87, and 0.91, respectively. In
GSE31210, the accuracy, precision, recall, F1 score, and AUC for
the classifier was 0.92, 0.88, 0.87, 0.87, and 0.90, respectively. In
GSE50081, the accuracy, precision, recall, F1 score, and AUC for
the classifier was 0.86, 0.94, 0.76, 0.84, and 0.86, respectively. In
GSE72094, the accuracy, precision, recall, F1 score, and AUC for
the classifier was 0.91, 0.96, 0.82, 0.88, and 0.90, respectively. The
abovementioned result indicated that the classifier predictor we

FIGURE 5 | Identification of two MATH-based clusters with distinct characteristics and survival outcome. (A) Heat map showed the result of the unsupervised
consensus clustering based on the 104 DEGs, and two clusters were identified. (B) Comparison of the abundance of B cell, CD4 T cell, CD8 T cell, macrophage,
dendritic cell, and neutrophil between C1 and C2. (C) Comparison of the expression level of PD-1/PD-L1/PD-L2/CTLA-4/CD80/CD86 between C1 and C2. (D–F)
Comparison of the enrichment level of three immunotherapy-related signatures between C1 and C2, including CD8. sig, EIGS (expanded immune gene signature),
and 12 chemokines sig. (G) Patients in C1 had a higher MATH score than patients in C2. (H)Distinct proportions of different immune clusters in C1 and C2, indicating the
different immunity between the two subtypes. (I). TIDE algorithm predicted the likelihood of response to immunotherapy in C1 and C2.
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built had excellent performance and good generalization
capability, and it could be instructive for the classification of
early-stage LUAD patients.

Epigenetic Differences Between C1 and C2
Recent studies have shown that the epigenetic alterations are
associated with immune evasion and tumor phenotype (Dawson
and Kouzarides, 2012). Hence, we performed somatic mutation
and CNA (copy number alteration) analysis to explore the
difference between C1 and C2. Patients in C1 tended to have
a higher TMB (tumor mutation burden) as compared to those in
C2 (Figure 8C, Wilcoxon test, p < 0.001). The top 20 genes with
the highest mutant frequency in each cluster are shown in Figures
8A–B, and there appeared to be little difference between C1 and
C2. We further analyzed the mutation condition of known driver
genes for LUAD and mutated genes enriched in C1. For the
common driver genes in LUAD (including EGFR, ALK, ROS1,
RET, MET, BRAF, KRAS, PIK3CA, and NRG1), only ROS1 had
different proportion of mutation between C1 and C2 (Figure 8D,
Supplementary Figure S7-8, Supplementary Table S6). In
addition, there were 11 representative mutated genes enriched

in C1 (namely, TTN, PTPRB, FMN2, TP53, KCNB2, RYR3,
CSMD3, SORCS1, PROX1, NELL1, and RYR2, Figure 8E,
Supplementary Figure S9, Supplementary Table S6).
Afterward, we calculated and compared the CNA burden at
the focal and arm level. Amplifications and deletions within
chromosomal regions in each cluster were detected using
GISTIC 2.0 (Supplementary Figure S10). Patients in the C2
had a lower burden of gain or loss at the arm or focal level
(Figures 8F–I, Wilcoxon test; focal-level gain burden: <0.001;
focal-level loss burden: <0.001; arm-level gain burden: <0.001;
arm-level loss burden: <0.001), which was consistent with the
previous notion that copy number alteration was related to
immunotherapy resistance (Bassaganyas et al., 2020). All these
underlying differences might be the cause of the different tumor
phenotypes between C1 and C2. In addition, regarding the EGFR
mutant, we found five types of mutations in these samples
(Frame_shift_Del, In_Frame_Del, In_Frame_Ins,
Missense_Mutation, and Nonsense_Mutation). Among these
mutation types, most of them showed no difference between
patients in C1 and C2 (Supplementary Table S7,
Frame_shift_Del, C1: 0%; C2: 0.43%. In_Frame_Ins, C1: 0%;

FIGURE 6 | MATH-based subtype was a prevalent phenomenon in early-stage LUAD. (A). Kaplan–Meier survival analysis revealed significantly better overall
survival in patients in C2. (B) Submap analysis for predicting the likelihood of immunotherapy response for C1 and C2. (C–F) Different clinical overall survival outcomes
between C1 and C2 in GSE30219, GSE50081, GSE31210, and GSE72094.
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C2: 1.30%. Missense_Mutation, C1: 10.06%; C2: 12.17%.
Nonsense_Mutation, C1: 0%; C2: 0.43%). Notably, at a 90%
confidence interval, the frequency of EGFR in-frame deletion
(In_Frame_Del) was higher in patients in C2 than that in C1 (C1:
1.89%; C2: 6.09%). Previous studies have suggested that NSCLC
patients with EGFR mutations are not suitable for
immunotherapy. Meanwhile, patients with EGFR mutation
who benefited from anti-PD (L)1 have been reported in some
case reports. In our study, patients in cluster 2 tend to be more
likely to benefit from immunotherapy, which may be due to the
MATH-based classification. However, more studies are desired to
screen the beneficiary population.

Then, we compared the expression of driver genes in different
immune cells (B cells, CD4+T cells, CD8+T cells, DCs, and

macrophages) between anti-PD1 responders and non-
responders (treated with pembrolizumab or cemiplimab) in
scRNA-seq data (GSE123813 cohort). The result showed that
the responder B cells had a higher expression of BRAF and a
lower expression of KRAS than the non-responders. Moreover,
the expression of KRAS and PIK3CA in CD4+T cells was lower
than that in the non-responders (Supplementary Table S8,
Supplementary Figure S11).

Identification of Potential Drugs for Patients
in C1
Two drug sensitivity profiles were generated after preprocessing
the AUC files of CTRP and PRISM databases. Then, a ridge

FIGURE 7 | Construction and validation of the subtype predictor. (A) Venn diagram identified 24 genes shared by ElasticNet, SVM-RFE, RFB, and XGBoost
machine learning. (B) Coefficient of the 21 common genes shared by all studying cohorts. The combination of these 21 genes was used to generate the subtype
predictor using logistic regression. (C–H) Confusion matrices of binary results of the subtype predictor for TCGA training cohort, TCGA validation cohort, GSE30219,
GSE31210, GSE50081, and GSE72094.
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regression model was used (“pRRophetic” package in R) to
predict the drug sensitivity of each sample in TCGA cohort
(N = 389). For every sample, we obtained the AUC values of
each compound contained in a certain database (CTRP or
PRISM). Prior to further analysis, we attempted to
demonstrate the reliability of drug sensitivity data. Patients in
TCGA cohorts were assigned into two groups according to their
EGFR alteration. We observed that patients with EGFR alteration
showed lower AUC values of Gefitini than those without
alteration both in CTRP and PRISM (Figures 9A–B), which
was consistent with the clinical effect of Gefitini. Next, we
identified the compounds (Figures 9C–D) with lower AUC

values in C1 (log2FC > 0.2, p-value<0.05, Supplementary
Table S9-10), including three PRISM-derived compounds
(vincristine, gemcitabine, and cabazitaxel) and seven CTRP-
derived compounds (vincristine, SB-743921, paclitaxel,
leptomycin B, KX2-391, GSK461364, and BI-2536). These nine
compounds all had lower AUC values in C1, indicating that
patients in C1 had increased sensitivity to the corresponding
treatment and might serve as the candidate potential therapeutic
drug for patients in C1.

To explore the most reliable therapeutic compounds, we
queried CMap (connectivity map) and GDSC (the Genomics
of Drug Sensitivity in Cancer) and performed drug sensitivity

FIGURE 8 |Comparisons of somatic variations and copy number alteration burden between C1 and C2. (A–B)Waterfall plots showed the top 20mutated genes in
C1 and C2. (C) Comparison of TMB between C1 and C2, and patients in C1 showed a higher TMB. (D)Mutation landscape of common driver genes of LUAD in C1 and
C2. (E) Top 11 mutated genes enriched in patients in C1. (F–I) Comparison of CNA burden at the focal or arm level between C1 and C2.
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analysis. As shown in the figure (Figure 9E), among candidate
compounds identified before, BI-2536 and gemcitabine showed
relatively low CMap scores (Fig, BI-2536: 80.96; gemcitabine:
96.23), indicating therapeutic potential; and among three
compounds in GDSC overlapped in the candidate drugs, only
BI-2536 showed a lower estimated IC50 in patients in C1 than that
in C2 (Figure 9F-H, Wilcoxon test, p-value, BI-2536: 0.0014;
gemcitabine: 0.3200; paclitaxel: 0.4130). The abovementioned
results indicated that BI-2536 might be the promising
potential treatment compound in patients in C1. The potential
mechanism may be due to higher expression of PLK1 in the C1
cluster (Supplementary Table S11).

DISCUSSION

Intratumor heterogeneity (ITH) is a common phenomenon
existing in all kinds of tumors (Andor et al., 2016). According

to previous studies, increased ITH is correlated with poor clinical
outcomes and has a negative association with immune infiltration
(Hua et al., 2020). Besides, ITH has been reported to have an
inverse association with T-cell immunoreactivity and sensitivity to
immune checkpoint blockade (McGranahan et al., 2016). Thus, the
analysis of ITHmay create a new approach for cancer treatment. In
our early-stage LUAD cohort, we usedMATH as ameasure of ITH
quantification. We utilized TIMER and ESTIMATE algorithms to
infer the immune infiltration pattern, and MATH was found to
have negative correlation with the abundance of immune cells
(including B cell, CD4 T cell, CD8 T cell, dendritic cell,
macrophage, and neutrophils). Patients with high MATH tend
to have a poor overall survival outcome. Also, by using the OCLR
algorithm, we calculated the stemness indexes for each patient, and
a positive correlation was found between MATH and cancer
stemness. These results are consistent with those of previous
studies (Miranda et al., 2019). In order to explore the ITH at a
deeper level, an unsupervised consensus clustering was performed

FIGURE 9 | Identification of a potential agent with higher sensitivity for patients in C1. (A–B) Comparison of predicted Gefitini sensitivity between EGFR altered and
unaltered groups. (C) Results of drug sensitivity analysis of three PRISM-derived compounds (vincristine, gemcitabine, and cabazitaxel). (D) Results of drug sensitivity
analysis of seven CTRP-derived compounds (vincristine, SB-743921, paclitaxel, leptomycin B, KX2-391, GSK461364, and BI-2536). (E)CMap score of three candidate
compounds (BI-2536, gemcitabine, and vincristine). (F–H) Comparison of estimated IC50 for BI-2536, gemcitabine, and paclitaxel in C1 and C2.
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based on expression profiles of MATH-related DEGs. Early-stage
LUAD patients in the main cohort had been classified into two
groups (C1 and C2), and these two groups showed distinct
characteristics. Specifically, patients in C2 had a lower MATH
score than those in C1, indicating patients in C1 had higher ITH,
while C1 had lower abundance of B cell, CD4 T cell, CD8 T cell,
macrophage, dendritic cell, and neutrophil. To predict the
likelihood of immunotherapy response in patients in C1 and
C2, we compared the expression profiles of PD1/PDL1/PDL2
and CTLA-4/CD80/CD86 between C1 and C2, and three
immunotherapy-related signatures were calculated using
ssGSEA. The result revealed that patients in C2 had higher
expression of immune checkpoint molecules and higher
enrichment of immunotherapy-related signatures, indicating
that patients in C2 were more likely to benefit from
immunotherapy, while patients in C1 had the opposite. We
further used the TIDE algorithm to predict the immunotherapy
response, and it showed a consistent outcome. In addition, we
observed the distinct clinical overall survival outcome between C1
and C2 across the main cohort and four independent validation
cohorts (GSE30219, GSE31210, GSE50081, and GSE72094).
Patients in C2 had an apparent survival advantage compared to
patients in C1. In the end, drug analysis was conducted to find the
potential treatment for high ITH patients (patients in C1). The
results revealed that BI-2536 might have therapeutic potential for
patients in C1.

In the current study, we have established two models using
multiple machine learning algorithms (combined SVM-RFE,
ElasticNet, XGBoost, and RFB): the early-stage LUAD diagnosis
model and the early-stage LUAD classification predictor. For the
former, the five-gene–based prognosis model (including B3GNT3,
PLEK2, GALNT7, GRK5, and SLC39A8) reached an AUC of 0.982
in the internal validation cohort and AUC of 0.817 and 0.850 in the
two external validation cohorts. B3GNT3 is an important member
of B3GlcNacT family, and it was found important in the
development of lung cancer (Sun et al., 2020). In addition,
PLEK2 and GALNT7 have been reported to function as
oncogenes in gall bladder cancer and colorectal cancer,
respectively (Li et al., 2018; Shen H et al., 2019). The
coefficients of these three molecules in our prognosis model are
positive, which refers to cancerous tissue prediction, indicating that
they might play important roles in the development of lung
adenocarcinoma. Indeed, there are many studies on the
prognostic model for early-stage LUAD. Generally, these models
were based on the prognosis of LUAD patients. In our study, we
explored the MATH-based LUAD subtypes and built a
classification model. Compared with previous studies, (e.g., Lu
et al. A Prognostic Model for overall survival of patients with early-
stage non–small cell lung cancer: a multicentre, retrospective study
The Lancet digital health; and Krzystanek et al. A robust prognostic
gene expression signature for early-stage lung adenocarcinoma.
Biomarker Research) (Krzystanek et al., 2016; Lu et al., 2020),
there are some advantages and disadvantages of our research. For
example, in the study by Lu et al., more omics data were included
(eg. H&E–stained histology images, pathological parameters),
which made the results more reliable. Moreover, these two
research studies both used relatively large cohorts (Lu et alm

multicenter, N = 1,057, Krzystanek et al., seven cohorts). In
spite of these shortcomings, our study has some advantages. It
is the first classification of early-stage LUAD based onMATH.We
developed the classifier using current high-performance machine
learning algorithms and verified its generalization ability. We tried
to generate a small panel to help make a quick diagnosis and
classification of LUAD at an early stage. However, its clinical
translation value and application need further research. For the 21-
gene–based classification model, we used several indices, such as
accuracy, precision, recall, and F1 score, to measure the
performance of our model across the internal validation cohort
and four independent validation cohorts, and the result revealed its
good predictive ability. It reached AUCs of 0.94, 0.91, 0.90, 0.86,
and 0.90 in the internal validation cohort and independent
validation cohorts (GSE30219, GSE31210, GSE50081, and
GSE72094). Notably, the false-positive rate and the false-
negative rate of our model were 4.29% and 8.51% in the
internal validation cohort, 9.10% and 10.00% in GSE30219,
6.00% and 13.33% in GSE31210, 4.69% and 23.80% in
GSE50081, and 2.56% and 18.00% in GSE72094, respectively
indicating good generalization ability and application value. The
main advantage of our model lies in its simplicity: a small gene
panel could be designed for the detection and classification of early-
stage LUAD. From this, we could get quick information about the
feasibility of developing LUAD and which classification it belongs
to. Since the two clusters of early-stage LUAD have distinct
characteristics and prognosis, the model could help clinicians
make appropriate treatment decisions. Directly, the combination
of these molecules (shown in Figure 7B) could make a
classification of NSCLC patients at an early stage. In our study,
we elaborated on the clinical significance of this classification. In
terms of individual molecules, most of them were studied in
human cancers, including lung cancer (e.g., AQP1, AQP4, IL33,
and PEBP4). For example, PEBP4 could promote the proliferation,
migration, and EMT of lung cancer. Several studies suggested that
aquaporin1 and aquaporin4 are related to the invasion of lung
cancer. As for IL33, previous studies suggested that it could
promote the occurrence and development of lung cancer. On
the other hand, some studies suggested that it (IL33) could
activate NK and CD8+T cells to suppress lung cancer. In
general, these “candidate genes” could affect the biological
function of lung cancer and further influence cancer
phenotypes. In terms of clinical application, the combination of
these genes is more meaningful. However, its clinical translation
value and application need further research.

In conclusion, our study provided a new strategy for clinicians
to make a quick preliminary assisting diagnosis of early-stage
LUAD and make a patient classification at the intratumor
heterogeneity level. Yet, this study has some unavoidable
limitations and shortcomings. We found that patients in C1
exhibited a higher TMB and copy number burden and were
enriched in certain mutations (such as TP53). However, we
only depicted these characteristics in these involved clusters,
and the correlation analysis did not reveal strong correlations.
The causality was hard to be confirmed since our study is a
retrospective analysis. The comparison of driver genes in
immune cells between immunotherapy responders and non-
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responders was based on the sc-RNA seq dataset (GSE123813).
Experimental validation needs to be further studied. In addition,
though we used multiple cohorts to ensure the generalization
ability of our findings, large sample clinical trials are needed to
further confirm the clinical application value.
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