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Background: Walking disability is one of the most frequent and burdening symptoms

of progressive multiple sclerosis (MS). Most of the exercise intervention studies that

showed an improvement in mobility performance were conducted in low to moderately

disabled relapsing–remitting MS patients with interventions using the legs. However,

MS patients with substantial walking disability hardly can perform these tasks. Earlier

work has indicated that aerobic arm training might also improve walking performance

and could therefore be a therapeutic option in already moderately disabled progressive

MS patients.

Methods: Patients with progressive MS and EDSS 4–6.5 were randomized using a

computer-generated algorithm list to either a waitlist control group (CG) or an intervention

group (IG). The IG performed a 12-week home-based, individualized arm ergometry

exercise training program. Maximum walking distance as measured by the 6-min walking

test (6MWT) was the primary endpoint. Secondary endpoints included aerobic fitness,

other mobility tests, cognitive functioning, as well as fatigue and depression.

Results: Of n = 86 screened patients, 53 with moderate disability (mean EDSS

5.5, SD 0.9) were included and data of 39 patients were analyzed. Patients in the IG

showed strong adherence to the program with a mean of 67 (SD 26.4) training sessions.

Maximum work load (Pmax) increased in the training group while other fitness indicators

did not. Walking distance in the 6MWT improved in both training and waitlist group but

not significantly more in trained patients. Similarly, other mobility measures showed no

differential group effect. Cognitive functioning remained unchanged. No serious events

attributable to the intervention occurred.
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Conclusion: Although maximum work load improved, 3 months of high-frequency arm

ergometry training of low to moderate intensity could not show improved walking ability

or cognitive functioning in progressive MS compared to a waitlist CG.

The study was registered at www.clinicaltrials.gov (NCT03147105) and funded by the

local MS self-help organization.

Keywords: aerobic exercise, multiple sclerosis, progressive multiple sclerosis, arm ergometry, cognition

INTRODUCTION

Multiple sclerosis (MS) is an autoimmune inflammatory and
degenerative disease of the central nervous system leading to
substantial irreversible disability in 2/3 of patients (1). From a
patient perspective, walking is among the three most relevant

bodily functions (2). Thus, any treatment or approach to improve
walking ability is highly relevant for people with MS (pwMS).
Current immunotherapies have not conclusively been shown to
improve impairments and benefits in progressive MS are very
limited. While drug treatments such as fampridine have shown
only limited effects as well (3), physiotherapy through gait and
balance training is the key strategy to maintain safe mobility as

long as possible (4). Rehabilitation studies have shown short-
term effects on several MS symptoms, but implementing them
in patients’ everyday life has remained challenging (5).

In recent years, an increasing number of exercise intervention
studies, using endurance exercise but also strengthening and
balance trainings, has shown beneficial effects in pwMS as

summarized in the systematic review by Latimer-Cheung et al.
(5). However, here only 5 of 54 exercise intervention studies
have explicitly addressed progressive MS. High-intensity training
during short-term inpatient interventions has demonstrated
impressive effects not only on mobility outcomes but also on
cognitive functions in pwMS with advanced disability, i.e., EDSS
4–6 (6). In addition, a meta-analysis on exercise training in
advanced MS showed significant improvement in physical fitness
in pwMS with severe mobility disability in two out of five studies
Edward and Pilutti (7).

In addition, MRI analysis indicated the potential of exercise
interventions to slow down brain atrophy and possibly increase
cortical thickness (8). Exercise intervention studies in healthy
aging and early dementia indicate similar beneficial effects of
exercise, although there is ongoing debate about the clinical
relevance of observed effects (9). Despite encouraging in
individual, small-scale studies (10), a recent meta-analysis did
not find evidence that exercise improves cognitive function in
MS (11).

PwMS in transition to secondary progressive MS or within the

progressive phase are largely not eligible for disease-modifying

drug interventions and may even be urged to stop an ineffective

drug. They experience increased difficulties in mobility and
thus problems to reach treatment facilities associated with
fatigue, which may limit training capacity. On the other hand,
continuous training three to five times/week might be the best
available strategy to delay further motor impairments (5). As
endurance training has gathered the most convincing evidence

on beneficial effects for motor function in MS, we asked
which training form might be best suitable for pwMS with
walking restrictions between 100 and 500m. In a pilot study,
we compared rowing and arm ergometry with bicycle ergometry
(10). While bicycle ergometry showed the strongest effects,
even arm ergometry appeared to improve walking performance
in this study. However, the training two to three times/week
was performed at the University Medical Center Hamburg
Eppendorf (UMC) only for 8 weeks. Patients perceived traveling
as a substantial burden and overall training session number
was moderate. Arm ergometry has rarely been studied in MS.
However, in patients with substantial paraparesis, arm ergometry
could offer a chance to improve fitness and muscular function.
Here, we present results from a pilot study set up to clarify
if home-based intensive arm ergometry study is feasible in
advanced pwMS and if this approach can influence mobility,
fitness, and cognition.

MATERIALS AND METHODS

Study Design
The study was designed as a randomized single blinded
controlled trial of a 12-week daily home-based arm ergometry
exercise training program compared to a waitlist control group
(CG) (see Figure 1).

Participant Inclusion and Exclusion Criteria
Patients between the age of 18 and 60 were included if they met
diagnostic criteria for clinically definite MS (12) with primary-
progressive or secondary-progressive disease course and had
moderate disability (Expanded Disability Status Scale EDSS 4-
6.5) (13). Patients were included when they felt that they were
able to perform an arm ergometry exercise training. Any medical
conditions at risk during exercise training such as cardiac diseases
as well a substantial cognitive deficit by clinical impression
making patients presumably unable to understand and follow
study rules were set as exclusion criteria. Patients with electronic
implants, epilepsy, and pregnancy were excluded.

Recruitment
Patient recruitment was conducted by screening the registry
database of the MS Day Hospital at the UMC for patients who
met inclusion criteria and had indicated interest in information
about new clinical studies. We also recruited patients through
advertisements like the website of the local self-help society
German Multiple Sclerosis Society (DMSG) and leaflets in
neurological practices in Hamburg.
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FIGURE 1 | Study design: The figure shows the inclusion criteria, the examinations before randomization (T0, Baseline) to either an intervention group (IG) or a control

group (CG) and the examination of both groups after 12 weeks (T1). Between T0 and T1, the IG completed a 12-week home-based training. After study completion

(T1), patients of the CG were offered the same 12-week home-based training (waitlist).

Randomization
Patients were consecutively randomized 1:1 using a computer-
generated algorithm list. To ensure concealed allocation, the
list was kept at an independent unit in another building
and randomization codes were provided over the phone after
determination of eligibility and assessment of baseline measures.

Outcome Measures
The primary endpoint of the study was the 6-min walking
test (6MWT) (14). Patients could use a walking aid but were
instructed to use the same aid through all assessments.

Exploratory endpoints included additional mobility
parameters [5-time sit-to-stand test (5SST) (15), timed tandem
walk (TTW) (16), 25-foot walking test (25FWT) (17), and timed
up and go test (TUG) (18)]. Furthermore, the MS walking
scale 12 (MSWS-12) was used as a patient-reported measure of
walking ability (19).

In addition, we included Peak oxygen consumption (VO2peak

in ml/min and rel. VO2/Bodyweight in ml/min/kg) as secondary
outcome, and exploratory maximum power was also determined
(Pmax in W and rel. P/bodyweight in W/kg). Spiroergometry
was performed with the arm crank ergometer Ergoselect 200
(Ergoline, Bitz, Germany). The ventilatory measurements were
implemented with the spirometry system Metalyser-3B (Cortex
Biophysik, Leipzig, Germany). Spiroergometry was performed
as a ramp test with a start power of 0W and an increase of 5
W/min. Lactate, blood pressure, and work load perception [rate
of perceived exertion (RPE), Borg Scale] were measured every
2min (20). The Borg Scale includes a score from 6 to 20 points
for the subjective assessment of the effort. Blood was taken from
the hyperemized earlobe with a capillary tube to measure lactate.
The heart rate was measured with a heart rate monitor.

The Verbal Learning and Memory Test [VLMT; (21)] was
applied as a secondary neuropsychological outcome. Exploratory

neurocognitive measures were the “battery for Attentional
Performance” (TAP; (22)) and other measures of the German
adaptation of the BICAMS (23) such as the Brief Visuospatial
Memory Test-Revised (BVMT-R) (24) and the Symbol Digit
Modalities Test (SDMT) (25). Neuropsychological tests were
obtained by a trained medical student (who was not blinded to
group assignment).

Additional exploratorymeasures were obtained: Quality of life
was assessed by theHamburgQuality of Life inMSQuestionnaire
10.0 (26). To measure the possible intervention impact on
fatigue and depression, we used the Fatigue Scale for Motor
and Cognition (FSMC) (27), and the Beck Depression Inventory
(BDI-II) (28–30). The Frenchay Activity Index (FAI) (31) was
obtained to measure activities of daily living. EDSS was obtained
as another control measure.

Other outcomes obtained but not reported here were
accelerometry data, brain atrophy, and biomarkers.

All endpoints were obtained at the Multiple Sclerosis Day
Hospital at the UMC at baseline (week 0 = T0) and after the
intervention (week 12 = T1) by IH, who was not blinded to the
trial group of a given patient. Adherence data were recorded by
the Motomed tool and/or by written documentation of patients.

Intervention Group (IG): Individually
Tailored Arm Ergometry Training
Spiroergometry results at baseline provided the anchor for
the individualized training schedule. Specifically, the aerobic
threshold as described earlier was determined (32). To validate
the resulting training parameters, participants performed a
briefing and familiarization session on the training toolMotomed
(Reck, Betzenweiler, Germany) a few days later (see Figure 2).
This training introduction was carried out in the Department
of Sports Medicine under the supervision of trained staff. Based
on the result of this session, the individual starting point for the
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FIGURE 2 | Arm ergometer (Motomed, Reck). The figure shows the arm

ergometer used in the trial.

home training plan was customized to reach the aim performing
the training near the aerobic threshold level to improve aerobic
capacity (33). The training concept, developed by an exercise
physiologist, included one defined training interval of 6min
cranking including change of direction every minute and 2min
passive cranking by support of the device. The training plans
incorporate an increase in the number of the described intervals
of 8min (see Table 1). Training at home took place for a total of
12 weeks. The overall goal was to increase both the performance
(in watts) and the number of training intervals over 12 weeks.

Using the Borg Scale, the patients were able to subjectively
evaluate the perceived training load. Every 4 weeks, the target
performance was increased by 20%, starting from the initial
performance. Subjects who rated the training to be “demanding”
according to the Borg Scale (≥15 points) continued with lower
performance goals and increased performance only after 4–6 or
8–10 weeks. Heart rate was continuously monitored during the
training with an ear clip.

In order to increase feasibility of the training program,
splitting a training session consisting of several intervals was
allowed; i.e., patients were allowed to complete multiple sessions
per day. The patients were asked to rate their effort on the
Borg Scale for every session. The strain should be “light” to
“moderate” (11–14 points) to keep the training adherence as high

as possible. For the exercise training, patients used the Motomed
with an integrated chipcard box for program and performance
documentation. To support and supervise the patients during
their home-based training, telephone calls and, if necessary,
house visits were provided according to individual needs.

Control Group (CG): Waitlist
Patients randomized to CGwere offered the training intervention
after the last assessment (3 months post randomization).

Sample Size Calculation
A previous pilot study (10) had shown an increase of 63m
(SD 60.5) in the 6MWT in the arm ergometry training group
compared to a decrease of 6.5m (SD 36.0) in the non-exercising
CG. We estimated at least 66% of this effect with a similar SD.
To detect an expected difference of 49m with a SD of 46m
with a power of 80% by applying 5% alpha error, 19 participants
would be required in each group (NCSS-PASS, 2008). Expecting
a dropout rate of up to 33%, we aimed to recruit 60 patients.

Long-Term Follow-Up (FU) of the Cohort
All patients were telephone interviewed about a possible long-
term impact of the study for their exercise behavior with self-
developed Likert scale items and multiple choice items. Activity
was estimated with 1 = not active, 2 = irregularly active, and
3 = regularly active. Motivation for being active (as a result of
participating in the study) was rated on a scale ranging from 1 =
very little to 4= very much.

Statistical Analysis
The primary analysis compared changes from baseline to
week 12 between the IG and the waitlist CG. According to
guidelines for statistical analysis of clinical trials published by
The European Agency for the Evaluation of Medicinal Products
(CPMP/ICH/363/96 and CPMP/EWP/2863/99), we computed
the primary statistical analysis for all outcomes using ANCOVA
models adjusting for baseline measurements of the respective
outcome variable to evaluate treatment effects (measured as
change from baseline). No other covariates were included in this
primary analysis. As recommended, this model did not include
treatment by covariate interactions as well. All primary analyses
were conducted as intention-to-treat (ITT) including all patients
who had received group allocation. Every effort was made to
obtain week 12 and week 24 data from all participants (even if
they dropped out of the exercise program).

In case of missing data, primary ITT analyses were conducted
using a Last-Observation-Carried-Forward (LOCF) approach.
In case of a significant effect in the ITT analysis, the same
ANCOVA models were computed for the complete case sample
as a sensitivity analysis.

Standard Protocol Approvals, Recruitment,
and Patient Consent
The trial was approved by the ethics committee of the
Chamber of Physicians, City of Hamburg (Registration Number
PV5408). The study was registered at www.clinicaltrials.gov
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TABLE 1 | Overview of training intervals.

Chip card Week Training intervals per session

Chip card 1 1–4 1, 2, 3, 1, 2, 3, 1 3, 1, 3, 2, 4, 2, 4 2, 5, 3, 5, 3, 5, 3 5, 3, 5, 4, 5, 4, 5

Chip card 2 (P+ 20%) 5–8 2, 4, 2, 4, 2, 5, 2 6, 3, 6, 3, 6, 3, 6 4, 6, 4, 6, 4, 6, 4 6, 5, 6, 5, 6, 5, 6

Chip card 3 (P+30%) 9–12 3, 5, 3, 5, 3, 6, 3 6, 4, 6, 4, 6, 4, 6 5, 6, 5, 6, 5, 6, 5 7, 5, 7, 5, 7, 5, 7

One training interval on the arm ergometer consisted of 6min load and 2min rest. Patients received 3 chip cards for the arm ergometer with increasing power. Chip cards were exchanged

every 4 weeks. Numbers listed in each column display the interval sessions for a 7-day period, where each number represents the numbers of training intervals on a given day. For

example: The first day of week 2 shows indicates “3” which means that the patient has to repeat a training interval three times that day with chip card 1.

FIGURE 3 | Flow chart. The figure shows the participant flow chart starting with the assessment for eligibility for participation and through to study completion.

(NCT03147105). Informed consent was obtained in all patients
before trial inclusion.

RESULTS

Recruitment started in December 2017 and the trial was
completed in January 2019. Eighty-six patients were interested to
participate in our study. After screening for eligibility, 53 patients

fulfilled the inclusion criteria (for patient attrition, see Figure 3).

They were randomized 1:1 to the IG or CG. Patients in the IG

completed a mean of 67 (SD 26.4) training sessions.
Forty-nine patients had complete data at baseline as well as

the FU testing 12 weeks later. For the ITT analyses, all patients

randomized with baseline parameters of at least the primary

outcome measure were included (i.e., 25 patients in the IG and

26 in the CG). As intended, patients training intensity ratings
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TABLE 2 | Clinical baseline characteristics.

IG CG

N 25 27

Age (years) 51.9 (7.9) 50.3 (6.9)

Sex (m/f) 8/17 12/15

Body weight (BMI) 22.4 (5.6) 22.9 (7.4)

Education (years) 11.7 (1.5) 11.0 (1.7)

EDSS 5.5 (0.9) 5.3 (0.9)

Disease duration (years)* 13.9 (6.0) 12.5 (5.2)

Disease courses (PP/SP) 5/20 5/22

On immunotherapy (%)** 7 (28%) 14 (52%)

The following data were collected during the baseline assessment (week 0). Afterwards,

patients were randomized using a computer-generated algorithm list to either a waitlist

control group (CG) or the intervention group (IG).

Data shown as mean (standard deviations). *From diagnosis. **Glatirameracetat,

Fingolimod, Rituximab, Alemtuzumab, Natalizumab, Teriflunomid.

based on the Borg Scale were around 13 (SD 1.9) on a scale from
6 to 20 points (20). Seven patients in the IG and three of the CG
discontinued the study (see Safety section for details).

Overall, patients had moderate clinical disability (mean EDSS
5.5, SD 0.9, range 4.0–6.5) and a mean disease duration of 13.6
years (SD 6.2). Sex ratio was biased toward women (1.6:1) and
both groups showed comparable distribution of demographic
parameters (see Table 2). Cognitive deficits in at least one of the
neuropsychological tests (defined by >1 SD below the normative
data) were found in n = 41 participants, n = 20 of them in the
IG. Seventeen participants (nine of them in the IG) showed three
or more deficits in cognition.

Adherence and Feasibility
Overall training duration ranged from 10 to 48 h as documented
by the Motomed and 8–48 h based on self-documentation
(see Supplementary Table 1). Self-documented and Motomed
documented training duration did substantially differ in some
patients possibly due to difficulties in handling the chipcard
reader system. Heart rate over all training sessions ranged from
87 to 109 (mean 94) while maximum heart rate ranged from 89
to 154 (mean 114). Mean Borg Scale over all training sessions
ranged from 10.7 to 16.3 (mean 13.2). Six patients split training
sessions throughout the day (mean 2.02 sessions/day).

Effects on Mobility and Arm Function
The primary endpoint, the 6MWT, increased by 18.2m in the
IG and 7.2m in the CG. This difference was not significant
according to the ITT analysis (p= 0.604, ANCOVA). IG and CG
showed similar performance in all exploratory motor-oriented
leg and arm function tests at baseline, and none of these tests
showed significant treatment effects (see Table 3). Self-reported
walking ability was measured by MSWS12, indicating moderate
impairment at baseline and no relevant change throughout the
study. We did not observe changes in EDSS over the course of
the training. To see the treatment effects the difference in the
6MWT, T25W and MSWS12 are shown as change from basline
to T1 in the IG and the CG (see Figure 4).

Effects on Fitness Parameters
Although not significant, there was a trend toward a decrease
of the VO2peak/kg CG and toward an increase in the IG (see
Figure 4). Similarly, maximum power started from a higher
level in CG but declined for 3.7W while maximum power
increased for 3.5W in the IG. This effect was small but significant
(ANCOVA, p= 0.021).

Effects on Quality of Life, Fatigue,
Depression, and Daily Functioning
MS-specific quality of life improved in the IG compared to the
CG, although the change again was small (0.1 points in IG and
0 points in CG, p = 0.045, ANCOVA) and could not be detected
in subscales (see Table 3 and Figure 4). Correspondingly, there
was an improvement in depression ratings in the BDI although
this was just a trend finding (ANCOVA p =0.091). However,
fatigue ratings that showed modest impairment at baseline were
not altered throughout the study. Daily functioning as measured
by the FAI in general did not change through the 3 months
study period.

Effects on Cognitive Function
Measures of verbal learning, information processing and
memory, spatial learning and memory, as well as attention
remained stable throughout the study period (see Table 4).

Safety
At T1 (at 3 months) and T2 (at 6 months), patients reported no
intervention-related injuries such as falls or accidents. General
worsening of the overall condition was reported by one patient
in the IG, which was not mirrored in EDSS change. One patient
experienced a lower leg fracture due to an accident, which was
not related to the training but led to the interruption of the
study. Another patient developed neck–shoulder pain during the
training, which resolved in the FU. Besides that, one patient
developed pyelonephritis and had to stay in the hospital for
a while, and another one started in-patient MS rehabilitation.
Two patients had no motivation to exercise over 12 weeks and
reported that the training took too much time.

Two patients of the CG noted that the waiting period was too
long and some indicated decreasing motivation in the 12 weeks.

Long-Term FU
A telephone-administered survey 1–2 years after the original
study asked patients about their activity level before the study
and thereafter. Sixteen patients (94%) from 17 who participated
in the IG could be contacted. Based on the applied three-point
Likert scale, the IG turned from a level of being not regularly
active (mean 2.1, SD 0.8) to a mean of being regularly active
(2.7, SD 0.6). To maintain being active, all 16 respondents would
have wished a telephone FU after the study. Nine participants
indicated on request that a web-based interactive platform might
be helpful. Also, all would recommend the study to other pwMS
after having terminated the study.

Frontiers in Neurology | www.frontiersin.org 6 July 2021 | Volume 12 | Article 644533

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Heinrich et al. Arm Ergometry to Improve Mobility in pwMS

TABLE 3 | Motor, fitness, and patient reported outcomes (ITT analyses with last-observation carried forward).

IG CG p

Baseline Week 12 Baseline Week 12

Motor function and aerobic fitness

6MWT (m) 231.2 (106.6) 249.4 (124.9) 275.0 (102.6) 282.9 (115.3) 0.604

T25W (sec) 12.5 (10.1) 12.7 (10.2) 10.5 (12.1) 10.7 (12.8) 0.827

5SST (sec) 22.4 (9.4) 20.5 (7.8) 19.3 (11.3) 19.4 (11.7) 0.180

TTW (sec) 15.3 (6.6) 14.8 (6.9) 15.8 (8.8) 15.7 (8.9) 0.726

TUG (sec) 15.5 (8.4) 15.8 (9.2) 14.8 (13.9) 14.2 (11.8) 0.259

9HPT right (sec) 27.9 (8.2) 29.6 (14.6) 28.2 (12.6) 28.8 (13.0) 0.618

9HPT left (sec) 28.8 (7.8) 30.1 (12.8) 31.8 (20.2) 35.7 (39.9) 0.981

VO2peak/kg (ml O2/min) 1.01 (0.26) 1.1 (0.26) 1.20 (0.36) 1.16 (0.34) 0.174

Pmax (Watt) 47.5 (13.7) 51.0 (12.9) 53.80 (15.9) 50.08 (11.8) 0.021

EDSS 5.5 (0.9) 5.5 (0.8) 5.3 (0.9) 5.4 (0.9) 0.344

Patient-reported outcome measures

BDI 9.4 (7.4) 8.8 (6.0) 10.9 (7.5) 11.9 (8.0) 0.091

FSMC 68.8 (13.2) 68.1 (17.1) 71.7 (11.5) 72.8 (11.7) 0.410

MSWS12 34.0 (8.1) 34.5 (7.2) 32.5 (8.9) 33.7 (9.7) 0.711

HAQUAMS

Lower ex. 3.5 (0.7) 3.3 (0.8) 3.3 (0.8) 3.3 (0.7) 0.41

Upper ex. 2.2 (0.6) 2.3 (0.6) 1.9 (0.5) 1.9 (0.6) 0.376

Fatigue 2.8 (1.0) 2.6 (0.9) 3.0 (0.9) 3.0 (0.9) 0.149

Thinking 2.5 (1.0) 2.4 (1.0) 2.8 (0.9) 2.8 (0.9) 0.626

Comm. 2.2 (0.7) 2.2 (0.7) 2.0 (0.9) 2.2 (0.9) 0.092

Mood 2.7 (0.7) 2.5 (0.7) 2.6 (0.9) 2.6 (0.9) 0.165

Total 2.7 (0.4) 2.6 (0.4) 2.6 (0.5) 2.6 (0.5) 0.045

FAI (total) 29.0 (8.5) 28.2 (9.5) 33.3 (8.5) 32.4 (9.0) 0.919

The table shows results of motor function, aerobic fitness, and patient-reported outcome measures at baseline (week 0) and after 12 weeks both in the intervention group (IG) and the

control group (CG). Mean values and standard deviation (in brackets) are shown. P-values are shown on the right according to ANCOVA. The bold values show significance.

6 MWT, Six minute walking test; 9 HPT, Nine-Hole Peg Test; T25FW, Timed 25-foot walk; Pmax , maximal Power; BDI, Beck Depression Inventory; FSMC, Fatigue Scale for Motor and

Cognitive Functions; MSWS-12, 12-item MS Walking Scale; HAQUAMS, Hamburger Quality of Life Questionnaire in Multiple Sclerosis, higher scores indicate a worse quality of life; FAI,

Frenchay Activity Inventary.

DISCUSSION

Although pwMS show substantial limitations in doing leg-based
endurance exercise when they have entered the progressive phase
of the disease, limited research has explored the potential of
aerobic arm training in these patients. Based on an earlier trial
(10), we conducted a pilot study for arm ergometry in pwMS. In
contrast to previous center-based interventions (10, 32), AMBOS
aimed to establish a high-frequency home-based training.

This study showed that a high frequency at home training is

feasible for 3 months with a substantial number of 67 sessions. Of

note, this trial enrolled a cohort of progressive pwMSwith amean

EDSS of 5.5 referring to being able to walk 100m without aid.

As we included patients with an EDSS up to 6.5, more advanced
disability in some patients might have contributed to the overall
lack of a detectable treatment effect.

However, our trial clearly missed its primary endpoint as we
could not detect treatment effects on our pre-specified measures
of walking ability. Was the goal of improving walking by arm
training too ambitious? Upper body training is firmly established
in spinal cord injury showing improved aerobic capacity and also

functional benefit in enhanced wheelchair handling (34, 35). It
has been argued that high training intensity cannot be achieved
with upper limb training (36). This has been attributed to less
muscle mass than in lower limb training. However, studies
comparing hand and leg cycling ergometry in healthy female
individuals have shown that after 7 weeks of training, 75% of VO2

peak compared to leg ergometry can be reached (36). Central
adaptations as mirrored in an increase in cardiac output and
oxygen delivery to the muscles can be shown after upper body
endurance training (37). However, leg cycling performance was
not improved in the study of Hettinga et al. (36), indicating that
systemic adaption based on arm training might not be sufficient
to improve aerobic training performance in the legs.

On the other hand, work in elderly people has shown that
walking performance in patients with intermittent claudication
(∼70 years) and in patients with peripheral arterial disease
improved after upper body endurance training, at least partly
due to a better lower limb O2 delivery (38, 39). Although
pathomechanisms in spinal cord injury and claudication are very
different from MS, these data are in line with putative systemic
effects of arm ergometry. Thus, arm training might show transfer
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FIGURE 4 | Treatment effects (complete case analyses). Difference in the main outcomes are shown as change from baseline to T1 in the control group (CG, gray)

and intervention group (IG, blue). Negative values indicate a decrease from baseline to T1. Change in each group is displayed for the 6-min-walking test (A), in peak

oxygen consumption (B), maximum power performed (C) 25-foot-walking-test (D), quality of life measured by the hamburg Quality of Life in MS Questionnaire 10.0

(here, lower scores indicate higher QoL) (E) and the MS-walking-scale-12 (F). Each data point depicts the change of an individual participant from baseline to T1,

boxplots represent median and interquartile range. 6 MWT, Six minute walking test; VO2peak/kg, Peak oxygen consumption; Pmax, maximal Power, T25W, Timed

25-foot walk; HAQUAMS, Hamburger Quality of Life Questionnaire in Multiple Sclerosis; MSWS-12, 12-item MS Walking Scale.

TABLE 4 | Cognitive outcomes (ITT analyses with last-observation carried forward).

IG CG p

Baseline Week 12 Baseline Week 12

SDMT (points) 44.6 (15.4) 45.7 (14.3) 43.2 (16.7) 44.6 (13.2) 0.970

VLMT 1-5 learning (points) 52.5 (8.6) 54.4 (8.7) 51.2 (12.0) 53.0 (12.5) 0.868

VLMT 5-7 delayed memory (points) 2.2 (2.1) 1.5 (1.8) 2.2 (2.4) 1.9 (2.4) 0.494

BVMT-R total learning (points) 22.5 (7.9) 24.1 (6.5) 20.0 (9.1) 21.4 (8.5) 0.908

BVMT-R recall (points) 8.5 (2.9) 8.9 (2.9) 7.8 (3.4) 8.3 (2.8) 0.821

TAP Tonic Alertness (msec) 317 (71.1) 309 (63.0) 287 (64.1) 286 (61.8) 0.400

TAP Phasic Alertness (msec) 317 (83.7) 297 (65.9) 300 (64.2) 290 (65.8) 0.326

The table shows cognitive function at baseline (week 0) and after 12 weeks both in the intervention group (IG) and the control group (CG). Mean values of raw scores and standard

deviation (in brackets) are shown. P-values are shown on the right, based on the primary analysis (ITT ANCOVA).

SDMT, Symbol Digit Modalities Test; VLMT, verbal learning and memory test; BVMT-R, Brief Visuospatial Memory Test-Rrevised; TAP tonic alertness, Test battery for attention tonic

alertness; TAP phasic alertness, Test battery for attention phasic alertness.
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effects in low-intensity tasks such as walking in people with
a low fitness level. Future studies directly comparing arm vs.
leg ergometry may be informative regarding the possibility of
differential effects on walking ability.

Having said that, it should be noted that arm ergometry
training programs can differ substantially. Our arm cycling
spiroergometry as well as the training tool in our earlier study
needed more trunk and shoulder work, possibly explaining the
minor impact of the training despite the high volume of sessions.

While most secondary endpoints also showed no significant
treatment effects, we did observe some promising signals with
regard to increases in fitness indices in the training group,
particularly in Pmax. This effect was small, but mirrored the
findings in our earlier study (10).

As inpatient high-intensity training in pwMS with advanced
disability has been shown not only to be feasible but also to
show stronger effects than standard aerobic training (6), even a
higher training burden might be feasible for example in a closer
supervised initial phase of a longer-term training concept.

Although our patient cohort trained on their own with an
elaborate chip-card training program, a substantial amount of
telephone coaching was necessary to keep the patients adherent.
Most of them received telephone coaching at the beginning,
after 4 weeks, and after 8 weeks. For special questions, patients
could call or write an email at any time. Our adherence data
indicate that some patients had difficulties with the treatment
documentation. Splitting of the daily program into a number
of short sessions might have limited putative training effects in
that subgroup.

Therefore, we believe that any approach in progressive MS
stages needs a substantial amount of education and continued
personal support.

Qualitative evaluations are not standard in MS exercise trials,
and our data on these aspects are also limited. Future studies
might thus benefit from more detailed patient feedback to
gain the most information from pilot and feasibility studies on
exercise interventions (40).

Although the arm ergometry approach was justified by our
previous study (10), applying the intervention in a home-
based setting added another variable of uncertain weight to the
experimental approach.

Our study cohort was small and baseline data of 6MWT,
25FWT, and EDSS indicate a worse mobility status in the IG,
which might have blurred a possible differential effect of the
intervention. A longer trial duration might have led to stronger
effects. The long-term FU data of our study showed that more
patients became active through the trial and that they would
recommend the study to other pwMS, indicating that such
an extension might be feasible. Drug trials aiming to slow
progression hardly manage to show this effect through at least
2 years trial duration and several hundred patients (41). Most
work on exercise intervention studies in progressive MS were
administered in a rehabilitation or outpatient setting but not
attached to the daily lives of patients. Therefore, we believe
that longer durations are needed to show if exercise can slow
progression or even increase fitness and functioning. In fact, an
exercise training approach in progressive MS needs to aim for

a lifelong implementation, which might even need adaptation
when the disease worsens despite all efforts.

In contrast to earlier work (10), we could not show improved
performance on cognitive measures of verbal learning and
attention. Current evidence on exercise training on cognition in
MS does not indicate a benefit as summarized by a recent meta-
analysis (11). However, another small short-term study in RRMS
with low disability but significant cognitive impairment could
show some amelioration of deficits, although improvements
compared to controls could only be shown in two out of seven
neurocognitive measures (42).

Finally, although most current data exist with regard to
aerobic training, a combination of aerobic training with
resistance training or HIT trainingmight be more potent to affect
brain functioning as measured by cognitive tests (43).

CONCLUSION

Taken together, our pilot RCT indicates that home-based training
in progressive MS is feasible, but the current format seems
too weak in intensity and overall duration to justify any valid
conclusion on the effect of especially arm aerobic exercise on
mobility and cognitive performance in progressive MS.
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