
EBioMedicine 40 (2019) 636–642

Contents lists available at ScienceDirect

EBioMedicine

j ourna l homepage: www.eb iomedic ine.com
Research paper
Machine learning for detecting moyamoya disease in plain skull
radiography using a convolutional neural network
Tackeun Kim a, Jaehyuk Heo b, Dong-Kyu Jang c, Leonard Sunwoo d, Joonghee Kim e, Kyong Joon Lee d,
Si-Hyuck Kang f, Sang Jun Park g, O-Ki Kwon a,h, Chang Wan Oh a,h,⁎
a Department of Neurosurgery, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
b Department of Applied Statistics, The University of Suwon, 17, Wauan-gil, Bongdam-eup, Hwaseong-si, Gyeonggi-do 18323, Republic of Korea
c Department of Neurosurgery, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 56, Dongsu-ro, Bupyeong-gu, Incheon, 21431, Republic of Korea
d Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
e Department of Emergency Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
f Division of Cardiology, Department of InternalMedicine, Seoul National University BundangHospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
g Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do
13620, Republic of Korea
h Department of Neurosurgery, Seoul National University College of Medicine, 101 Daehak-Ro Jongno-Gu, Seoul 03080, Republic of Korea
⁎ Corresponding author at: Department of Neurosurg
Bundang Hospital, 82 Gumi-ro 173 beon-gil, Bundang-
13620, Republic of Korea.

E-mail address: wanoh@snu.ac.kr (C.W. Oh).

https://doi.org/10.1016/j.ebiom.2018.12.043
2352-3964/© 2018 The Authors. Published by Elsevier B.V
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 15 November 2018
Received in revised form 14 December 2018
Accepted 19 December 2018
Available online 29 December 2018
Background: Recently, innovative attempts have beenmade to identifymoyamoyadisease (MMD) by focusing on
the morphological differences in the head of MMD patients. Following the recent revolution in the development
of deep learning (DL) algorithms, we designed this study to determinewhether DL can distinguishMMD in plain
skull radiograph images.
Methods: Three hundred forty-five skull imageswere collected as anMMD-labeled dataset frompatients aged 18
to 50 years with definite MMD. As a control-labeled data set, 408 skull images of trauma patients were selected
by age and sexmatching. Skull imageswere partitioned into training and test datasets at a 7:3 ratio using permu-
tation. A total of six convolution layers were designed and trained. The accuracy and area under the receiver
operating characteristic (AUROC) curve were evaluated as classifier performance. To identify areas of attention,
gradient-weighted class activation mapping was applied. External validation was performed with a new dataset
from another hospital.
Findings: For the institutional test set, the classifier predicted the true label with 84·1% accuracy. Sensitivity and
specificity were both 0·84. AUROC was 0·91. MMD was predicted by attention to the lower face in most cases.
Overall accuracy for external validation data set was 75·9%.
Interpretation: DL can distinguish MMD cases within specific ages from controls in plain skull radiograph images
with considerable accuracy and AUROC. The viscerocranium may play a role in MMD-related skull features.
Fund: This work was supported by grant no. 18-2018-029 from the Seoul National University Bundang Hospital
Research Fund.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Moyamoyadisease (MMD) is a kind of rare cerebrovascular disease. It
is characterized by spontaneous occlusionof the terminal internal carotid
artery (ICA), proximal anterior cerebral artery, andproximalmiddle cere-
bral artery. As the vessel occlusion progresses, cerebral ischemia
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develops, leading to a transient ischemic attack or cerebral infarction.
Moreover, cerebral ischemia induces proliferation of collateral channels,
which mainly arise from choroidal arteries and are responsible for intra-
cerebral hemorrhage [1]. ThepathophysiologyofMMDisnotyet clear, al-
though significant genetic factors have recently been discovered [2]. In
terms of treatment, revascularization surgery is accepted as an effective
option for preventing both ischemic and hemorrhagic stroke [3,4].

Several investigators have made significant efforts to identify the
distinctive features of MMD in order to elucidate its pathophysiology
and pathobiology. The reports thus far have been consistent regarding
regional differences, with a high incidence and prevalence in East Asia
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Research in context

Evidence before this study

Moyamoya disease is a type of rare cerebrovascular disease, char-
acterized by spontaneous occlusion of the terminal internal carotid
artery, proximal anterior cerebral artery, and proximal middle cere-
bral artery. Innovative attempts have been made to identify novel
characteristics of moyamoya disease by focusing on morphologi-
cal differences in the heads of moyamoya disease patients. Direct
measurements show that cephalometric features of moyamoya
disease patients differ from those of the normal population. More-
over, network analysis of facial features revealed remarkable dif-
ferences around the eyes and forehead of Western moyamoya
disease patients. Previous three-dimensionalmorphologic analysis
of the internal carotid artery also confirmed differences in vascular
tortuosity and related hemodynamics.

Added value of this study

This is the first study to assess whether deep learning can distin-
guish moyamoya disease in plain skull radiograph images. We
add to the previous findings by showing a potential relationship
between moyamoya disease and morphological characteristics
of the head. Our results showed that deep learning can distinguish
moyamoya disease from a control group within specific ages with
considerable accuracy. Additionally, gradient-weighted class acti-
vationmapping analysis showed that, in most cases, prediction of
moyamoya disease could be made by attention to the lower face,
from the skull base to themandibular angle. These results suggest
that moyamoya disease patients have distinct features in the
viscerocranium, which contains the conduit between the heart
and brain.

Implications of all the available evidence

Based on this study and previous reports, moyamoya disease
seems to exhibit unique morphologic characteristics in the head.
Furthermore, we found that viscerocranium is themost distinctive
region, based on deep learning using skull radiographs. The origin
of the viscerocranium is the neural crest, whereas the
neurocranium is derived from the paraxial mesoderm. Considering
that steno-occlusive changes of the cerebral arteries inmoyamoya
disease occurred only in arteries of neural crest origin, the
viscerocranium, sharing an origin with moyamoya disease ves-
sels, might be affected by alteration in neural crest cells. Deep
learning may assist in diagnosing moyamoya disease with less in-
vasive tools;moreover, itmay also inspire a novel point of view for
assessment of skull images. Furthermore,moyamoya disease pre-
diction by deep learning with a non-invasive imaging technique
could be a useful tool with further development and validation.
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[5]. This epidemiologic trait has been supported by genetic differences
[6]. Female predominance is also a well-known epidemiologic charac-
teristic [5].

Typically, invasive examinations, such as cerebral angiography, are
required to make a diagnosis of MMD. However, innovative attempts
have recently beenmade to identify novel characteristics ofMMDby fo-
cusing on the morphological differences in the heads of MMD patients.
Direct measurements show that cephalometric features of MMD pa-
tients differ from those of the normal population [7].Moreover, network
analysis of facial features revealed remarkable differences around the
eyes and forehead of MMD patients [8].
With the recent revolution in the development of machine learning
algorithms, classification and prediction of large imaging datasets using
convolutional neural networks (CNNs) can recognize distinctive fea-
tures [9–15]. Thus, we designed this study to determine whether
MMD could be distinguished in plain skull radiograph images using
CNN analysis.

2. Materials and methods

2.1. Study enrollment

This study used electronic healthcare records (EHR) to identify the
morphologic features of skulls of MMD patients using deep learning.
The facilities are academic teaching hospitals located in South Korea
with N1400 beds. This study was approved by the institutional review
boards of Seoul National University Bundang Hospital (B-1808-484-
128) and Incheon St. Mary's Hospital (OC18REDI0125). The require-
ment for informed consent was waived.

The inclusion criteria for MMD group were as follows: 1) patients
aged 18 to 50 years, 2) patients with confirmed definite bilateral steno-
sis or occlusion of the terminal ICA, accompanied by basal collateral for-
mation that was verified by cerebral angiography, and 3) patients who
did not undergo surgical revascularization at the time of diagnosis.
Unilateral MMD was excluded to avoid possible heterogeneity in the
MMD group. A total of 623 patients were identified as MMD patients
with bilateral angiopathy. Skull radiographs taken outside of the speci-
fied age range were excluded because the skull shape changes with age
[16,17]. Post-surgical or defective (i.e., seriously rotated) skull images
were also not considered. Eligible skull radiograph images were avail-
able in 436 patients.

For the control group, patients underwent skull radiography in the
emergency department for minor trauma; this excluded any fracture,
dislocation, or evidence of a foreign body in skull images. In the same
age range, 4258 patients underwent skull radiograph scans for evalua-
tion of trauma. An additional reviewwas performed to exclude skull im-
ages taken post-operatively, those with fracture or foreign bodies, an
those that were severely defective, in order to exclude traumatic
changes in skull radiograph analysis.

2.2. Data partition and preprocessing

Each group was partitioned into training and test dataset at a 7:3
ratio using permutation. The image preprocessing procedure is summa-
rized as follows: 1) Markers indicating left and right are removed from
the original image using morphological operations including image
thresholding and connected component labelling. 2) Then, all images
are transformed to 256 × 256 square images using zero-padding and
image resizing as appropriate. 3) Images in the training dataset undergo
data augmentation procedure using a horizontal flip, rotation (within
5°), and horizontal shift (within 15%) producing a total of 50 folds of
augmented training dataset. Fig. 1 summarizes the flow of the entire
preprocessing.

2.3. Convolutional neural network classifier

We used Keras (ver. 2.20.0, https://keras.io/) over TensorFlow (ver.
1.8.0, https://www.tensorflow.org/) environment for CNN building,
training, and evaluation [18]. Input imageswere 256 × 256with a single
channel. The first two convolution layers were 3 × 3 kernel size and
used zero-padding without stride to maintain feature map size; these
were followed by maximum pooling with a 2 × 2 matrix. Using the
first two layers, 64 × 64 × 32 feature maps were generated. The next
two convolution layers were 3 × 3 kernel size and used zero-padding
without stride, followed by maximum pooling with a 2 × 2 matrix.
Using these two layers, 14 × 14 × 256 feature maps were made.
Through an additional two convolution layers, 10 × 10 × 64 feature

https://keras.io/
https://www.tensorflow.org/


Fig. 1. Diagram shows steps in image pre-processing. The skull image is of one of the authors. After resizing, each image is assigned to a training set or test set, although we present same
skull image in both sets. The images of the training set are augmented by random application of a horizontal flip, rotation within 5°, and horizontal shift within 15%.
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maps were produced and connected with 6400 fully connected nodes,
whichwere connectedwith 512 nodes of a hidden layer. Finally, a single
node generated predictive values using a sigmoid function ð f ðxÞ ¼ ex

exþ1Þ.
Each convolution layerwas activated by using the LeakyReLU function (f
(x)= 0 · 1 ∗ x for x b 0, f(x)= x for x ≥ 0) [19]. Throughout the designed
network, 4,135,905 parameters were ready to be trained (Fig. 2).

Binary cross-entropy function was adopted as loss function to fit bi-
nary classifier, and Adamax was used as optimizer function (learning
rate = 0·0001, beta1 = 0·9, and beta2 = 0·999) [20]. Early stopping
was set at the point of increment of validation loss with reference to
ten epochs.
2.4. Statistical analysis and model evaluation

All continuous variables are presented as mean ± standard devia-
tion and were analyzed by Student's t-test or paired t-test. Categorical
variables are presented as number (percent) and were analyzed by
Pearson's chi-squared test.

After completion of learning, the performance was evaluated using
the institutional test set that the trained classifier had never previously
encountered. A confusion matrix was made using the number of true
Fig. 2. Diagram shows schematic structure of convolutional n
positive (TP, predictsMMDasMMD), truenegative (TN, predicts control
as control), false positive (FP, predicts control asMMD), and false nega-
tive (FN,predictsMMDascontrol).Accuracyof theclassifierwasdefined
as TPþTN

TPþFPþTNþFN. Areaunder receiver operating characteristic (AUROC)was
calculatedwith predicted label and related sigmoid output value. Sensi-
tivity, specificity, positivepredictive value, andnegative predictive value
were calculated as per original definition. Confidence interval (CI) for
each value was deduced using exact binomial confidence limits [21].
2.5. Class activation map analysis

Each convolutional layer contains spatial information with features
deduced by convolutional filter application. Although we could obtain
predictive values throughout the established network,we needed to de-
termine the underlying basis for the predictions. Thus, we applied
gradient-weighted class activation mapping (Grad-CAM) as a visualiza-
tion tool for identifying certain features or regions of interest that made
the classifier predict [22]. This could be visualized through calculation of
the gradient of weights forming each convolution layer using global-
average-pooling. Thus, important (larger gradient) features could be
calculated and visualized in accordance with the original image.
eural network. The skull image is of one of the authors.
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2.6. External validation

Further validation was planned using skull images obtained from
other independent hospitals for the general performance assessment
of the classifier. The external validation skull images comprised a new
dataset collected by an independent hospital located in another city
and blinded to other investigators. We sent verification codes and
weights to that hospital. Then, confusion matrices were composed and
returned to our team to evaluate the accuracy of the classifier.
Fig. 3. Flow chart shows the schematic process of data collection and partitioning.
3. Results

Among all eligible patients, the sex ratios were statistically different
(p b 0·0001, Pearson chi-squared test) between the two groups (64·2%
vs. 39·0%, proportions of patients who were female). Thus, coarsened
exact matching was performed in this phase using sex and age, and
753 (345 MMD, 408 control) matched patients were selected. The
mean age of those patients was 35·2± 9·2 years. The proportion of fe-
male patients was 64.3% (484 of 753). The mean height and weight
were 164·1 ± 8·4 cm and 62·6 ± 14·1 kg, respectively.

The mean ages of the patients in the MMD and control group were
35·2 ± 9·1 years and 35·3 ± 9·1 years, respectively. The distribution
of age was not statistically different between the matched groups
(p = 0·92, t-test). The proportions of patients who were female were
63·8% (220 of 345) in the MMD group and 64·7% (264 of 408) in
the control group. Pearson chi-squared test for sex proportion yielded
a p-value of 0·85. The distributions of height and weight were not sta-
tistically different between two groups (Table 1).

Among the selected images, 226 skull images were separated as the
test set (100 for MMD and 126 for control) using random selection
(Fig. 3). The remaining 527 images were used in the training process,
in which 150 images were partitioned as the validation set. A total of
26,301 augmented images were used. The training process ended in
the 36th epoch reaching 99·3% accuracy for the training set and
99·1% for the validation set. In the evaluation process with separated
test sets, the classifier predicted the true label for 190 of 226 cases
reaching 84·1% accuracy (95% confidence interval [CI], 78·3–88·6%).
Sensitivity was 0·84 for MMD (95% CI, 0·78–0·89), and specificity
was 0·84 (95% CI, 0·79–0·88). AUROC was 0·91. Positive and negative
predictive values of the classifier were 0·81 (95% CI, 0·75–0·86) and
0·87 (95% CI, 0·82–0·91), respectively (Fig. 4).

Grad-CAM saliencymaps showed that prediction ofMMDwasmade
by attention to the lower face, from the skull base to the mandibular
angle inmost cases. In contrast, attention area for predicting the control
groupwasmore scattered and sparser. The ratio betweenmeanweights
in saliency maps of lower and upper image halves was 1·25 ± 0·19 in
true positive subjects (N = 84), whereas it was 0·98 ± 0·06 in true
negative subjects (N=106); this difference was statistically significant
(p 〈10−31). Representative Grad-CAMsaliencymaps projected for a cor-
responding test set image are shown in Fig. 5.

External validation showed overall accuracy to be 75·9% (95% CI,
68·5–81·9%). Sensitivity was 0·76 (95% CI, 0·69–0·82), and specificity
was 0·76 (95% CI, 0·70–0·81). Positive and negative predictive values
Table 1
Basic characteristics of enrolled subjects.

All Moyamoya group Control group p-value

Age (years) 35·2 ± 9·2 35·2 ± 9·1 35·3 ± 9·1 0·92a

Sex Male 269 (35·7) 125 (36·2) 144 (35.3) 0·85b

Female 484 (64·3) 220 (63·8) 264 (64·7)
Height (cm) 164·1 ± 8·4 164·2 ± 8·2 163·5 ± 9·2 0·41a

Weight (kg) 62·6 ± 14·1 63·1 ± 14·7 61·0 ± 11·9 0·16a

Continuous values are presented as mean ± standard deviation, while categorical values
are as number (percent).

a Student t-test, bPearson chi-square test.
were 0·66 (95% CI, 0·57–0·73) and 0·84 (95% CI, 0·77–0·89), respec-
tively. AUROC was 0·78 (Fig. 6).

4. Discussion

In this study, we determined whether MMD could be distinguished
in plain skull radiograph images using deep learning. Our results
showed that deep learning can indeed distinguish MMD from a control
group of trauma images with considerable accuracy and AUROC within
specific ages. We attempted to train our classifier using deeper pub-
lished networks, such as InceptionResNetV2, DenseNet201, and
VGG16 [23–25]. However, there was no particular performance advan-
tage in identifyingMMD; indeed, Grad-CAM analysis wasmore difficult
to understand with more scattered attention areas. Conversely, the loss
function diverged when four or fewer convolution layers were applied,
and the training processwas not performed properly.We chose to use a
methodology to verify separate test sets, rather than cross-validation
where all images were used for learning, because the most important
point we considered in designing the classifier was to ensure the accu-
racy of the classification of radiographs that the classifier had never
seen.We separated 226 (30%) imageswithout augmentation as an insti-
tutional test set and did not use a training process, in order to prevent
institutional over-fitting. Moreover, additional validation tests were
performed with a new dataset from a geographically separate hospital
for further general performance assessment.

Preceding studies that used deep learning for image diagnosis
mostly focused on diagnostic ability while comparing with human-
labeled (especially, radiologist-labeled) diagnosis using the same
image modalities [9,11,15]. For MMD diagnosis, the golden standard
has been cerebral angiography, althoughMR angiography or CT angiog-
raphy can show characteristic changes of cerebral vessels in MMD [1].
Plain skull images have not been used as a modality for diagnosing
MMD because it has been thought that distinctive features are not



Fig. 4.Charts show training process and evaluationmetrics. (a) As epochs proceed, loss of training and validation sets converges to near 0,while accuracy rose to near 0·99. (b) Area under
receiver operative characteristic curve is 0·91 for predicting separated test sets. (c) The confusion matrix shows 84·1% accuracy.

640 T. Kim et al. / EBioMedicine 40 (2019) 636–642
detectable. However, in our investigation using plain skull images, the
image classifier showed acceptable discrimination power over coinci-
dence through an overall accuracy of 84·1%. Thus, this classifier recog-
nized characteristics that had never been considered before. Machine
learning has already shown the possibility of recognizing features that
humans are unable to see and distinguish in medical image analysis.
For example, non-enhanced cardiac CT images usually did not allow
the diagnosis of cardiac abnormalities other than calcifications. How-
ever, a recent study reported that machine learning using texture anal-
ysis could identify features imperceptible to radiologists in detecting
myocardial infarction on non-contrast CT [14].

A few studies have investigated the relationship between MMD and
skull images. Qureshi et al. discussed the possible relationship between
Fig. 5.Matrix shows representative saliency maps. (a) and (b) show correctly classified image
attention areas are more scattered and sparser for predicting the control. (c) shows the cases w
cephalometric parameters and MMD [7], and they highlighted previ-
ous studies showing that cranial synostosis is related to reduced arte-
rial flow velocities and increased pulsatility index, which could
improve after surgical correction [26,27]. In contrast, MMD could
play a role in alteration of cephalometric parameters through increased
expression of various growth factors [28,29]. In short, alteration of
skull configuration could affect or could be affected by MMD. More re-
cently, Kraemer et al. investigated the facial landmarks of patients with
MMD in comparison with those of a matched control group [8]. They
concluded a resemblance among faces of Caucasian patients with idio-
pathic MMD and a difference frommatched controls, especially around
the nasion. However, the potential mechanism was not discussed in
detail.
s. Most moyamoya cases were classified by the attention around the lower face. However,
here the classifier predicts moyamoya as control, and (d) shows the opposite.



Fig. 6. Charts show the results of external validation. (a) The confusion matrix shows 75·9% accuracy. (b) Area under receiver operative characteristic curve is 0·78 for predicting the
external validation set.
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In the current study, Grad-CAM revealed that the classifier paid at-
tention to the viscerocranium rather than the neurocranium. This area
contains the common carotid artery and the ICA, which are the conduit
between the heart and brain. A previous three dimensional analysis re-
ported that themorphology of extradural ICAs ofMMDpatientswas dif-
ferent from that of normal subjects, particularly in tortuosity [30].
Although the report focused on petrous and cavernous segments of
ICAs, it seemed to be straighter along the entire ICA in MMD patients.
These different courses might influence the structure of the
viscerocranium, including the mandible, petrous bone, and their joints.

The origin of the viscerocranium is the neural crest, whereas the
neurocranium is derived from the paraxial mesoderm [31]. The neural
crest also is the origin for smoothmuscle cells and pericytes of the cere-
bral arteries of prosencephalon while the arteries of mesencephalon
and rhombencephalon are derived from mesodermal origin vessels
[32]. Recently, Komiyama introduced a hypothesis stating that MMD
could be regarded as a vascular form of neurocristopathy, because the
steno-occlusive changes of the cerebral arteries in MMD occurred only
in the arteries of neural crest origin [33]. Thus, the viscerocranium, shar-
ing an origin with MMD vessels, might be affected by alteration in neu-
ral crest cells.

A crucial limitation of this study was that we selected trauma pa-
tients as the control group. This was done for the following reasons.
First, most normal subjects would not undergo skull imaging without
a particular reason. In our EHR, most skull radiographs belonged to
patients who underwent cranial surgery or patients who needed an
evaluation of trauma. Second, if we selected patients who underwent
cranial surgery, neurosurgical disease (e.g., vascular or tumor) may act
as a confounding factor when extracting distinct features. Third, skull
radiographs would not present features that differed from those of nor-
mal subjects if the trauma did not cause skull damage. Thus, these pa-
tients were chosen as a reasonable control group in order to obtain a
sufficient number of skull radiographs frompatients without skull dam-
age. Nevertheless, the fact that the control group comprised traumatic
patients requires a consideration of the potential bias in interpreting
the results of the study.

Another consideration when interpreting the results of the current
study is that the study was derived from a high prevalence country,
South Korea. The large difference in the incidence of MMD, with a
marked East–West gradient, is suggestive of a founder effect in East
Asia. In Asia, in 95% of familiar and 79% of sporadic MMD, the RNF213
mutation p.R4810K is present as a founder mutation. Previously, the
c.14576G N A variant has been identified in 90% of Japanese patients,
79% of Korean patients, and 23% of Chinese patients [34–37]. Consider-
ing these prior observations, we cannot guarantee that our classifierwill
work properly amongWestern populationswith different genetic back-
grounds. Indeed, a previous investigation performed in Europe
concluded that Western MMD patients were different from matched
controls, especially around the nasion. Thus, interesting results may be
observed if our trainingmodel is applied to skull radiographs of individ-
uals from Western nations with correspondingly different genetic
backgrounds.

In addition to the rarity ofMMD, the strict inclusion criteria (definite
bilateralMMDand age range) to identify representative features of skull
images of MMD patients may have been a contributing factor for the
modest sample size in the present study. Moreover, some patients did
not have pre-operative skull images because this approach is not a rou-
tinely used diagnostic modality for MMD. As the control group had a
preponderance of men, coarsened exact matching was performed and
many eligible control subjects were excluded to meet age and sex
ratio restriction. In addition, some images had to be excluded due to fac-
tors such as foreign body presence and serious malalignment. Despite
the modest sample size, our classifier was trained with acceptable
reduction of loss function and could be applied to the institutional test
set, showing robust discriminative power. Moreover, the trained classi-
fier could predictMMDusing a newdataset from a separate hospital, al-
though overall accuracy dropped slightly. Although multi-centered
image collection could produce better performance, the provision of
medical images to other institutes as a research resource is strictly
prohibited in Korea. However, using a trained classifier with saved
weights, follow-up studies can be designed using boosted or transfer
learning achieved by other institutes in the future.

In brief, CNN can distinguish plain skull images of MMD from those
of a control group within specific age range with particular attention
to the viscerocranium, which had never been considered before. We
add to the previous findings by showing the potential relationship be-
tweenMMD andmorphological characteristics of the head. Deep learn-
ing may assist in diagnosing MMD with less invasive tools, and may
inspire a novel point of view for assessment of skull images.
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