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Abstract

The accumulation of advanced glycation end-products is a fundamental process that

is central to age-related decline in musculoskeletal tissues and locomotor system

function and other collagen-rich tissues. However, although computational studies of

advanced glycation end-product cross-links could be immensely valuable, this area

remains largely unexplored given the limited availability of structural parameters for

the derivation of force fields for Molecular Dynamics simulations. In this article, we

present the bonded force constants, atomic partial charges and geometry of the

arginine-lysine cross-links DOGDIC, GODIC, and MODIC. We have performed in

vacuo Molecular Dynamics simulations to validate their implementation against

quantum mechanical frequency calculations. A DOGDIC advanced glycation end-

product cross-link was then inserted into a model collagen fibril to explore structural

changes of collagen and dynamics in interstitial water. Unlike our previous studies of

glucosepane, our findings suggest that intra-collagen DOGDIC cross-links furthers

intra-collagen peptide hydrogen-bonding and does not promote the diffusion of

water through the collagen triple helices.
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1 | INTRODUCTION

Collagen makes up approximately one-third of protein in the human

body. Skeletal tissues such as tendons, ligaments, cartilage and bone,1

the basement membrane,2 and the cornea3 are particularly rich in colla-

gen. The mechanical properties of collagen are derived from its micro-

scopic structure,4,5 for example, type I collagen molecules assemble into

fibrillar structures to lend structure and stability to the extracellular

matrix (ECM). Within healthy young collagenous fibrils, enzyme-

mediated cross-links form between the non-helical telopeptide regions

of neighboring collagen molecules, adding tensile strength and

contributing to the desired bundling of collagen molecules.6 Owing to

the extraordinarily long half-life of some collagen types, up to 200 years

in equine tendon7 and over 100 years in articular cartilage,8 adventitious

chemical modifications, such as glycation events,9 result in the accumu-

lation of further cross-links by a spontaneous non-enzymatic glycation

reaction known as the Maillard reaction.10 In proteins, this reaction

yields a post-translational protein-adduct between the dicarbonyl moie-

ties of amino acid side chains within or between protein molecules,11

known as an advanced glycation end- product (AGE).

Studies have suggested that the accumulation of AGEs compro-

mise tissue function, increase the susceptibility to injury and reduce
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healing capacity. In addition, AGE cross-links are thought to contrib-

ute to several human pathologies, including neurological disorders,12

diabetes and cardiovascular disease,13 and rheumatoid arthritis.14 The

AGE cross-link glucosepane is known to be a major protein cross-link

of the senescent human matrix,15 accounting for >120 mol% of triple

helical collagen modification in diabetic patients.16

In recent years, our group has simulated all-atom models of fully

solvated full-length type I collagen,17,18 with each model in the order

of approximately 3000 amino acids in size. Our models have revealed

sites that favor the formation of glucosepane.17 More recently, a

study by Nash et al reported that an intra-collagen glucosepane

crosslink between two of the three collagen peptides making up the

collagen protein, resulted in voids within the helical collagen protein.15

The inclusion of the bulky AGE allowed water to diffuse between col-

lagen peptides, a finding which was supported by experimental evi-

dence using differential scanning calorimetry. Unlike glucosepane, the

3-deoxyglucosone- derived imidazolium cross-link DOGDIC has not

been shown to accumulate with age,16 which is likely to be the result

of competition of crosslinking sites on the collagen molecules.19 Nev-

ertheless, elevated levels of DOGDIC cross-links have been found in

patients with diabetes.16

To study AGEs at an atomistic level we require the complete deri-

vation of bonded parameters of the arginine-lysine methylglyoxal-,

glyoxal-, and 3-deoxyglucosone-derived imidazolium cross-links

(MODIC, GODIC, and DOGDIC, respectively). Using ForceGen,20 a

tool released by our group, we present a set of covalent bond length

and covalent bond angle force constants with corresponding geome-

try values for DOGDIC, GODIC and MODIC cross-links. A normal

mode analysis was performed to analyze the geometry against quan-

tum mechanical frequency analysis calculations. The parameters and

atomic coordinates for DOGDIC were added into the same model col-

lagen crystal structure as used in our earlier glucosepane studies. We

then used Molecular Dynamics (MD) to investigate structural changes

to cross-linked collagen peptides and the dynamics of interstitial

water. All force field and atom coordinate files have been made avail-

able to download (see Supporting Information for a list of simulation

and data files).

2 | COMPUTATIONAL METHODS

2.1 | Electronic structure calculations

The structure of each AGE (Figure 1), was constructed with methyl-

capped backbone groups using Avogadro.21 A short steepest descent

energy minimization procedure was performed to adjust inaccurate

bond lengths and bond angles; at this stage, atom types were assigned

using the Universal Force Field, pre-packaged with Avogadro. Elec-

tronic structure optimization and frequency calculations were per-

formed using Gaussian G09.22 The Hartree–Fock (HF) method and a

6-31G(p) basis set was employed, according to the Amber

forcefield,23 for electronic structure optimization with a tight thresh-

old, that is, 1.5 ×105, 1 ×105, 6 ×105, 4 × 105, for maximum force,

root mean squared (RMS) force, maximum displacement, and RMS dis-

placement, respectively. Optimized structures were checked for imag-

inary frequencies using vibrational frequency analysis. Ab inito

calculations were performed in a vacuum.

2.2 | Bonded force constant derivation

In this study, we approached the derivation of atomistic bonded force

constants through the diagonalisation of the Hessian. The Hessian

originates from the vibrational frequencies of an optimized cross-link

and describes the second order of the potential energy of the molecu-

lar system with respect to a small change in atomistic position.24 We

used ForceGen to yield bond length and bond angle force constants

and geometry values. A unique set of atom types and atom names

F IGURE 1 Atom labels used in the automated processing of force
constants and geometry values within ForceGen. Peptide backbones
are capped with methyl groups for the assignment of atomic partial
charges (blue line), and the red line indicates a separation of one
cross-link into two distinct residues for its inclusion into Gromacs
topology file
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were defined and used to populate two input files, one for the desired

bonded atom pairs and the other for the bond angle atom triplets. The

atom types were accompanied by the matching atom ID from the

Gaussian output files. Further instructions can be found at the soft-

ware website: https://sourceforge.net/projects/forcegen/ and

https://github.com/acnash/UCLCollagenGroup.

2.3 | Restrained electrostatic partial charge
derivation

The HF/6-31G(p) optimized structures were submitted to the pyRED

server (through an on-line submission to the R.E.D [RESP ESP charge

Derive] Server Development).25 Gaussian geometry optimization was

switched off and the capped groups were restrained for RESP charge

fitting to the central fragment resulting in a zero-net charge. Partial

atomic charges compatible with the Amber99SB-ildn force field were

assigned to each AGE structure via an entry in the Gromacs

aminoacid.rtp force field file.

2.4 | Model construction

The model building steps were replicated using the methods of Nash

et al.15 A short description is given here, and an accompanying guide

is linked in the Supporting Information. Two models were con-

structed; a collagen wildtype (WT model), and the collagen model

cross-linked with a DOGDIC AGE (AGE model). The collagen content

in both models was duplicated across two dimensions to increase the

system size and prevent periodic boundary condition artifacts.

The WT model was constructed using the 4Z1R26 crystal struc-

ture with an asymmetric unit cell. All water was removed, and incom-

plete sidechains were recovered using the Protein Preparation Wizard

in Schrödinger Maestro. An additional cell was constructed by repli-

cating the asymmetric unit cell on the y-axis. To prevent the short-

range interaction distance from being longer than half the unit cell

dimension, the four molecules and the crystallographic dimensions

were replicated normal to the long axis, yielding a total of eight colla-

gen proteins (Figure 2). These adjustments were made using the

CCP4 software package.27 The unit cell was solvated using tip3p

water molecules from the Amber99SB-ildn force field. The system

had net zero charge.

The AGE model was constructed by replicating the final unit cell

of the WT model (with water removed) and then removing two amino

acids (including the corresponding peptide backbone) on the same col-

lagen protein but different polypeptide chains. The DOGDIC structure

was built using the Build Tool in Avogadro and then positioned by

optimizing the distance between the peptide bonds of the existing

backbone with the backbone of the cross-linked amino acids whilst

keeping the unaltered collagen fixed. The force constants for bond

length and bond angle, atom names and types, atomic partial charges,

and non-bonded interaction forces were added to the GROMACS

Amber99SB-ildn forcefield files, having been parameterized using the

electronic structure calculations and bond force constant derivation

steps documented above. Dihedral angle force constants were taken

from existing force field values that best matched the structure of the

cross-link.

2.5 | Molecular dynamics simulation details

Molecular Dynamics simulations were performed using Gromacs ver-

sion 2018.228 with the leap-frog integrator and a time-step of

0.002 ps. Hydrogen bonds were holonomically constrained using the

LINCS constraint algorithm with a LINCS iteration of 1 and LINCS

order of 4. Neighborhood list updates were calculated using the Verlet

F IGURE 2 A representation of the constructed MD model from a side profile A, and a tilted orientation B, to illustrate the unit cell shape.
Collagen peptides are presented in blue, water in red, and the location of the DOGDIC cross-link in spheres. The unit cell has been replicated to
give a perspective of the fibrillar-like nature of the model [Color figure can be viewed at wileyonlinelibrary.com]
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cut-off scheme and updated every 10 steps (20 fs). Electrostatic char-

ges were treated using the Particle Mesh Ewald (PME) scheme with a

PME order of 4 and modified using a potential-shift. Temperature

fluctuated about the mean of 312.1 K ± 3.4 K and was controlled

using velocity rescaling with a time constant of 0.1 ps. Pressure was

set to 1 bar and controlled using uniform scaling of the unit cell with

the Parrinello–Rahman scheme and updated every 2 ps. A 1 nm short-

range LJ-6-12 cut-off was applied and modified using a potential-shift.

Energies, velocities, and coordinates were collected every 20 ps.

2.6 | System equilibration

Both WT and AGE systems were relaxed using the following steps (see

Figure 3 for an overview of the study design). Firstly, the solvated sys-

tems were subjected to an energy minimization using a steepest gradi-

ent descent. The systems were left to adjust until all forces had dropped

below 1000 kJ mol−1. A 1000 kJ mol−1 position restraint (across three

dimensions) was applied to the collagen backbone heavy atoms. Both

energy-minimized structures were subjected to a 50 ps NVT (fixed par-

ticle, volume, and temperature) simulation using the Berendsen thermo-

stat coupling. The velocities were preserved, the temperature coupling

was replaced with the velocity rescaling scheme and a Berendsen

pressure-coupling was applied. Both restrained systems adjusted for a

further 50 ps using the NPT ensemble (fixed particles, pressure, and

temperature). Finally, position restraints were removed, the pressure

coupling was replaced with the Parrinello–Rahman scheme and both

systems were left to run for 200 ns to equilibrate.

The final frame coordinate data for the WT model and AGE model

were then used to start six simulations per model using new velocities.

The simulations were left to run for 200 ns of which the final 150 ns

were used for production run analyses. Production run data (Gromacs

tpr, cpt, and mdp files) are available via the Supporting Information.

3 | RESULTS AND DISCUSSION

The first half of this study reports the calculated force field parame-

ters for the three AGE cross-links, which were then analyzed by

comparing MD normal mode analysis to QM (quantum mechanical)

calculations. The second half of this study features an investigation on

the presence of a DOGDIC cross-link within a solvated all-atom colla-

gen model.

3.1 | Force constant derivation

Cross-links DOGDIC, GODIC and MODIC were constructed using

Avogadro described above to match the corresponding schematic in

Figure 1. Methyl groups were used to terminate each backbone and

the system could reach a crude energy minimum. Structures were

then resolved further using ab initio calculations as described. Final

frequency calculations were performed over the optimized geometry

to check for imaginary frequencies and to yield the Hessian.

To calculate restrained atomic partial charges the Gaussian output

text file from each QM structure calculation was up-loaded to pyRED.

Each cross-link was composed from two residue entries in the

aminoacids.rtp force field file (a complete net partial charge of zero)

and combined with an entry in the Gromacs topology specbond.dat

file. A Gaussian ASCII output text file and a corresponding formatted

checkpoint file were loaded into ForceGen for the complete descrip-

tion of all bond length and bond angle force constants and geometry

values. The atomic partial charges and bond length values for

DOGDIC are presented in Table S1, for GODIC in Table S3, and for

MODIC in Table S5. Bond angle force constants and bond angle

values for DOGDIC are presented in Table S2, for GODIC in Table S4,

and for MODIC in Table S6. The bond lengths necessary to connect

each cross-link half between two peptide chains in Gromacs is pres-

ented in Table S7.

3.2 | Structural analysis of derived force constants

Structural stability from the derived atomic partial charges and the

force constants for bond length and bond angles of each cross-link

was analyzed using short cross-linked peptides. The N- and C-terminal

backbones of each minimum energy cross-link structure (Figure 4)

were terminated with neutral-backbone capped glycine residues. A

F IGURE 3 An overview of
the study design from
construction of both models
through to replicate simulations.
The red and black bars represent

the proportion of recorded
frames used for equilibration of
the system and production
analysis, respectively [Color
figure can be viewed at
wileyonlinelibrary.com]
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unit-cell of 4.0 nm × 4.0 nm × 4.0 nm was used, which is large enough

to avoid periodic boundary interaction artifacts. The system was

constructed in a vacuum to replicate the above ab initio optimization

set-up. Each cross-link system was minimized using an iterative

combination of conjugate gradients and L-BFGS energy minimization

techniques in double precision until a maximum force threshold of

0.001 kJ mol1 or less was reached.

A set of molecular eigenvalues was derived from normal mode

analysis using Gromacs. These were compared to the vibrational fre-

quencies from the HF electronic structure calculations used to derive

the force constant. As seen in Figure 5, the first six wave numbers,

that is, the three translational and three rotational degrees of freedom

for the whole molecule, are very small. Then, there is a similar trend in

frequency with a growing deviation as the wave number increases,

which is indicative of the difficulty in reproducing frequency modes in

peptides. It is also likely that different energy minima will produce dif-

ferent frequencies, and, unlike the ab initio calculations, the normal-

mode analysis will be affected by the four glycine residues. Finally,

each cross-linked system was subjected to a 100 ps simulation using

the velocity rescaling thermostat at 298 K, before switching to a

Nosé–Hoover thermostat with a pressure-coupling set to one atmo-

sphere and left to evolve for 10 ns. As seen in Figure 5, for a molecu-

lar model using paired potentials, the root-mean-square deviation

(RMSD) falls within expected thermal fluctuation levels, demonstrat-

ing a stable structure. It should be noted that the addition of the four

glycine residues will affect the RMSD time-series and we expect any

significant deviation from the resolved electronic structure of the

AGE to be partial effected by these neighboring residues.

3.3 | Molecular dynamics of arginine-lysine
crosslink collagen

3.3.1 | Conformational sampling

Production simulations were performed for 200 ns using the NPT

ensemble, as described in the methods section. For each system, the

AGE model (DOGDIC cross-linked) and the WT model (pure collagen

without an AGE crosslink), were simulated in six replicates using ran-

domly assigned velocities for the first step from a Boltzmann distribu-

tion at 312 K. Multiple simulations with randomly assigned velocities

were used to improve sampling of conformational space and improve

statistical quality in the analysis.29 The temperature distribution

(Figure S2) had a mean of 312 K, the pressure remained consistent

(Figure S3) along with the unit cell volume (Figure S4), and the poten-

tial energy distributions between each replicate were consistent

(Figure S1).

The RMSD of the backbone heavy atoms from each collagen mol-

ecule for all replicates (Figure S5) revealed little change after the initial

50 ns. However, two of the WT model replicates demonstrated subtle

changes (0.5-1 Å compared to the other four replicates) after 150 ns.

The AGE model replicates were highly consistent throughout the pro-

duction run simulations. A set of net RMSD calculations (ones in

which the RMSD of the backbone heavy atoms are calculated against

every previous frame) revealed several micro-states within each repli-

cate trajectory (Figure S6 and S7) where in particular the trajectory of

the first and third WT model replicates revealed different conforma-

tional states that correspond well with the basic RMSD calculation

presented earlier. In contrast, the net RMSD calculations for the AGE

model replicates show only very subtle changes in conformational

states, which is consistent with the earlier RMSD backbone calcula-

tions. We allowed each simulation to settle for the first 50 ns and only

the 50 to 200 ns timespan was used for further structural and water

analysis.

We explored the variation in conformational sampling by calculat-

ing the variance in backbone motion over the production run using

principal component analysis (PCA). PCA is an exploratory data analy-

sis technique often used to visualize data co-variances across vectors

called principal components (PC). The initial set of PCs capture the

greatest variance in a system. In Molecular Dynamics simulations vari-

ances plateau after approximately 15 to 20 PCs with the first set of

PCs representing the greatest amount of conformational variance.

PCA of all six WT and AGE model replicates (Figures S8 and S9) dem-

onstrates at least two structural minima in all but one case (replicate

F IGURE 4 Atomic structures of the three arginine-lysine cross-links DOGDIC, GODIC, and MODIC, taken from the energy minimum of
electronic structure calculations. Each cross-link includes a neutralized peptide backbone. Key atoms have been labeled to help orientate the
reader. Elements are represented by colored spheres: hydrogen - white, nitrogen - blue, oxygen - red, and carbon - teal. Key atoms have been
labeled to help orientate the reader [Color figure can be viewed at wileyonlinelibrary.com]
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3 of AGE model). There was no redundancy in conformational sam-

pling amongst replicates, suggesting extensive conformational

sampling.

3.3.2 | Collagen structure and interstitial water
analysis

The ECM comprises several hydrophilic components that either bind

to or are near collagen. For example, sulphated and non-sulphated gly-

cosaminoglycan (GAG) chains provide water retention properties to

the ECM.30 Both GAGs provide hydration and water transport to the

human dermis.31,32 We reported in earlier glucosepane studies that

aged tissue, with increased levels of glucosepane cross-links, retained

more water.15 Whilst preparing this manuscript, experimental infor-

mation on DOGDIC intra- and inter-molecular hydrogen bonding was

not available, however, one would expect some similarity to

Glucosepane.

The hydrogen-bond capacity of DOGDIC with the water environ-

ment and between the three collagen chains making up a collagen

molecule were calculated using MDAnalysis.33 Hydrogen-bonds were

defined using typical protein bond acceptor and donor atoms with a

bond distance of 3 Å and bond angle criteria of 120�. Data points

were obtained between 50 ns and 200 ns and all six replicates were

combined. DOGDIC donor atoms were: HD10, HD12, HD13, HD5,

HD6, HN, and the acceptor atoms were: N, ND2, ND4, ND5, ND6,

F IGURE 5 The molecular
dynamics derived normal-mode
analysis over the first 40 wave
numbers compared with
vibrational frequency analysis
from ab initio optimized
structures and accompanied by
the root mean squared deviation
over a 10 ns simulation [Color

figure can be viewed at
wileyonlinelibrary.com]
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OD1, OD2, OD3, OD4, OD5 (Figure 1). All hydrogen-bond analyses

were performed for all six replicates and the data output was com-

bined. Where a comparison between distributions was required, each

distribution was first tested for normality, and then based on that

result an appropriate test for the difference between distributions

was chosen.

The hydrogen-bond distribution between DOGDIC and water

was calculated (Figure 6A), resulting in a median of nine bonds, a mini-

mum of two bonds and a maximum of 19 bonds. The average number

of bonds was 9.4 with a SD of 2.5. The frequency of atom-bond par-

ticipation revealed that, despite the many number of polar regions on

the cross-link, the backbone nitrogen was predominately involved as a

donor (Figure 6C), whilst the hydroxyl groups along the cross-link

(Figure 6D) were predominately involved in hydrogen-bond formation,

more so than the backbone nitrogen or nitrogen atoms proximal to

the crosslink imidazole ring. A representation of the intra-collagen

cross-link interacting with water is presented in Figure 6B.

We have calculated the solvent accessible surface area (SASA)

trajectory distribution of a single collagen molecule in the WT model

and the cross-linked collagen molecule in the AGE model. We used

Shrake and Rupley's implementation of SASA as presented in the

MDTraj software suit.34 The default parameters of 960 points per

atom and an atomic radius of 0.14 nm was used. A test of normality

was performed using the Shapiro-Wilk test (P < .001) and a test of sig-

nificance difference in the median (Fligner–Killeen) suggested that the

cross-linked AGE model was more accessible to solvent than the WT

model (Figure 7A). However, although the differences were signifi-

cant, in relative terms these differences are not huge. The addition of

the large cross-link (Figure 8) may be responsible for this subtle

increase in surface area.

Collagen maintains a triple helix structure via a network of intra-

collagen hydrogen-bonds between the backbone nitrogen and oxygen

donor and acceptor atoms.35 We have calculated the distribution of

intra-collagen hydrogen-bonds between the WT model and the AGE

model across all replicates (Figure 7B). In all three instances of a poly-

peptide chain interacting with its two immediate neighbors (chains A…

BC, B…AC, and C…AB), the WT model has consistently fewer

hydrogen-bonds than the AGE model. A non-normal distribution was

F IGURE 6 The result of hydrogen bond analysis between the DOGDIC AGE cross-link and the water environment. A, The number of
hydrogen-bonds take on an almost normal distribution. B, A single frame representation of hydrogen bonding between water and the polar
hydroxyl groups of the cross-link. C, the number of recorded hydrogen bonds by bond donor and D, by bond acceptor. The atom naming is
consistent with those presented in the DOGDIC cross-link schematic [Color figure can be viewed at wileyonlinelibrary.com]
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confirmed using the Shapiro-Wilk test (P < .001) and a Fligner–Killeen

test of pair-wise comparison of variance revealed a significant differ-

ence in median number of hydrogen-bonds between AGE and WT

models. The presence of an AGE crosslink increased the median num-

ber of hydrogen-bonds from 16, 17, and 15 to 18 in the intra-collagen

peptides A…BC, B…AC, and C…AB, respectively.

The increased number of hydrogen-bonds in the AGE model

agrees with the position of the cross-link relative to the collagen poly-

peptide chains. Unlike glucosepane with its larger seven membered

ring, DOGDIC has a much smaller imidazole ring. This suggests that as

an intra-collagen cross-link, DOGDIC can pack parallel to the collagen

backbone as observed in these simulations (Figure 8). The packing

would result in an increased solvent accessible surface area, as

observed, and an increase in intra-collagen hydrogen-bonds, whilst

still being able to bond with interstitial water, which was also

observed.

4 | CONCLUSION

Reports from The Office for National Statistics (UK) show that there

are more people over 65 than children under 16. It is further expected

that in 20 years' time over half of the UK adult population will be over

50 and predictions suggest that children born today are expected to

F IGURE 7 A, The combined solvent accessible surface area calculations of all six replicates of the AGE model and WT Model presented as a
box-whisker distribution. The median, interquartile range and statistical significance between are presented. B, The distribution of hydrogen-
bonds between a collagen polypeptide chain and the two other collagen polypeptide chains (labeled A-C in the inset). In the WT model, a single
collagen protein was selected, in the AGE model, the collagen with the cross-link was selected [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 8 A visualization of
the centroid structure from the
combined trajectories of the AGE
model. The structure was isolated
having first calculated the RMSD
of all pairwise conformations and
then transformed these distances
into similarity scores. The
structure with the maximum
similarity score across the
combined trajectories was
visualized. The collagen is
represented in blue tube, semi-
transparent Van der Waals space
filling and the immediate

neighboring amino acids are
presented and labeled
accordingly. The DOGDIC
crosslink can be seen aligned
parallel with the collagen
polypeptide chains [Color figure
can be viewed at
wileyonlinelibrary.com]
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live beyond 100. We are fortunate to see such long-life spans when

half a century ago only one in 10 children would live into their 90s.

However, this longevity comes at the cost of managing the endemic

of diseases associated with an aging population. It is believed that the

accumulation in AGEs is a fundamental process central to age-related

decline in musculoskeletal tissues and locomotor system function.

AGE cross-link formation, specifically arginine-lysine cross-links,

within the tendon collagenous matrix is thought to render it more

resistant to proteolytic degradation, thereby allowing matrix damage

to accumulate and mechanical properties to deteriorate. However,

studies at the atomistic level of collagen molecular packing are few.

This article presents the bonded parameters for DOGDIC, GODIC and

MODIC to enable further study by those in this field of computational

chemistry.

Our implementation of an intra-collagen DOGDIC cross-link into

a model collagen presents different behavior from that uncovered in

our earlier studies on glucosepane. Whereas glucosepane was shown

to increase the interstitial water presence, our DOGDIC simulations

reveal a cross-link that does not disturb the local collagen structure; in

fact, the many polar regions and the small imidazole-like ring could

contribute to intra-collagen polypeptide packing.

There are limitations worth noting. Firstly, although the parame-

terization of the AGE-cross links was calculated using an established

ab initio method, there is currently, to the author's knowledge, no

known structurally resolved data to validate the force field parame-

ters. This limitation should be taken into consideration when inter-

preting the results. Secondly, the AGE cross-link was positioned

within the intra-collagen space rather than between collagen mole-

cules. Although there has been significant effort in determining

glycation reaction sites,15 it is still unknown whether in vivo forma-

tion favors intra- or inter-collagen locations. Finally, the collagen

crystal structures presented are significantly shorter than a complete

type I collagen protein, which measures just short of 300 nm. How-

ever, the cross-linking of shorter model collagen fragments has

yielded results that compare well with experimental data of human

tendon tissue.15
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