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Abstract: Water splitting driven by renewable energy sources is considered a sustainable way of
hydrogen production, an ideal fuel to overcome the energy issue and its environmental challenges.
The rational design of electrocatalysts serves as a critical point to achieve efficient water splitting.
Layered double hydroxides (LDHs) with two-dimensionally (2D) layered structures hold great
potential in electrocatalysis owing to their ease of preparation, structural flexibility, and tenability.
However, their application in catalysis is limited due to their low activity attributed to structural
stacking with irrational electronic structures, and their sluggish mass transfers. To overcome this
challenge, attempts have been made toward adjusting the morphological and electronic structure
using appropriate design strategies. This review highlights the current progress made on design
strategies of transition metal-based LDHs (TM-LDHs) and their application as novel catalysts for
oxygen evolution reactions (OERs) in alkaline conditions. We describe various strategies employed
to regulate the electronic structure and composition of TM-LDHs and we discuss their influence on
OER performance. Finally, significant challenges and potential research directions are put forward to
promote the possible future development of these novel TM-LDHs catalysts.

Keywords: material design; transition metal layered double hydroxides; 2D nanosheets; oxygen
evolution reaction

1. Introduction

An increase in global demand for energy coupled with the rising environmental con-
cerns related to fossil fuel use has motivated the world to search for alternative energy
sources that are efficient, affordable, and environment friendly [1–4]. In this context, hy-
drogen, as an excellent energy carrier and abundant source with the highest energy per
mass of any fuel, is considered an alternative low-carbon and sustainable energy source
to replace fossil fuels [5–7]. Current hydrogen production is mainly sourced from fossil
fuels involving CO2 production, which is not sustainable [8–10]. To address issues related
to energy security, environmental pollution, and sustainability, searching for viable alterna-
tives for hydrogen production that excludes emissions of any greenhouse gases is the key
element. Among those, renewable energy-driven water splitting is one of the sustainable
ways of hydrogen production, with a number of important applications (Figure 1), includ-
ing the generation of clean electricity. Water splitting proceeds via two half-cell redox
reactions; the reduction reaction is called the hydrogen evolution reaction (HER) [11,12]
and the oxidation process is called the oxygen evolution reaction (OER) [13,14]. The OER
is sluggish kinetically due to the process involving the formation of O–O double bonds,
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which requires the removal of four electrons with multiple intermediates, which, in turn,
leads to a higher overpotential [15]. Therefore, a novel catalyst is desirable to reduce the
higher overpotential and to facilitate the reaction kinetics of OERs.
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Currently, outstanding electrocatalysts for HERs and OERs with prominent perfor-
mances are based on Pt and RuO2/IrO2, respectively, which are expensive and scarce,
limiting their extensive applications in scale-up progress [16,17]. Thus far, efforts have
been dedicated to finding an economical and practical alternative to noble metal-based
electrocatalysts. Among those alternative electrocatalysts reported for water electrocataly-
sis, first-row transition metal-based catalysts (TMs), such as Fe, Co, and Ni, have drawn
considerable attention due to their improved activity [18–21]. Owing to their higher abun-
dance, low cost, and environmental friendliness, TMs, and their oxides [22], hydroxides [23],
chalcogenides [24], and phosphides [25], have shown potential applications as OER catalyst
alternative to precious metals. Among various nonprecious metal-based OER electrocata-
lysts that have been studied so far, transition metal layered double hydroxides (TM-LDHs)
with two-dimensional (2D) structures have invoked a lot of attention lately [26,27].

LDHs are 2D anionic lamellar compounds with brucite-like host layers consisting
of a positive charge and charge-balancing (exchangeable) interlayer anions, and they are
represented as M2+

1−xM3+
x(OH)2(An−)x/n·yH2O, where M2+ represents a divalent cation,

M3+ is a trivalent metal cation, An− is a nonframework charge compensating an inorganic
or organic anion, and the x value ranges between 0.2 and 0.4 (Figure 2) [28–31]. LDHs
are characterized by positively charged [M2+

1−xMx
3+(OH)2]q+ layers where the interlayer

region is occupied with the anions and water molecule [31]. The composition and elec-
tronic structure of TM-LDHs can be tuned through the accommodation of multiple metallic
cations [32]. Furthermore, LDHs can be designed into a variety of structures, including sin-
gle or few-layer nanosheets, exposing more active sites that, in turn, enhance their activity
toward the OER [33]. Defects can be introduced through nanoscale porous engineering that
enhances their OER performance by exposing the large number of electrochemically active
sites [34–36]. Fewer active sites and poor electronic conductivity are the main challenges
limiting the OER electrocatalytic performance of LDHs [37–39].
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Numerous efforts have been dedicated to overcoming these limitations using differ-
ent strategies such as doping of anions including sulfur [41], carbon [42], and nitrides [43],
exfoliation into single or few-layer nanosheets [33], and engineering nanopores [35].

There have been many reports published on TM-LDHs in the past few years, mainly
focusing on their synthesis and applications in energy conversion and storage. However,
due to the immensity and rapid progress of the field, it is crucial to provide updated
reviews for further improvement in the field. In this review, we present a snapshot of the
recent advances in TM-LDHs for OERs mainly targeting newcomers to the field as opposed
to earlier reviews, which are very exhaustive. Furthermore, this review focuses only on
the first-row TMs (Ni, Co, and Fe) and their applications for OERs in alkaline conditions,
making it concise and easy to understand. In addition, the overall progress from catalyst
selection, design, to application is presented here, providing holistic information for further
development in the field.

Herein, the recent progress and achievements on 2D TM-LDHs nanosheets and their
applications in OER in alkaline conditions are briefly summarized. First, an overview
of the electrocatalytic water splitting and mechanisms of OER in alkaline media is dis-
cussed. Then, fundamental parameters to evaluate electrocatalysts for efficient water
electrocatalysis are discussed. After that, recent design strategies employed to improve the
OER activities of 2D TM-LDH nanosheets, including morphological and microstructure
engineering, composition tuning and electronic structure optimization, and hybridizing
with conductive substrates to improve conductivity, are briefly reviewed. This work will
enable readers to become familiar with the past and present advancements of this field
while highlighting future prospects.

2. Electrocatalytic Water Splitting
2.1. Mechanism of OER in Alkaline Media

Electrocatalytic water splitting is an endothermic process and requires thermodynamic
work to be done, requiring a potential equivalent to 1.23 V, theoretically [44]. Generally,
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water splitting proceeds via two half-cell reactions, in which hydrogen generates at the
cathode and oxygen generates at the anode.

2H2O + Energy→ 2H2 + O2 (1)

Practically, a higher voltage is required, and the process is more complicated. Gener-
ally, the two half-cell reactions in alkaline conditions can be expressed as follows:

2OH− → 1/2O2 + H2O + 2e− (Eanode = 1.23 V vs. RHE) (2)

2H2O + 2e− → 2H2 + 2OH− (Ecathode = 0.0 V vs. RHE) (3)

where Eanode and Ecathode are the equilibrium potentials for OER and HER in a reversible
hydrogen electrode (RHE), respectively, at 25 ◦C and 1 atm.

In water electrolysis, the OER is a limiting reaction requiring a higher overpotential
than the equilibrium potential compared to the HER, which can proceed at a potential close
to its equilibrium potential. Understanding the mechanisms of HER and OER is paramount
in designing high-performing electrocatalysts that can deliver high current densities. In
contrast to HER, OER involves four-electron transport process [44], as shown in Figure 3.
Here, the intermediates involved are represented as O*, HO*, and HOO*, whereas the
active site is represented as “M”. On the active site, OH− is adsorbed to give M–OH. M–O
is produced from M–OH through the removal of a coupled proton and electron. As can
be seen from Figure 3A, two different pathways lead to O2 formation. The first pathway
involves the reaction between M–O and OH−, leading to the formation of a M–OOH
intermediate, followed by active site regeneration through the deprotonation of M–OOH,
which leads to O2 formation. The second pathway involves a combination between the
two M–O species, leading to the formation of O2 and M. Compared to the first pathway,
the second pathway is considered to have a large activation barrier.
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Chemical Society, 2018. (B) Plots of Gibbs free energy of reactive species and intermediates of the OER (horizontal lines)
vs. the reaction coordinate. At three different electrode potentials, the blue and red lines represent the energetics of a real
catalyst and an ideal catalyst, respectively. The energetics at the electrode potential where all thermochemical barriers
disappear (“thermoc”) are indicated by dashed lines. Reproduced with permission from [45]. WILEY-VCH Verlag GmbH &
Co. KGaA, Weinheim, 2018.

The Gibbs free energy changes (∆G) obtained during the process of chemical reaction
also provides additional information regarding the intrinsic activities and kinetics of
a given catalyst (Figure 3B). The Gibbs energy for an ideal catalyst and the chemosorption
energies are equal for each step (∆G1 = ∆G2 = ∆G3 = ∆G4), whereas, in the case of real
catalysts, that is not true, where the values can be assumed as: (∆G3 > ∆G1 = ∆G2 > ∆G4).
For both ideal and real catalysts, the OER cannot proceed at the electrode potential (E1),
because of the higher overpotential required at this step. The value of ∆G3 remains positive
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for real catalysts, while other intermediates changes to positive or diminish, indicating
that the catalyst surface interaction of OOH(ad) is weaker. Therefore, the design of OER
catalysts with improved performance should consider M-O binding optimization within
the intermediates [46].

The most common OER mechanisms based on thermodynamics can proceed through
the following two mechanisms: lattice oxygen-mediated mechanism (LOM) and adsorbate
evolution mechanism (AEM) (Figure 4) [47]. In the AEM, the process involves a four-
electron transfer where all the metallic active sites facilitate the reaction of oxygen interme-
diate species, resulting in a decrease of overpotential. The fundamental steps for AEM can
be described as follows in alkaline conditions [48]:

4OH− → OH* + 3OH− + e− (4)

OH* + 3OH− + e− → O* + 2OH+ + H2O + 2e− (5)

O* +2OH− + H2O + 2e− → OOH* + OH+ + 2H2O+ e− (6)

OOH* + OH− + 2H2O + 3e− → O2(g) + 2H2O + H+ + 4e− (7)

In the LOM, scaling limitations occurring in the AEM improves and, basically, it involves
the oxidation of lattice oxygen. The acidic-based LOM can be described as follows [48]:

H2O + *→ OH* + H+ + e− (8)

OH*→ O* + H+ + e− (9)

O* + OL → O2 + Vo (10)

Vo + H2O→ OH* + H+ + e− (11)

H*→ * + H+ + e− (12)

where * is an active site, OL is lattice oxygen, and Vo is a surface oxygen vacancy.

2.2. Fundamental Parameters to Evaluate Electrocatalysts

Selecting and evaluating electrocatalysts for large-scale water electrolysis is fundamen-
tal in the development process of a sustainable energy future. To evaluate the performance
of a given catalyst, the following basic criteria are widely recognized.
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2.2.1. Overpotential (η)

Electrochemical reactions cannot proceed at 1.23 V vs. RHE, known as the ther-
modynamic potential, without considering the kinetic hindrances encountered in a real
system [50]. Therefore, an externally applied potential is required to overcome reaction
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barriers, which is called the overpotential. Based on the Nernst equation (Equation (13)),
the applied potential for an electrocatalytic reaction can be calculated as [39]:

E = E0 +
RT
nF

ln
[Ox]
[Red]

(13)

where E is the potential, E0 is the standard potential, R is the ideal gas constant, T is the
absolute temperature (K), n is the moles of electrons, F is the Faraday constant, [Red] is the
reduced molecules (moles), and [Ox] is the oxidized molecules (moles).

Generally, the overpotential can be estimated as follows:

η = E− Eeq (14)

where η is the overpotential, E is the applied potential, and Eeq is the equilibrium potential.

2.2.2. Tafel Slope (b)

The Tafel equation is one of the fundamental parameters in electrolysis, formulating
a quantitative relationship between the current and applied potential [51]. It depicts how the
current responds sensitively to an overpotential. It is derived from the polarization curve
as a plot of the logarithm of current density (log(j)) versus η. In the Tafel plot, the linear
correlation between the Tafel slope (b) and the exchange current density (jo) is expressed. The
Tafel slope can be estimated using the following equation, where b represents the Tafel slope:

η = b log(j) + a (15)

A low Tafel slope value is an indication of fast reaction kinetics, characteristics of good
OER electrocatalysts [52]. The Tafel slope enables us to elucidate the reaction mechanism
of electrocatalysts, providing information about the rate-determining step [53].

2.2.3. Turnover Frequency (TOF)

It is important to understand the specific activity of a given catalyst to gain insight into
its activity differences based on different mass loadings. TOF can be described as the rate
at which electrons are delivered per surface metal atom per second or it is the rate at which
molecules evolve per active site per unit time [54]. As a measure of catalyst efficiency, TOF
can be described as the number of molecules converted per active site per unit time [44].
TOF can be calculated as follows:

TOF =
J × A

4× F× n
(16)

where J (mA cm−2) is the measured current density at a given overpotential, A is the
surface area of the catalyst, F is the Faraday constant, and n is the number of moles of the
active materials. For economical and practical applications, catalysts with TOF values are
highly required because of their short reaction time.

2.2.4. Electrochemical Surface Area (ECSA)

As water electrolysis is a surface reaction taking place at active sites, ECSA is a key
parameter to evaluate the activity of a given catalyst. As the area is more exposed, so are
the active sites enhancing higher mass transfers, facilitating the rate of reaction. It will
allow us to determine quantitatively the reacting interface of a given catalyst [55]. The most
common method of calculating ECSA is based on the electric double layer capacitance (Cdl).
The Cdl can be estimated by measuring cyclic voltammograms (CVs) in a non-Faradaic
potential region at different scan rates. Once Cdl is estimated, the ECSA can be estimated as:

ECSA =
Cdl
Cs

(17)
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where Cs is the specific capacitance.

2.2.5. Stability

For commercial applications, the long-term stability of a given catalyst is top priority.
Generally, the OER catalyst stability can be evaluated by measuring the change in activity
or change in physicochemical properties of the catalyst. The activity changes can be
measured electrochemically using chronoamperometry/chronopotentiometry and cyclic
voltammetry. The cyclic voltammetry reported usually ranges from 250 to 1000 cycles for
OER catalyst stability tests. We can also check stabilities using chronoamperometry (fixed
potential) or chronopotentiometry (fixed current) running for a given period of time. Given
that, a stable current density of 10 mA cm−2 or a constant overpotential at 10 mA cm−2 over
a period of the stability test is an indicator of the material’s durability. Another technique of
evaluating durability includes the analysis of spent electrolytes using inductively coupled
plasma mass spectrometry (IPC-MS).

3. Design Strategies of TM-Based LDHs for Improved OER Catalysis

The TM-LDHs are potential candidates for electrocatalysis because of their unique
features, including their flexibility to incorporate metals of different valence states. How-
ever, they commonly suffer from poor catalytic performance, mainly attributed to their
low conductivity and insufficient exposure of active sites with poor intrinsic activities. To
overcome those challenges, several design strategies have been developed and employed.

3.1. Structural and Morphological Engineering

It is well-known that the performance of OER electrocatalysts is highly dependent on
the degree of exposure of active sites, which, in turn, is directly affected by the structural
and morphological properties of the catalyst material [56–58]. Several strategies have been
employed to optimize the morphology of LDHs such as exfoliation [59–62], creation of
defects and pores [63,64], and alteration of the assembly of the surface structures [59,65].

3.1.1. Exfoliation

Exfoliation is a technique employed to delaminate atomically stacked layers of LDHs
into a single nanosheet layer with an ultrahigh specific area and to expose more active sites
that are available at the surface-active catalytic materials [66]. Accordingly, the exfoliated
materials exhibit unique electrical, chemical, and optical properties compared to their
counter bulk materials. Various exfoliation approaches such as liquid- and dry-based have
been used in the past years.

In the liquid-type exfoliation, the solvent molecule interacts with the layers of bulk
TM-LDHs, enlarges the basal spacing, and decreases the interaction between the metal layer
and anions, allowing the formation of thin nanosheets. The first exfoliation strategy was
employed by Song and Hu using liquid exfoliation method to enhance the activity of NiFe-,
CoCo-, and NiCo-LDHs for OER catalysis [59]. With this strategy, they were able to produce
single-layer nanosheets with a higher OER performance without altering the composition and
structure of the bulk LDHs. Compared to bulk LDHs, the exfoliated nanosheet performances
have improved by 2.6-, 3.4-, and 4.5-fold for CoCo, NiCo, and NiFe-LDHs, respectively, for
OER catalysis. Furthermore, Zhou et al. also adopted the liquid-based exfoliation technique
to exfoliate CoFe LDHs to a single layer with multiple vacancies [67]. They used HNO3
to destroy the strong attraction between host layers and interlayer anions, leading to the
formation of a single layer. The acid-etched CoFe LDHs have demonstrated a higher OER
performance compared to bulk CoFe LDHs, owing to its creation of abundant vacancies of
Co, Fe, and O with multiple defects, offering more active sites.

Despite its advantages, liquid-based exfoliation may suffer from the restacking of
LDHs after the removal of exfoliating liquid, and there is also a probability of the ad-
sorption of solvent molecules to LDHs, reducing its activity by blocking surface active
sites [68,69]. Owing to its environmental friendliness, short treatment time, and ease of
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introduction of active species, plasma exfoliation has risen as an alternative method to
exfoliate LDH materials [69,70]. Wang et al. employed N plasma to exfoliate bulk CoFe
LDHs into edge-rich ultrathin LDH nanosheets (Figure 5A–F) [71]. The exfoliation process
led to the formation of multiple pores, enhancing the surface area, and creating rich edges
with a thickness of only 1.6 nm (Figure 5E). Furthermore, the doping of N led to electron
rearrangement in the reactive site, which, on the other hand, facilitates the adsorption
of OER intermediates. Owing to its electronic and structural changes, the N-CoFe LDH
nanosheet has demonstrated the lowest overpotential of 281 mV compared to bulk CoFe
LDH (324 mV) to generate a current density of 10 mA cm−2 (Figure 5F). In addition to
a change in the bulk layer to single layer in LDHs, the creation of vacancies could also lead
to improved OER activities through enhancing the exposure of active surface atoms [72].
In this regard, Wang et al. successfully exfoliated and introduced multiple vacancies into
CoFe LDHs using Ar-plasma etching technique (Figure 5G). Compared to bulk CoFe LDH,
the ultrathin 2D CoFe nanosheets exhibited improved OER activity. With the application of
Ar-plasma, they were able to break the interlayer bonds in the bulk LDHs, resulting in the
formation of a single layer of 0.68 nm in thickness (Figure 5H). With this process, multiple
vacancies were created that would, in turn, tune the electronic structure and property of
the material, hence enhancing its OER activity. The CoFe LDHs-Ar nanosheet exhibited
a lower overpotential of 266 mV at 10 mA cm−2 compared to bulk CoFe LDH that required
321 mV at the same current density (Figure 5I). Furthermore, CoFe LDHs-Ar nanosheets
showed a minimum Tafel slope of 37.85 mV dec−1, an indication of a faster kinetic process
in contrast to bulk CoFe LDHs that showed a higher Tafel slope of 57.05 mV dec−1. Added
to these, Liu et al. also demonstrated an enhancement of the catalytic activity of NiCo-
LDHs by exfoliating using Ar-plasma [62]. The as-obtained NiCo-LDHs/Ar nanosheet
was only 1.1 nm in thickness with richer defects compared to bulk NiCo-LDHs. As a result,
the NiCo-LDHs/Ar nanosheet has demonstrated a higher activity with an overpotential as
low as 299 mV at a current density of 10 mA cm−2 and fast reaction kinetics with a low
Tafel slope of 45 mV dec−1 compared to pristine NiCo-LDH. A comparison of the OER
activities of exfoliated TM-LDHs is given in Table 1.

Table 1. Comparison of OER activities of exfoliated TM-LDHs (η is at 10 mA cm−2).

Catalyst Exfoliation
Method

Overpotential
(mV vs. RHE) Electrolyte Ref.

NiCo LDH O2-Plasma 367 mV 1 M KOH [61]
FeNi LDHs N2-Plasma 316 mV 1 M KOH [73]

PA-ZnFeCo LDH Liquid based 221 mV 1 M KOH [74]
CoCo, NiCo and NiFe LDHs Liquid based 300 mV 1 M KOH [59]

NiCo-LDHs Ar-Plasma 299 mV 1 M NaOH [62]
N-CoFe LDHs N2-Plasma 233 mV 1 M KOH [71]

CoFe LDHs Ar-Plasma 266 mV 1 M KOH [69]
Ni-Co-F O2-Plasma 300 mV 1 M KOH [1]

There are also other exfoliation strategies, including solid-state exfoliation, Ostwald
ripening exfoliation, and supercritical ethanol exfoliation that can also be employed to
optimize the activity of TM-LDHs [75]. For instance, Li et al. employed the solid-phase
exfoliation strategy to obtain thin layers of nanosheets from NiFe LDHs and graphene oxide
(GO) [76]. The exfoliated heterostructure nano-hybrids demonstrated a higher activity with
a Tafel slope of 49 mV dec−1 and a lower overpotential of 273 mV at a current density of
30 mA cm−2, benefiting from the enhanced charge transfer and exposure of active sites.
Ostwald ripening, a process of the formation of large particles from the dissolution of
smaller particles to reach equilibrium, can also be employed to exfoliate bulk LDHs to thin
nanosheets. Chen et al. used the Ostwald ripening-driven exfoliation strategy to exfoliate
NiFe LDHs into ultrathin and vertically aligned nanosheets, which resulted in an enhanced
activity as a result of the increase in surface area and the exposure of active sites and
edges. This technique is simple, and the process does not require any exfoliating reagent or
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surfactant, and it can be applied to other 2D LDHs for novel applications [60]. The exfoliated
ultrathin NiFe nanosheets enhanced the OER performance with a low overpotential of
292 mV to reach a current density of 10 mA cm−2 and a long-term stability of more than 60 h.
Ma et al. developed Ni2+Mn3+ LDHs through organic anion exchange liquid-exfoliation
method [77]. The exfoliated nanoplate exhibited a regular lamellar stacking feature with
an interlayer spacing of ∼0.80 nm and a thickness of approximately 10 nm, as visualized
from high-resolution transmission electron microscopy (HRTEM). The as-prepared NiMn
LDH nanosheets exhibited an overpotential of 0.36 V for oxygen evolution catalysis in
1 M KOH.
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3.1.2. Defect Engineering

The engineering of LDH materials with rich edge sites is critical toward developing
and designing improved catalytic materials. Introducing more active sites that improve the
catalytic activity of materials is the center of focus in the fields of catalysis [78,79]. One of
the methods employed to increase the number of active sites is through structural defect
engineering of the catalyst material via generating massive electrochemically active grain
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boundaries in the TM oxides [80,81]. Different strategies have been used to create defects
in LDHs, such as doping [82], morphological tuning [83], etching [84], and controlled
growth [85]. Wang et al. were able to synthesize Ni2+ or Fe3+ defect-rich NiFe LDHs
nanosheets [86]. The process involved the synthesis of NiFeAl-LDHs and NiZnFe-LDHs
using the conventional hydrothermal technique, followed by etching using a strong alkali,
resulting in the creation of defects (Figure 6A–C). The creation of defects in NiFe LDH
nanosheets subsequently altered the surface electronic properties, improving their OER
activities. As a result of creation of defects, NiFe LDHs-VFe and NiFe LDHs-VNi have
demonstrated lower overpotentials of 245 and 266 mV, respectively, in contrast to bulk
NiFe LDHs that exhibited an overpotential of 299 mV to generate a current density of
10 mA cm−2. In addition to cationic defects, the introduction of anionic defects, including
oxygen vacancies, can enhance the activity of a given material through facilitating the
adsorption of OH− intermediates [87,88]. Liu et al. were able to improve both the HER and
OER catalytic activities of bulk CoFe LDH through delamination and exfoliation [89]. They
first synthesized bulk CoFe LDHs using hydrothermal technique, and the material was
treated in a mixture of dimethylformamide (DMF)/ethanol to obtain ultrathin CoFe-LDHs
rich in defects (Figure 6D). The process led to the formation of a 0.8 nm ultrathin nanosheet
(Figure 6D), demonstrating activity enhancement requiring a lower overpotential of 300 mV
at a current density of 10 mA cm−2. The enhanced activity is attributed to the creation
of defects and improved conductivity of the electrode material. Zhang et al. showed that
the defect-rich ultrathin Co(OH)2 nanoarray exhibited an OER activity 3–4 times higher
than that of commercial RuO2 [90]. A defect-rich, porous NiFe-LDH monolayer, only
0.8 nm in thickness, was synthesized, as demonstrated in Figure 6E. Owing to its rich
defects and high porosity, NiFe-LDH showed a higher catalytic activity (Figure 6F,G). To
manipulate the coordinately unsaturated metal sites in NiFe LDHs, Wu et al. employed a
defect engineering strategy [91]. They used fluoride adsorbate to cover metal sites upon
preparation and later remove electrochemically to control unsaturated metal sites on NiFe
LDHs, which was used as an OER electrocatalyst. The optimized fluoride-pre-covered
NiFe LDH exhibited a higher catalytic activity, requiring an overpotential of only 243 mV
at a current density of 10 mA cm−2.

3.1.3. Facet Engineering

Facet engineering of nanostructured materials is one of the strategies employed to
optimize catalytic activities through enhancing the exposure of more active sites [92]. The
rational design and development of a new catalyst material with active facets, favorable
atomic structure, and coordination is the most promising approach in exposing highly reac-
tive sites toward accelerating surface kinetics [93]. Reports have indicated that variations in
the exposed facets within the same material can lead to different catalytic performances [94].
Gao et al. investigated the facet-dependent performances of well-defined Co3O4 cubes
through a combination of both experimental and theoretical studies [94]. They determined
experimentally that Co3O4 octahedra with exposed (111) planes demonstrated a higher
performance compared to Co3O4 cubes with exposed (001) planes, because of the more
exposed active sites and richer Co2+. Furthermore, they employed density functional the-
ory (DFT)-based calculations to understand the interaction mechanisms of Co3O4 planes
with Li2O2 in the OER and oxygen reduction reaction (ORR) processes (Figure 6H). The
theoretical calculations revealed that Co3O4 (111) has a lower activation barrier of O2
desorption in the OER.

In their recent work, Zhang et al. reported how the catalytic activity of LDHs are
affected by the exposure of facets [95]. The hydrothermally synthesized NiFe-LDH has
facets of the (011) basal plane and (100 and 110) facets corresponding to edge facets. The
electrochemical characterization results showed that there is a direct relationship between
the increase in edge area ratio and the enhanced electrochemical activity. The overpotential
decreased from 350 to 346 mV as the edge area ratio increased from 8.6% to 9.2% at a current
density of 10 mA cm−2. Furthermore, the Tafel slope also showed a positive correlation
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with edge area. As the edge area ratio increased from 8.60% to 9.59%, the Tafel slope
decreased from 73.5 to 57.4 mV dec−1.
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3.1.4. Interfacial Engineering

As a design strategy, interfacial engineering is evolving because of the interaction
between different components can be employed to enhance the activity and stability of
TM-LDHs [96]. Interfaces in the catalysis system are areas of concern as they influence
the activity and stability by adjusting the surface adsorption of intermediates and the
transportation of electrons [97]. Interfacial engineering can improve the performance
of electrocatalysts through enhancing their activity, selectivity, and stability, which are
fundamental features of a given catalyst. For instance, Anantharaj et al. synthesized Pt
nanoparticles (NPs)-decorated NiFe LDHs for overall water electrocatalysis under alkaline
conditions [98]. An interface between NiFe LDHs and Pt NPs was created by the reduction
of Pt4+ in borohydride solution containing NiFe LDH nanosheets. The Pt NPs-decorated
NiFe LDH nanosheet demonstrated a higher activity, indicating the potential contribution
of the interface formed between the two layers towards OER enhancement. It was reported
that the interaction between metal atoms and TM-LDHs is an ideal way to enhance activ-
ities, which creates favorable interfacial interactions [99,100]. Zhang et al. designed an
Au-supported NiFe LDH as an OER catalyst under alkaline conditions [99]. The material
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demonstrated excellent OER activity, which is mainly attributed to the interfacial charge
transfer between Au and NiFe LDH. DFT calculations also revealed that CO3

2− ions in the
interlayer between Au-supported oxyhydroxides and LDHs could balance the charges of
oxyhydroxide, leading to the enhanced adsorption of intermediates on the surfaces of Fe.

3.2. Composition Tuning and Electronic Structure Optimization

As a strategy to tune compositions and electronic structures of electrocatalysts, doping
has been used widely owing to its effective role in enhancing active sites and reducing
energy barriers [101]. Compared to undoped electrocatalysts, doped electrocatalysts have
demonstrated better performances benefiting from heterostructures [102]. Recently, a cat-
alytic activity improvement was observed on heteroatom-doped electrocatalysts obtained
through the incorporation of metallic cations such as Fe [103], Co [104], and Ni [105] and
anions such as S [106], N [107], P [108], and O [109]. Furthermore, heteroatom doping does
not change the composition of host materials, retaining the desired intrinsic features [110].
The applausive achievements of doped materials paved the way for the advancement of
nonnoble metal-based nanomaterials as highly efficient electrocatalysts [101].

Cationic doping can be regarded as an efficient way to tune the morphology and
electronic structure of LDHs, where metal atoms with a higher valence state can act as
dopants [111,112]. Recently, Zheng et al. proposed that the doping of Fe3+ into cobalt-based
LDH nanosheets can tune the Co2+ occupancy and coordination [113]. It was believed
that the Fe3+ dopant can regulate the coordination of Co2+ in CoO4 tetrahedra and CoO6
octahedra. The as-synthesized CoFe LDH nanosheets with an optimized ratio of 5:1 (Co/Fe)
has demonstrated an overpotential of 285 mV at a current density of 10 mA cm−2 and a Tafel
slope of 44.6 mV dec−1. Furthermore, Zhou et al. proposed the cation-exchange method to
synthesize an active site-rich OER electrocatalyst based on Fe-doped Ni(OH)2 and NiFe
LDHs (Figure 7A) [114]. The as-synthesized Fe-doped Ni0.83Fe0.17(OH)2 nanosheets with
abundant defects and a porous structure demonstrated a lower overpotential (245 mV)
at a current density of 10 mA cm−2 and enhanced reaction kinetics with a lower Tafel
slope of 61 mV dec−1 in contrast to NiFe LDH nanosheets prepared by the conventional
method (Figure 7B,C). The improved activity was from the potential contribution of the
cation exchange method, resulting in enriched defects and actives sites. Liu et al. proposed
cationic doping as a strategy to alter the surface chemical environment of an electrocatalyst
for enhanced OER activity [111]. They prepared ultrathin Ni3FeAlx LDH nanosheets using
hydrothermal technique with the introduction of Al that led to a change in the fraction of
low-coordinated Fe and Ni atoms. The result shows that Ni3FeAl0.9 LDH demonstrated
an improved activity with a measured overpotential of 304 mV at a current density of
20 mA cm−2 and a Tafel slope of 57 mV dec−1, an indicator of fast reaction kinetics.
Furthermore, Thenuwara et al. also systematically incorporated Co into NiFe LDHs for
enhanced OER catalysis using coprecipitation and/or intercalation [115]. They proposed
that Co intercalation into the interlayer of NiFe LDHs can increase its activity. The result
indicates that Co-modified NiFe LDHs showed an outstanding OER activity with a lower
overpotential ranging between 290 and 322 mV at a 10 mA cm−2 current density depending
on the amount of Co incorporated.

Besides cation doping, anion doping also has been implemented as a potential design
strategy to increase the catalytic performance of TM-LDHs [106]. Anion dopants such as
N, P, F, and S (Table 2) have the potential to enhance the activity of the host material via
changing the electronic structure and conductivity, decreasing the adsorption/desorption
energy during water electrolysis [116,117]. Among anion dopants, sulfide is praised for its
potential in enhancing electronic conductivity and electrocatalytic activity, with minimal
environmental effects [118–120]. Shit et al. fabricated a heterostructure sulfur-doped
electrocatalyst for overall water splitting directly grown on Ni foam with an enhanced
performance [121]. Benefiting from the heterostructure and porous 3D Ni foam support
material, the as-obtained material demonstrated comparable catalytic performance with
benchmarking catalysts. The incorporation of CoSx is believed to enhance the number of
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catalytically active sites, and the value was determined to be 1.993 × 1018 atoms cm−2,
increasing by a factor of 2.92 times after CoSx incorporation. Furthermore, the Co-S-Ni
moiety enhances the activity of the catalyst material by improving the charge transfer
efficiency. The porous heterostructure CoSx/Ni3S2/NF has achieved a current density of
20 mA cm−2 at an overpotential of 280 mV for OER catalysis.

Table 2. Comparison of OER activities of anion-doped TM-LDHs under alkaline conditions at current
density of 10 mA cm−2.

Catalyst Dopant Overpotential
(mV vs. RHE) Electrolyte Ref.

NiCo-LDH@HOS S 293 mV 0.1 M KOH [120]
NiFeS-2 S 286 mV 1 M KOH [119]

Co3Fe LDHs-SF6 S 268 mV 1 M KOH [122]
NiO@NiFe-LDH N 265 mV 1 M NaOH [123]

NiFe LDH P 265 mV 1 M KOH [115]
CoFe LDHs S 233 mV 1 M KOH [71]

CoFeP P 305 mV 1 M KOH [124]

Heteroatom doping with those having different electronegativities can adjust the elec-
tron distribution of LDHs, leading to superior OER activity. In this regard, anion-doped
metal−organic frameworks are emerging classes of materials with multiple catalytic ben-
efits, including high surface area, porous structure, and tailorable features [125,126]. For
instance, Chen et al. designed a heterostructure metal−organic framework as an efficient
electrocatalyst for OER catalysis [126]. They were able to synthesize (zeolitic imidazolate
framework, ZIF-67) 2D ZIF-67/CC nanosheets by using Co-LDH and a 3D ZIF-67 precursor
(Figure 7D). The as-obtained 2D ZIF-67/3D ZIF-67 transformed into Co@N-CS/N-HCP@CC
upon heating to a lower temperature. The material has demonstrated a higher catalytic ac-
tivity benefiting from its minimum charge transfer resistance, fast reaction kinetics, and rich
active sites. As can be seen from Figure 7E, Co@N-CS/N-HCP@CC showed a higher OER
activity, requiring an overpotential of 248 mV to generate a current density of 10 mA cm−2.
The lower recorded Tafel slope of 68 mV dec−1 is also an indication of faster reaction kinetics
of the catalyst material (Figure 7F). The material has also shown improved charge transfer
abilities with measured charge transfer resistances (Rct) as low as 16.7 Ω. Furthermore,
DFT calculations also revealed that the synergistic effect between C and Co led to the
improved adsorption of active sites toward intermediates compared to pristine C, resulting
in enhanced catalytic activity.

Another potential anion dopant is P, where its incorporation into TM-LDHs improves
the conductivity and intrinsic activities. Previous studies have demonstrated, through DFT
calculations, that the higher electronegativity of P than S could influence the electronic
structure and result in a shift in the d band center, which could possibly optimize ∆GH* [127].
For instance, Liu et al. designed P-doped 3D P-(Ni, Fe)3S2/NF through the incorporation of
P and S simultaneously as an efficient electrocatalyst for water electrolysis (Figure 7G) [128].
In alkaline media, the as-obtained material has demonstrated good OER activity compared
to the undoped material. An overpotential of 196 mV has been recorded at a current density
of 10 mA cm−2 for P9.03%-(Ni, Fe)3S2/NF. The electrocatalyst also has a lower Tafel slope of
30 mV dec−1 and robust stability, mainly attributed to surface oxidation during electrolysis,
characteristics of TM-based sulfides, nitrides, and phosphides (Figure 7H,I) [129].

To further confirm the role of P doping on the catalytic activity of the (Ni, Fe)3S2, DFT
calculations were carried out. DFT calculations showed that the incorporation of P into
(Ni, Fe)3S2 resulted in the reduction of ∆GH* values by −0.1 eV compared to the undoped
material, indicating improved catalytic activity.
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Figure 7. (A) Schematic illustration of the preparation of Fe-doped Ni (OH)2 nanosheets. (B) LSV curves of Ni0.83Fe0.17(OH)2

nanosheets. (C) Tafel slopes of Ni0.83Fe0.17(OH)2 nanosheets. Reproduced with permission from [114]. American Chemical
Society, 2018. (D) Schematic illustration of the synthesis of Co@N-CS/N-HCP@CC composite. (E) LSV curves. (F) Corresponding
Tafel plots. Reproduced with permission from [126]. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2019. (G) Illustration
of water splitting on the surface of P-(Ni, Fe)3S2/NF. (H) LSV curves. (I) Corresponding Tafel plots. Reproduced with
permission from [128]. American Chemical Society, 2019.

3.3. Hybridizing with Conductive Substrate

Different strategies such as structural and electronic property optimization have been
applied to overcome the poor conductivity of LDHs. The low conductivity of the catalysts
coupled with their difficulty for practical applications has necessitated the hybridization
with conductive substrates such as nickel foam and carbon nanomaterials [112,130]. Pro-
ducing catalysts by directly growing on conductive substrates enhances the long-term
stability, providing mechanical strength, optimizes the electrochemically active surface
area, and facilitates diffusion and the fast emission of products.

The use of commercial conductive support materials such as Ni foam has been the
center of interest in heterogeneous catalysis owing to its flexible uses [131]. Wang et al.
designed self-supported NiVIr-LDH and NiVRu-LDH on Ni foam as catalysts for water
electrolysis [132]. The as-obtained material has shown excellent catalytic activity for the
HER and OER, demonstrating excellent exchange current densities and TOF. The direct
growth on the conductive substrate (Ni foam) improved the conductivity of the catalyst
material. Li et al. designed partially crystalline NiFe LDH nanosheets on Ni foam as an
efficient water splitting catalyst through a facile and sustainable approach [133]. Due to
the 3D open architecture grown vertically on the porous NF surface, the NiFe-LDH/NF
demonstrated an outstanding OER performance with a lower overpotential of 133 mV to
generate a current density of 20 mA cm−2, and fast reaction kinetics with a lower Tafel slope
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of 30 mV dec−1. Furthermore, Liu et al. designed a hierarchically structured NiCo2S@NiFe
LDH supported on Ni foam as an efficient electrocatalyst for both OER and HER [41].
Benefiting from the engineered interface heterostructure and porous structure of conductive
Ni foam, the as-obtained NiCo2S@NiFe LDH material demonstrated an outstanding OER
catalytic activity with a lowest overpotential of 201 mV at a current density of 60 mA cm−2.
DFT calculations also revealed that the ∆EOH decreased as a result of the strong interaction
and enhanced charge transfer between heterostructures, leading to an enhanced surface
reactivity. With an open-cell 3D microporous structure, Ni foam can itself be transformed
to an active OER electrocatalyst. Han et al. synthesized a 3D NiOx/NF through a facile in
situ electrochemical oxidation process [134]. The as-obtained NiOx/NF has demonstrated
a better activity than bare Ni foam with a measured overpotential of 390 mV at current
density of 10 mA cm−2. The electro-oxidation process enabled the formation of active
thin layers of NiOx on the surface of Ni foam. The enhanced electrochemical activity is
attributed to the interface effect of NiOx/NF and the 3D nature of Ni foam.

Similar to Ni foam, carbon-based materials are also potential support materials for elec-
trocatalysts. Carbon-based materials such as carbon cloth with demonstrated mechanical
flexibility can be used to design efficient OER catalysts. Wang et al. developed a heterostruc-
ture containing hierarchical CoNi2S4@NiMn-LDH supported on carbon cloth as an efficient
electrocatalyst for overall water splitting [135]. As an OER electrocatalyst, the material has
demonstrated an overpotential of 269 mV at current density of 100 mA cm−2. The enhanced
activity is mainly attributed to the material’s conductivity improvement, high stability, and
superhydrophilic nature of carbon cloth support material. Carbon cloth with its fiber struc-
ture, higher conductivity, and higher surface area is highly preferred to construct catalysts for
OER. He et al. constructed a 3D free-standing FeNi-LDH/CoP on carbon cloth for enhanced
OER catalysis, where the supporting material improved the mass transfer and conductiv-
ity [136,137]. The as-obtained FeNi-LDH/CoP/CC has shown good catalytic activity with
a lower Tafel slope of 33.5 mV dec−1, larger turnover frequency of 0.131 S−1, and higher
current density of 350 mA cm−2 @ η of 254 mV.

3.4. Improving Stability of TM-LDHs

For commercial applications, the long-term stability of a given catalyst is top priority.
One of the major challenges associated with the use of TM-LDHs for OER catalysis is their
poor long-term stability [29]. To overcome this challenge, different techniques have been
employed, including coating the surface of a catalyst with protective layers [138]. For instance,
Obata and Takanabe reported a highly stable NiFeOx OER electrocatalyst with a protective
layer working for over 96 h while maintaining its activity [138]. The surface of NiFeOx
is covered by layers of CeOx that reduces the loss of Fe species from the main catalyst.
They proposed that CeOx is permselective to the mobility of OH− and O2, preventing the
diffusion of redox ions and enhancing its stability. Furthermore, the stability of TM-LDHs
can also be improved by growing TM-LDHs directly on 3D electrode materials, which reduce
the loss of active sites [26]. Yang et al. designed a 3D hierarchical CoFe-LDH@NiFe-LDH
supported on nickel foam, demonstrating outstanding stability as an OER catalyst under
alkaline conditions [139]. Yin et al. also synthesized NiFe LDH directly on carbon materials
through one-pot solution method [140]. Benefiting from the enhanced charge transport
and the change in local electronic structure as a result of the conductive carbon support
material, the catalyst has exhibited superior activity and stability. Furthermore, coupling
layers of nanostructures could also enhance the activity and stability of TM-LDHs toward
OER catalysis. Gao et al. synthesized CoFe LDHs decorated with CoO nanoclusters as an
OER catalyst [141]. The strong electronic coupling between the layers could greatly enhance
the stability of the interfacial structures. Despite all these measures, there is no specific method
employed to obtain an electrocatalyst with outstanding activity and stability. There is a need
to consider appropriate design strategies especially when planning to optimize activity and
stability simultaneously.



Nanomaterials 2021, 11, 1388 16 of 25

4. First-Row TM-LDHs as OER Electrocatalysts

First-row TM-LDHs are potential alternatives to noble metal-based OER catalysts
because of their abundance, lower cost, and comparable activities. Below, we summarize
some of the recent developments on unary, binary, and ternary first-row-based TM-LDHs
as an efficient OER catalyst. In addition, the overpotential applied to drive 10 mA cm−2

and Tafel slopes are compared (Table 3).

Table 3. Comparison of OER activities of recent TM-LDHs in alkaline media at a current density of
10 mA cm−2.

Catalyst Overpotential
(mV vs. RHE)

Tafel Slope
(mV dec−1) Electrolyte Ref.

γ-NiOOH 660 / 0.1 M KOH [142]
γ-FeOOH 550 / 0.1 M KOH [142]

α-Co(OH)2 LDH 400 130 0.1 M KOH [143]
Co-LDH FNSAs 300 110 1 M KOH [144]

NiFe LDH/ZiF-67 222 53 1 M KOH [145]
NiFe LDH 320 / 1 M KOH [146]

NiFe LDH/CNT 320 / 1 M KOH [146]
Co1.8Ni LDH 290 66 1 M KOH [147]

Co0.8Fe0.2OOH@C 254 33 1 M KOH [148]
NiFeCo-LDH 297 33 1 M KOH [149]
NiFeCo-LDH 288 92 1 M KOH [150]
CoFeNi LDHs 195 53 0.1 M KOH [151]
CoNiFe LDH 287 54.2 1 M KOH [152]

4.1. Unary TM-LDHs

Friebel et al. investigated γ-FeOOH as an OER catalyst and reported that the material
has shown better activity compared to γ-NiOOH [142]. Other first-row TM-LDHs such as
cobalt are also gaining attention for their catalytic applications. Cobalt hydroxide can exist
in different forms and their OER activity differs significantly. Wang et al. reported that
α-Co(OH)2 has a larger interlayer spacing compared to other forms of cobalt hydroxide
such as β-Co(OH)2 and β-Co(OH)2 [143]. α-Co(OH)2 exhibited a lower overpotential of
60 mV compared to β-Co(OH)2 and β-CoOOH at a current density of 10 mA cm−2. Among
the first-row transition metals, nickel and its derivatives have demonstrated promising
results as an efficient electrocatalyst for water electrolysis in alkaline conditions [153].
Trotochaud et al. generated in situ electrochemically Ni-based LDHs with an outstanding
OER performance [154]. The as-generated LDH demonstrated a lower overpotential of
336 V at a current density of 10 mA cm−2 and a Tafel slope as low as 30 mV dec−1. Similar
to Ni, Fe is also gaining attention as a potential catalyst for water electrolysis, owing to its
abundance, low toxicity, and stability [36].

4.2. Binary TM-LDHs

Compared to monoatomic catalysts, multi-metal catalysts have shown higher catalytic
activities because of synergistic interactions leading to a change in the electronic structure
and adsorption energies of reaction intermediates [155]. Lu et al. reported that mesoporous
NiFe nanosheets on nickel foam (NF) demonstrated a superior OER activity in contrast
to monoatomic Ni or Fe on NF [156]. The material was synthesized through a facile
electrodeposition method that required only 200 mV of overpotential to generate a current
density of 10 mA cm−2. Compared to other TM-LDHs, NiFe-LDHs is the most researched
OER catalyst because of its outstanding activity. Peng et al. employed a facile acid-etching
method to engineer active sites on NiFe-LDH for enhanced OER catalysis [157]. The process
induced the formation of edge Fe(OH)3 on NiFe-LDHs, proposed to react with Ni to form an
active OER catalyst. The acid-etched NiFe-LDH demonstrated a lower overpotential, lower
Tafel slope, and minimum charge transfer resistance compared to the untreated material.
Yang et al. synthesized a binary LDH containing Co and Fe through coprecipitation method
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for OER catalysis [158]. A synergistic effect between Co and Fe was demonstrated in which
Co0.65Fe0.35(OH)2 LDH showed an outstanding OER activity with a lower overpotential
and good long-term stability. Among various first-row TM-LDHs, NiCo-based LDH is also
potential option for OER catalysis with outstanding results. Li et al. designed a multilayer
containing NixCoy LDH hybridized with 3D NiCo2O4 with a core−shell nanowire array for
OER catalysis [159]. The morphological feature enhances the surface area and conductivity
of the material. The as-synthesized NiCo2O4@Ni0.796CoLDH/NF catalyst material has
shown the lowest overpotential of 193 mV at a current density 10 mA cm−2. Furthermore,
the material has also shown a lower Tafel slope of 37.59 mV dec−1 with remarkable OER
kinetics in contrast to NiCo LDHs.

4.3. Ternary TM-LDHs

Previous reports have indicated that mixed-metallic compounds have shown co-
ordinated enhancements among metallic ions toward OER catalysis [160]. Zhang et al.
synthesized ultrathin nanosheets with thicknesses of 1.36 nm containing NiCoFe-LDHs for
OER catalysis [150]. Compared to binary TM-LDHs such as NiFe-LDHs and NiCo-LDHs,
the NiFeCo-LDH nanosheet demonstrated higher OER activities. The as-synthesized
NiCoFe-LDH nanosheet showed the lowest overpotential of 288 mV to generate a current
density of 10 mA cm−2 with a Tafel slope of 92 mV dec−1 as opposed to NiCo-LDH, which
demonstrated an overpotential of 347 mV at a current density of 10 mA cm−2 with a higher
Tafel slope of 108 mV dec−1. The incorporation of Fe into NiFeCo-LDH was reported
to enhance the catalytic activity of the material for OER catalysis [161]. They fabricated
a NiCoFe-LDH nanosheet with a unique nanostructure using the two-step hydrother-
mal method. The incorporation of Fe into NiFeCo-LDH resulted in the morphological
change and oxidation of Ni, leading to the enhancement in the exposure of active sites.
The optimized Ni2CoFe0.5-LDH/NF showed a lower overpotential of 240 mV to reach
a current density of 10 mA cm−2, a lower Tafel slope of 65 mV dec−1, and an outstanding
stability of 72 h for the continuous reaction under alkaline conditions. Recently, Lin et al.
fabricated hierarchical NiFeCo-LDH supported on carbon fibers (CF) using a prominent
metal−organic framework material called a zeolitic imidazolate framework [162]. The
metal−organic framework was used as a source of metal Co and a precipitating agent for
the metal ions. The as-obtained nanosheet had highly exposed active sites and an enhanced
surface area. Cobalt doping into the composite improved the stability of the Fe local coor-
dination environment and facilitated the π-symmetry bonding orbital in NiFeCo-LDH/CF.
Thus, NiFeCo-LDH/CF exhibited an outstanding OER activity with a lower overpotential
of 249 mV to generate a current density of 10 mA cm−2 and a stability of 20 h for continu-
ous OER. The higher catalytic activity of NiFeCo-LDH/CF is attributed to the change in
electronic structure in the composite as a result of Co doping inducing a stronger Ni3d-O2p
and Co3d-O2p covalency. Furthermore, the conductive CF support material contributed to
the enhanced flow of electrons across NiFeCo-LDH/CF.

5. Summary and Outlook

Electrocatalytic water splitting is a potential pathway to sustainable H2 production,
a prominent gas with the highest energy density. However, the potential scalability is
mainly hampered due to the extra overpotential required to drive the sluggish OER
involving four-electron transfers. So far, different approaches have been put in place to
obtain highly active and durable OER electrocatalysts based on TMs as an alternative to
noble metals. TM-LDHs are at the center of interest as a potential candidate for water
splitting catalysis owing to their morphological and electronic features, as well as their low
cost and high abundance. However, TM-LDHs suffer from poor intrinsic activity and fewer
active sites, limiting their applications in water electrolysis. Recently, many strategies have
been designed and employed to improve the activities and stabilities of TM-LDHs toward
OER catalysis. Herein, we provide a summary of current advancements made in the design
of TM-LDHs to optimize their applications in OER catalysis. The basics of electrocatalytic



Nanomaterials 2021, 11, 1388 18 of 25

water splitting have been presented, specifically focusing on the mechanisms of OER under
alkaline conditions. We also summarized the fundamental parameters used to evaluate
a given OER catalyst. Added to that, recently reported design strategies to optimize the
activities of TM-LDHs such as structural and morphological engineering, composition
tuning and electronic structure optimization, and coupling with conductive substrates
are summarized. Despite rapid progress in the field and a high number of publications
on TM-LDHs applications for OER catalysis, there still need to improve their activities to
achieve the desired scalability. Therefore, the following critical issues must be considered
to further improve the activity of TM-LDHs for OER catalysis:

(i) The activity of an OER catalyst is highly dependent on the exposure of active sites,
which, in turn, is directly affected by the structural and morphological properties
of the catalyst material. Thus, numerous strategies such as exfoliation, the creation
of defects and pores, and altering the assembly of the surface structure have been
designed and implemented. These strategies have their own advantages, and the
choice of design strategy could have significance depending on the properties of the
catalyst material. Although significant improvements have been recorded, challenges
still exist regarding its practical applications, for instance, under harsh conditions.
Therefore, designing an electrocatalyst rich with active sites and high stability is still
a remaining challenge.

(ii) Composition tuning and electronic structure optimization are commonly employed as
strategies to boost the catalytic activity of TM-LDHs. Doping is a potential alternative
to change the composition and structure of TM-LDHs. This strategy can also be em-
ployed to enhance the surface electronic structure and coordination valence of TM-LDHs.
Specially doping anions to TM-LDHs could lead to the enhanced adsorption of interme-
diates through altering the electronic structure of the adjacent active center. Therefore,
combining TM-LDHs with both cation and anion dopants would be a potential strategy
to design highly active and stable electrocatalysts for OER applications.

(iii) One of the innovative design strategies devised to overcome the poor conductivity
of TM-LDHs is through coupling with conductive support materials. The most used
conductive support materials for OER catalysis includes nickel foam and carbon
materials. This strategy is effective in reducing the diffusion path length of ions
during the electrochemical reaction, and it enhances the exposure of electrochemically
active sites. Furthermore, the conductive support material can also act as an additional
catalyst (nickel foam), can enhance the conductivity, and facilitates the ease of electron
transfer. Therefore, the selection and application of appropriate conductive support
materials during OER catalyst design could have potential contributions toward
enhancing the OER activity and stability of a given catalyst.

(iv) Compared to unary TM-LDHs, multi-metallic catalysts have demonstrated higher
catalytic activities because of the synergistic interactions leading to changes in the sur-
face electronic structure, which will enhance the adsorption of reaction intermediates.
However, this cannot always be true. Before designing a given OER electrocatalyst,
investigating the synergistic effect between the metal atoms is paramount to obtain
high-performing OER electrocatalysts.
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