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Abstract

Primary monocytes are refractory to HIV-1 infection and become permissive upon differentiation into monocyte-derived
dendritic cells (MDDCs) or macrophages. Multiple mechanisms have been proposed to interpret HIV-1 restriction in
monocytes. Human cellular miRNAs can modulate HIV-1 infection by targeting either conserved regions of the HIV-1
genome or host gene transcripts. We have recently reported that the translation of host protein pur-alpha is repressed by
abundant cellular miRNAs to inhibit HIV-1 infection in monocytes. Here, we report that the transcript of another cellular
factor, VprBP [Vpr (HIV-1)-binding protein], was repressed by cellular miRNA-1236, which contributes to HIV-1 restriction in
monocytes. Transfection of miR-1236 inhibitors enhanced translation of VprBP in monocytes and significantly promoted
viral infection; exogenous input of synthesized miR-1236 mimics into MDDCs suppressed translation of VprBP, and,
accordingly, significantly impaired viral infection. Our data emphasize the role of miRNA in modulating differentiation-
dependent susceptibility of the host cell to HIV-1 infection. Understanding the modulation of HIV-1 infection by cellular
miRNAs may provide key small RNAs or the identification of new important protein targets regulated by miRNAs for the
development of antiviral strategies.
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Introduction

miRNAs are small non-coding RNA molecules (18–22 nucle-

otides) found in eukaryotic cells. miRNAs are vital post-

transcriptional regulators, and the binding of miRNAs to the 39-

untranslated regions on target mRNA transcripts usually results in

translational repression or target degradation [1]. Aberrant

expression of miRNAs has been implicated in development and

progression of many infectious diseases including HIV-1 infection

[2,3,4,5,6,7,8,9]. Higher serum levels of miR-122 have been

recently reported as potential biomarkers for AIDS-related non-

Hodgkin lymphoma [10], and disrupted expression of certain

miRNAs by HIV-1 or simian immunodeficiency virus (SIV)

infection in intestinal mucosa is related to epithelial homeostasis

disturbance and intestinal enteropathy [11].

Meanwhile, host cellular miRNAs can modulate HIV-1

infection by targeting either the conserved regions of HIV-1

genome or host gene transcripts, and these miRNAs may play

pivotal roles in maintaining viral latency and promoting host

defense [12,13,14]. HIV-1 nef appears to be the most widely

focused gene for studying binding with miRNAs. The highly

expressed cellular miRNAs miR-125b, miR-150, miR-28, miR-

223 and miR-382 repress HIV-1 replication by targeting nef 39-

long-terminal repeat (LTR) region and contribute to viral latency

in resting CD4+ T lymphocytes [15]. miR-29a specifically targets

HIV-1 nef transcription and reduces viral production and

infectivity, enhances HIV-1 mRNA association with RNA-

induced silencing complexes, and sequesters viral mRNA in P

bodies for further degradation [16,17,18,19]. A cluster of other

host miRNAs, such as miR-15a, miR-15b, miR-16, miR-224-3p,

miR-223 and miR-24, have been studied in silico and predicted to

bind with the HIV-1 nef 39-LTR region [19]. Alternatively, some

miRNAs regulate HIV-1 infection by targeting host gene

transcripts. The differential regulation of cellular miR-148 on

HLA-C alleles is associated with HIV control [20,21]. Conversely,

certain host cellular miRNAs appear to be essential for HIV to

establish infection. Cellular miR-132 is upregulated in activated

CD4+ T cells and potentiates HIV-1 replication by targeting host

factor MeCP2 (Methyl-CpG binding protein 2) [22]. miR-217 and

miR-34a are reported to favor Tat-induced HIV-1 LTR-driven

transactivation by downregulating SIRT1 (sirtuin 1), a host-cell-

encoded class II deacetylase [23,24]. Recently, a novel HIV-1-

encoded miRNA miR-H3 was identified by computational
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prediction and deep sequencing. miR-H3 is located in the mRNA

region encoding the active center of reverse transcriptase and

targets the HIV-1 59-LTR for upregulating promoter activity and

viral transcription [25]. Understanding these roles of miRNA in

HIV-1 replication will be helpful to elucidate host-mediated

antiviral response and explore new antiviral strategies.

Primary monocytes are refractory to HIV-1 infection and

become permissive upon differentiation into macrophages or

dendritic cells (DCs) [26,27,28,29]. Multiple inefficiencies in

several post-entry steps of the HIV-1 life cycle, such as reverse

transcription, nuclear import of pre-integration complex, and viral

translation, have been shown to be responsible for HIV-1

restriction in monocytes [29,30,31,32]. The post-entry restriction

of HIV-1 may be due to the existence of potential restriction

factors or the absence of virus-dependent host factors. Low

abundance of thymidine phosphorylase that is associated with a

limited stock of dTTP contributes to refractory HIV-1 reverse

transcriptase [28], and enrichment of host restriction factors, such

as APOBEC3G/F (apolipoprotein B mRNA-editing, enzyme-

catalytic, polypeptide-like 3G/F) [33] and SAMHD1 (SAM

domain and HD domain-containing protein 1) [34,35,36,37],

are associated with HIV-1 restriction in monocytes or myeloid

cells. miRNAs have also been reported to modulate HIV-1

infection in monocytes [38,39,40]. The abundance of miRNA-198

can repress the expression of cyclin T-1, and inhibit viral

transcription in primary monocytes [41].

To uncover the restriction of HIV-1 replication by miRNAs in

undifferentiated monocytes, we analyzed the miRNA expression

profile in monocytes by miRNA-chip array and compared it with

that of their differentiated monocyte-derived DC (MDDC)

counterparts. We have recently reported that the translation of

host protein pur-alpha was repressed by cellular miRNAs to

inhibit HIV-1 infection in monocytes [39]. Here, we report that

another host factor, namely VprBP, could also be targeted by

cellular miRNA to modulate monocyte/MDDC susceptibility to

HIV-1 infection.

Results

VprBP expression is essential for promoting HIV-1
infection

We investigated the importance of host factor VprBP in HIV-1

infection. We exogenously expressed VprBP by transfecting

pCMV-myc-VprBP into HEK293T cells. As expected, overex-

pression of VprBP, as detected by Western blotting, significantly

enhanced the infection of HIV-luc-Vpr+/vesicular stomatitis virus

(VSV)-G in a dose-dependent manner (Figure 1A and B).

Conversely, knocking down expression of VprBP in Magi/

CCR5 cells with specific VprBP siRNA, as confirmed by Western

blotting (Figure 1C), impaired the infection of HIV-luc-Vpr+/

VSV-G (Figure 1D). VprBP appeared to promote HIV-1 PIC

(Pre-integration Complex) post-nuclear import event, because the

knocking-down of VprBP in Magi/CCR5 cells did not diminish

the HIV-1 products of both late reverse transcripts (Late RT) and

2-LTR, and on the other hand, the overexpression of VprBP in

293T cells did not significantly enhance the products of both HIV-

1 Late RT and 2-LTR (data not shown). These data demonstrate

that VprBP expression is important for efficient HIV-1 infection.

VprBP enhances HIV-1 infection in MDDCs in the
presence of Vpr

To demonstrate further the importance of VprBP expression in

promoting HIV-1 infection, we investigated VprBP expression in

MDDCs. VprBP showed adequate expression in MDDCs

compared with monocytes, as detected at the protein level

(Figure 2A). When VprBP expression in MDDCs was interfered

by specific siRNA (Figure 2B), the infection of pseudotyped single-

cycle infectious HIV-luc-Vpr+/VSV-G was significantly impaired,

demonstrating the crucial role of VprBP for efficient HIV-1

infection in primary MDDCs (Figure 2C).

VprBP is believed to be tightly conjugated with Vpr for

functioning, for example, HIV-1 Vpr or HIV-2/SIVsmm/mac

Vpx can interact with VprBP and assembles with DDB1 (DNA

damage-binding protein 1) to form an E3 ubiquitin ligase complex,

which targets cellular substrates for proteasome-mediated degra-

dation and G2 cell-cycle arrest [42,43,44]. To investigate the

dependence of Vpr for VprBP-promoting HIV-1 infection, we

used Vpr-deficient HIV-1. Enhanced HIV-1 replication was only

observed in Vpr-containing viruses, and knocking-down of VprBP

did not impair the infection of vpr-deficient replication-competent

HIV-1/AD8 in MDDCs (Figure 2D). The results demonstrate that

promotion of VprBP in HIV-1 infection is Vpr dependent, and

these results also confirm the VprBP dependence of Vpr-promoted

HIV-1 infection. These data demonstrate the importance of

VprBP in HIV-1 infection in MDDCs and the dependence on Vpr

of VprBP-promoted viral infection.

Cellular miR-1236 targets 39-untranslated region (UTR) of
VprBP mRNA for translation inhibition in monocytes

We demonstrated above that VprBP was not expressed in

monocytes, as detected at the protein level (Figure 2A). To

elucidate the underlying mechanism for repression of VprBP

expression in primary monocytes, VprBP transcription was further

assessed. Unexpectedly, monocytes expressed even higher levels of

VprBP mRNA transcripts than did MDDCs (Figure 3A). This

indicates post-transcriptional inhibition of VprBP expression in

monocytes.

Considering the regulatory role of miRNA on translation, we

compared the miRNA expression in monocytes and MDDCs by

Agilent miRNA-chip array. Target prediction of miRNAs and

alignment of miRNAs with target sequences were achieved using

TargetScan. We found the 17–24 bases of VprBP 39-UTR were

targeted by hsa-miR-1236. Expression of miR-1236 was verified

with Bulge-loop miRNA qRT-PCR Primer Sets. The expression

was adjusted based on U6 small nuclear RNA transcription. miR-

1236 expression was significantly enhanced in monocytes com-

pared with MDDCs (Figure 3B).

To confirm the targeting of VprBP mRNA 39-UTR by miRNA-

1236, 39-UTR fragments of VprBP mRNA that contained the

conserved binding positions were cloned into pGL3cM, and

mutations were introduced at the conserved binding positions of

VprBP 39-UTR to reduce Watson–Crick base pairing with

miRNAs (Figure 3C). Inhibition of transfected miRNA mimics

on expression of pGL3cM-containing 39-UTR fragments of

VprBP or mutants was quantified using a dual-luciferase reporter

assay system, and the relative activity of firefly and Renilla

luciferases was calculated. Transfection with miRNA mimics

significantly inhibited expression of pGL3cM/VprBP 39-UTR,

and the mutation of conserved binding positions abolished the

inhibition mediated by miRNA mimics (Figure 3D). These data

demonstrated that miR-1236 targets VprBP mRNA 39-UTR for

repression in monocytes.

miR-1236 Modulates HIV-1 Infection in Monocytes
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VprBP-targeted miR-1236 modulates differentiation-
dependent susceptibility of monocytes/MDDCs to HIV-1
infection

HIV-1 infection was restricted in primary monocytes, but this

restriction could be partially relieved when monocytes were

differentiated into DCs upon stimulation with cytokines granulo-

cyte–macrophage colony-stimulating factor and interleukin-4, as

confirmed in Figure 4A. Multiple causes have been provided to

reveal the differentiation-dependent susceptibility of monocytes to

HIV-1 infection [29,30,31,32,39].

Given the important role of VprBP in promoting HIV-1

infection and the regulation of VprBP translation by miR-1236,

we were interested in whether miR-1236 modulated monocyte/

MDDC susceptibility to HIV-1 infection. We transfected mono-

cytes with chemically synthesized, single-stranded miRNA inhib-

itors. As shown in Figure 4B and C, the transfection of miR-1236

inhibitors enhanced the translation of VprBP in monocytes and

significantly promoted the infection of HIV-Luc/VSV-G. Com-

plementarily, when the chemically synthesized miR-1236 mimics

were transfected into MDDCs, translation of VprBP was

suppressed (Figure 4D), and infection of MDDCs by HIV-Luc/

VSV-G was accordingly significantly diminished (Figure 4E).

These data demonstrate that miR-1236-mediated regulation of

VprBP expression modulates the differentiation-dependent sus-

ceptibility of monocytes/MDDCs to HIV-1 infection.

Discussion

HIV-1 depends on host-cell-encoded factors for completing its

life cycle, and hundreds of HIV-1-dependent host genes for

replication have been uncovered by uniformly conducted in HIV-

1 non-natural biology target cells or cell lines [45,46,47]. By

adopting more physiologically relevant primary cells, we screened

gene expression in monocytes by mRNA and miRNA microarray

analysis, and compared it with that in their differentiated MDDCs

[39]. Our purpose was to define on a large scale the differently

expressed genes that could modulate HIV-1 susceptibility in

monocytes/MDDCs.

VprBP, also known as DCAF1 (DDB1–CUL4-associated factor

1), is a component that forms a CUL4–DDB1–VprBP/DCAF1 E3

ubiquitin protein ligase complex. As the Vpr binding protein,

VprBP is tightly conjugated with Vpr for functioning [48,49].

Here, we demonstrated that VprBP and Vpr showed mutual

dependence in promoting HIV-1 infection, although the detailed

mechanisms need to be clarified.

VprBP functions as the substrate recognition module within

CUL4–DDB1–VprBP/DCAF1 E3 ubiquitin protein ligase com-

plex and bridges target proteins to DDB1. HIV-1 Vpr or HIV-2/

SIVsmm/mac Vpx can interact with VprBP and assembles with

DDB1 to form an E3 ubiquitin ligase complex, which targets

cellular substrates for proteasome-mediated degradation and G2

cell-cycle arrest [42,43,44,50]. A recent study has reported that the

direct interaction of HIV-1 Vpr with structure-specific endonu-

clease regulator SLX4 recruits VprBP and kinase-active PLK1,

and enhances cleavage of DNA by SLX4-associated MUS81–

EME1 endonucleases, resulting in G2/M arrest [51]. Moreover,

the DDB1–Cul4–DCAF1/VprBP E3 ubiquitin ligase complex

appears essential for HIV1 Vpr-mediated degradation of the

uracil-DNA glycosylases 2 and SMUG1 (single-strand-selective

monofunctional uracil-DNA glycosylase 1) [52]. It has been

Figure 1. VprBP expression is essential for efficient HIV-1 infection. (A, B) Over-expression of VprBP facilitates viral infection. HEK293T cells
were transfected with CMV-myc-VprBP plasmid or empty vector for 2 days and then infected by HIV-luc/VSV-G for an additional 2 days, and viral
infection was measured. Exogenous expression of VprBP was confirmed by Western blotting. (C, D) Knockdown of VprBP inhibited HIV-1 infection.
Magi/CCR5 cells were transfected with specific or off-target siRNA, and VprBP expression at the protein level and viral infection were measured. Data
are mean 6 SD. Results are representative of three independent experiments. *P,0.05, **P,0.01 and ***P,0.001, were considered significant
differences in paired Student t test. cps, counts per second.
doi:10.1371/journal.pone.0099535.g001
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reported that DCAF1/VprBP is recruited by HIV-2/SIVsmm/

mac Vpx to hijack the CUL4–DDB1 E3 ubiquitin ligase complex

for degradation of host-restrictive factor SAMHD1 [34,35,53],

facilitating HIV-1 infection in myeloid cells. However, SAMHD1

shows comparable expression in monocytes compared with

MDDCs, suggesting that VprBP-facilitated HIV-1 infection in

MDDCs is not attributed to the SAMHD1 degradation induced

by CUL4–DDB1–DCAF1/VprBP E3 ubiquitin protein ligase

complex.

In our miRNA-chip analysis, we also found that other cellular

miRNAs, such as miR-15a, miR-15b, miR-16, miR-93, miR-106b

and miR-20a, can inhibit HIV-1 infection in monocytes, and Pur-

alpha, a host-cell-encoded transcription factor required for

enhancing Tat-derived viral transactivation, was targeted for

repression in monocytes [39].

In summary, our results demonstrate that host factor VprBP

was targeted by cellular miR-1236 to modulate monocyte/MDDC

differentiation-dependent susceptibility to HIV-1 infection.

miRNA-based therapies are being developed, and understanding

the modulation of HIV-1 infection by cellular miRNAs may

provide key small RNAs or the identification of new important

protein targets regulated by miRNAs for antiviral therapeutic

interventions.

Materials and Methods

Cell
Human peripheral blood mononuclear cells (PBMCs) from

healthy donor were purchased from Blood Center of Shanghai

(Shanghai, China). CD14+ monocytes were isolated from PBMCs

by using CD14 antibody-coated magnetic beads (Miltenyi Biotec,

Germany) as previously described [54]. Monocytes were differen-

tiated into MDDCs by stimulation with 50 ng/ml of GM-CFS and

IL-4 for 6 days. HEK293T cell line was kindly gifted by Dr. Li Wu

(The Ohio State University, Columbus, OH, USA) and HeLa-cell-

derived Magi/CCR5 cell line[39] was a gift from Dr. Paul Zhou

(Institute Pasteur of Shanghai, Chinese Academy of Sciences,

Shanghai, China).

Virus stock and infection assay
Single-cycle HIV-Luc/VSV-G was produced by calcium-

phosphate-mediated co-transfection of HEK293T cells with the

luciferase reporter HIV-1 proviral vector NL-Luc-E-R+(Vpr+) and

an expression plasmid of vesicular stomatitis virus G (VSV-G)

protein. Replication competent HIV-1-AD8 (R5 tropic) virus or

Vpr deletion AD8 virus were obtained by transfecting HIV-1

vectors of pNLAD8 or pNLAD8-DVpr, respectively. Plasmids

were kindly provided by Dr. Li Wu (The Ohio State University,

Columbus, OH, USA). Harvested supernatants that contained

viral particles were filtered and quantified with p24gag capture

ELISA. Cells were infected with HIV-1-Luc/VSVG (1 ng p24gag)

or replication competent HIV-1 (1 ng p24gag) for 2 h, and after

washing, cells were further cultured for 2 days (cell line) or 5 days

(MDDCs and monocytes). Viral infection was detected by

measuring the luciferase activity from the cell lysates or detecting

the p24gag level from the supernatant. The HIV-1 p24gag specific

monoclonal antibodies are kindly gift of Prof. Yong-Tang Zheng,

Figure 2. VprBP enhances HIV-1 infection in MDDCs. (A) VprBP expression in MDDCs and monocytes was detected by Western blotting. (B–D)
Effect of knocking down VprBP on HIV-1 infection of MDDCs. MDDCs were transfected with specific siRNA 1# and 2# or off-target siRNA, and
knockdown of VprBP was confirmed by Western blotting at 48 h post-transfection (B); transfected MDDCs were infected by HIV-luc/VSV-G for an
additional 5 days, and viral infection was detected by measuring luciferase activity; alternatively, (C) transfected cells were infected for an additional 5
days by wild-type or vpr-deficient replication-competent HIV-1/AD8, and viral replication was monitored by quantifying p24gag in culture
supernatant. Data are mean 6 SD. Results are representative of three independent experiments. *P,0.05 and ***P,0.001, were considered
significant difference in paired Student t test.
doi:10.1371/journal.pone.0099535.g002
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from Kunming Institute of Zoology, Chinese Academy of

Sciences.

Transfection of plasmids, siRNA, miRNA inhibitor or
miRNA mimics

Cells were transfected by Lipofectamine 2000 (Invitrogen) with

plasmids of pCMV-myc/pCMV-myc-VprBP, or with specific

duplex siRNA of VprBP or off-target control (GenePharma,

Shanghai, China), or with miR-1236 inhibitor or mimics

(GenePharma). Then cells were either collected to detect the

condition of expression by Western blotting, or for viral infection

as described above. The sequences of siRNA duplex, miRNA

inhibitors and mimics were as follows: VprBP siRNA 1# 59-

GGCCCAGAUAACCGAAUAUTT-39, VprBP siRNA 2# 59-

GCGACUCAUUC UCCAAUAUTT-39. Plasmid pCMV-myc-

VprBP encoding full-length myc-tagged VprBP (also known as

DCAF1) was described previously[50]. For Western blotting, the

anti-myc monoclonal antibody (clone 19C2, Abmart, Shanghai,

China) and rabbit polyclonal antibody against VprBP (Santa cruz,

America) were used.

MiRNA and miRNA microarray
The mRNA and miRNA expression profiles during monocyte

to DC differentiation were screened with Affymetrix U133 plus 2.0

array and Agilent miRNA expression array as described previously

[39], respectively. Genes were analyzed further online with the

functional annotation tool in DAVID Bioinformatics Resources

6.7 (National Institute of Allergy and Infectious Diseases, U.S.

National Institute of Health, Bethesda, MD, USA). Target

prediction of miRNAs and the alignments of miRNAs with target

sequences were done by using TargetScan (http://www.

targetscan.org). The expression of miRNAs was verified with

Bulge-loop miRNA qRT-PCR Primer Sets (RiboBio Corp,

Guangzhou, China). The expression was adjusted based on U6

small nuclear RNA transcription, and relative miRNA expression

of indicated controls was calculated. PCR was performed on the

ABI 7900HT Real-Time PCR system (Applied Biosystems, Foster

City, CA, USA).

Construct and luciferase report assay
VprBP 39 UTR was amplified from the total RNA extracted from

the HEK293 cell line. Binding sites of VprBP 39 UTR for miR-1236

were synthesized as follows: 59-CGGAGCCATCACTGCTTG-

GAAGAGATTCTTGGCAGAGAGAAGAGGGGACAA-39 (for-

ward), 59-GATCTTGTCCCCTC TTCTCTCTGCCAAGAAT-

CTCTTCCAAGCAGTGATGGCTCCGAGCT-39 (reverse). And

point mutations of conserved binding sites of VprBP 39-UTR for

miR-1236 were synthesized as follow: 59-CGGAGCCATCA-

CTGCTTAACGA CAGTTCTTGGCAGAGAGAAGAGGGG-

ACAA-39 (forward), 59-GATCTTGTCC CCTCTTCTCTCTG-

CCAAGAACTGTCGTTAAGCGTGATGGCTCCGAGCT-39

(reverse). MiRNA binding reporter pGL3CM-VprBP-39UTR or

Figure 3. 39-UTR of VprBP mRNA is targeted by miR-1236. (A) Relative level of VprBP mRNA in monocytes compared with MDDCs. Total
cellular RNAs were extracted from cells and the VprBP mRNA was measured with SYBR green-based semi-quantified real-time (RT-) PCR and
normalized with b-actin. (B) Sequences of miR-1236 and alignments with the conserved binding position of 39-UTR of VprBP, and the relative
expression of miR-1236 in monocytes compared with MDDCs was quantified with Bulge-loop miRNA RT-PCR. (C) Schematic diagram showing binding
of miR-1236 on 39-UTR of VprBP mRNA and the point mutation of conserved positions of target sequences. (D) Inhibition of miRNA mimics on the
expression of pGL3cM containing the 39-UTR fragment of VprBP mRNA or mutant within conserved binding position. Data are mean 6 SD. Results are
representative of three independent experiments. *P,0.05, **P,0.01 and ***P,0.001, were considered significant difference in paired Student t test.
doi:10.1371/journal.pone.0099535.g003
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mutation was constructed with Bgl II and Sac I. Plasmid pGL3CM

was kindly gifted by Dr. Ke Lan (Institute Pasteur of Shanghai,

Chinese Academy of Sciences, Shanghai, China).

A Dual-Luciferase Reporter Assay System (Promega, Madison,

WI, USA) was used to examine the effects of miRNAs on their

target genes as described previously[39]. Briefly, pGL3CM

reporter plasmids (100 ng) were co-transfected into HEK293T

cells with miR-1236 (1ml) or off target control and 10 ng pRL-TK.

Lipofectamine 2000 was used for transfection. Cells were collected

for luciferase assay 48 h post transfection and were lysed with

100 ul 16 negative lysis buffer (Promega) for 15 min; Lysate

(20 ml) was added with Luciferase Assay Buffer and mixed to

measure firefly luciferase on a Veritas luminometer (Turner

BioSystems, Sunnyvale, CA, USA). Then Stop & Glo Reagent

(30 ml) was added and mixed to detect renilla luciferase.

Statistical analysis
Statistical analysis was performed using a paired t test with

SigmaStat 2.0 (Systat Software, San Jose, CA, USA).
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