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Triple-negative breast cancer (TNBC) is a subtype of breast
cancer with high intratumoral heterogeneity. Recent studies re-
vealed that TNBC patients might comprise cells with distinct
molecular subtypes. In addition, gene regulatory networks
(GRNs) constructed based on single-cell RNA sequencing
(scRNA-seq) data have demonstrated the significance for de-
coding the key regulators. We performed a comprehensive
analysis of the GRNs for the intrinsic subtypes of TNBC pa-
tients using scRNA-seq. The copy number variations (CNVs)
were inferred from scRNA-seq data and identified 545 malig-
nant cells. The subtypes of the malignant cells were assigned
based on the PAM50 model. The cell-cell communication anal-
ysis revealed that the macrophage plays a dominant role in the
tumor microenvironment. Next, the GRN for each subtype was
constructed through integrating gene co-expression and
enrichment of transcription-binding motifs. Then, we identi-
fied the critical genes based on the centrality metrics of genes.
Importantly, the critical gene ETV6 was ubiquitously upregu-
lated in all subtypes, but it exerted diverse roles in each subtype
through regulating different target genes. In conclusion, the
construction of GRNs based on scRNA-seq data could help us
to dissect the intratumoral heterogeneity and identify the crit-
ical genes of TNBC.

INTRODUCTION
Breast cancer, which is always accompaniedwithhigh intratumoral het-
erogeneity, is one of the most commonly diagnosed carcinomas in
women.1,2 Traditionally, breast cancer patients could be classified into
luminal A (LumA), luminal B (LumB), human epidermal growth factor
receptor-2+ (HER2+), and a basal-like subtype, according to the immu-
nohistochemical character of the ER (estrogen receptor), PR (progester-
one receptor), and HER2 status.3 The pathological characteristics and
prognostic outcomes of the four subtypes showed great differences.4

Most basal-like breast cancer exhibits the triple-negative phenotype.5

Triple-negative breast cancer (TNBC) is always with higher metastatic
probability and poorer prognostic than other subtypes.6 Accumulative
evidence showed that the intratumoral heterogeneity of breast cancer
was the leading cause of drug resistance for tumor therapy.7 Recently,
Yeo and Guan8 found that a tumor might be comprised of multiple
breast cancer subtypes. What’s more, Kim et al.2 revealed that the
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subtype composition of the TNBC patients would fluctuate under
chemotherapy pressure. The intratumoral heterogeneity of breast can-
cer should be investigated for the precision medicine.

With the development of single-cell RNA sequencing (scRNA-seq)
technology, we can gain insight into the genetic heterogeneity at
the single-cell resolution for cancer research.9 For instance, Patel
et al.10 adopted scRNA-seq to investigate genetic heterogeneity of
glioblastoma and revealed the diversity of cell state and functional
characteristics of tumor cells. The malignant cells of breast cancer
were demonstrated, originating from epithelial cells. In addition,
the malignant cells could interact with immune cells and stroma
cells, which constituted the complex tumor microenvironment.11

Karaayvaz et al.12 revealed that the TNBC was comprised of a
distinct subpopulation of epithelial cells. The signatures of one
epithelial cell subpopulation could be associated with long-term out-
comes of TNBC patients. Hence, traditional analysis of breast can-
cer based on bulk RNA-seq would be quite insufficient. Recently, Ia-
cono et al.13 applied a global regulatory model to construct the gene
regulatory networks (GRNs) based on scRNA-seq data, which could
help us to recognize the critical regulators in disease. Thus, network
analysis of TNBC based on scRNA-seq data could help us to dissect
the risk genes that play critical roles in tumorigenesis.

In this study,weproposed a comprehensive analysis of theGRNs for the
breast cancer subtypes and dissected the critical genes for each molec-
ular subtype. First, the malignant cells were identified according to the
inferred copy number variation (CNV) of epithelial cells. Next, the sub-
types formalignant cellswere classifiedbyusing thePAM50model. The
ligand-receptor interaction analysis revealed the essential role of the
macrophage in the tumor microenvironment. Then, the transcription
factor (TF)-gene pairs that co-expressed and enriched transcription-
Author(s).
://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Cell composition of TNBC patients

(A) Heatmap of the inferred CNV across 868 epithelial cells, in which genes were sorted by genomic location. (B) Standard deviation of the CNV of the cells in each cluster.

Cluster 1 and cluster 3 showed a relatively high variable of CNV. (C) tSNE plot of the epithelial cells using the inferred CNV. (D) Heatmap of the gene-expression profiles of 545

malignant epithelial cells. (E) Breast cancer subtype composition of each TNBCpatient based on the PAM50model. The point in the petal represents a single cell. The number

beside the patient identification (ID) is the tumor size.
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binding motifs were retained for GRN construction. Furthermore, crit-
ical regulators for each subtype were pinpointed by using the centrality
metrics. At last, we found that ETV6 was ubiquitously activated in the
five molecular subtypes of breast cancer. The dysregulated ETV6 could
regulate diverse genes in each subtype, which could be associated with
intratumoral heterogeneity and progression of TNBC.

RESULTS
Intrinsic molecular subtypes of TNBC patients

We obtained 868 epithelial cells and inferred their CNVs using the
gene-expression profiles and genomic information. The epithelial cells
were clustered into 3 distinct subgroups using the inferred CNVs. We
observed that cluster 1 and cluster 3 had obviously a high variable of
CNVs. Thus, we speculated that the two clusters might be malignant
cells, which comprised of 134 and 411 cells, respectively. The cells in
cluster 2 had a lower variable of CNVs, whichmight be non-malignant
cells and consisted of 323 cells (Figures 1A and 1B).Next, we employed
tSNE (t-Distributed Stochastic Neighbor Embedding) to perform
dimension reduction. The result showed that the epithelial cells
were well partitioned into four distinct subpopulations (Figure 1C),
which confirmed the results of hierarchy clustering.

To identify the molecular subtype of each malignant epithelial cell,
the PAM50 model was employed to classify the malignant epithelial
Molecular Therapy: Nucleic Acids Vol. 23 March 2021 683
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Figure 2. Cell-cell interaction and hallmark gene set

activity analysis

(A) Cell-cell interaction network of different cell types. The

node size represents the number of interactions. The

width of edge represents the number of significant ligand-

receptor interactions in two cell types. (B) Differences of

the enrichment of the hallmark gene sets across the five

molecular subtypes. The colors are encoded by the mean

values of the GSVA enrichment scores in the molecular

subtypes (one-way ANOVA, ***p < 0.001; **p < 0.01; *p <

0.05; NS, p > 0.05). (C) Violin plots of GSVA enrichment

scores of the G2/M checkpoint for five molecular sub-

types.
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cells to five molecular subtypes, named as normal-like, basal-like,
Her2+, LumA, and LumB (Figure 1D; Table S1). We found that the
subtype composition of six patients showed great diversity (Fig-
ure 1E). PT039 and PT081 were comprised of a relatively high
fraction of basal-like subtype cells. Through inspecting the clinical in-
formation of 6 patients, we found that PT039 and PT081 showed the
relative larger tumor size (Figure 1E), which demonstrated that the
high composition of the basal-like subtype could be associated with
progression of breast cancer patients.

To investigate the cell-cell interaction network in the tumor microen-
vironment of TNBC, the python CellPhoneDB package was used to
analyze the ligand-receptor interaction in different cell types (Table
S2). The ligand-receptor pair with p < 0.05 was considered as signif-
icantly interacted in the two cell types.We found that the macrophage
played a dominant role in the cell-cell communication network (Fig-
ure 2A), which revealed the important role of the macrophage in the
tumor microenvironment.14 For example, the epidermal growth fac-
tor receptor (EGFR)-amphiregulin (AREG) ligand-receptor pair was
significantly interacted in the basal-like subtype and macrophage (p <
0.05). The modulation of autocrine signaling AREG was demon-
strated to contribute to recruitment of the macrophage in the basal-
like breast cancer cell line.15 We then performed a gene set variation
analysis (GSVA) for the five molecular subtypes to identify the cells’
activity in 50 hallmark gene sets (Table S3). We found that the five
molecular subtypes showed great diversity (Figure 2B), which re-
vealed the intratumoral heterogeneity of different molecular subtypes.
For example, the basal-like subpopulation was significantly enriched
684 Molecular Therapy: Nucleic Acids Vol. 23 March 2021
in the G2/M checkpoint (Figure 2C; one-way
ANOVA, p-value = 3.6 � 10�24). A previous
study demonstrated that regulating the G2/M
checkpoint could improve the efficacy of cancer
treatment.16

Molecular subtype-specific GRNs

The normal epithelial cells and five molecular
subtype-specific GRNs were constructed based
on gene expression profiles and TF-binding mo-
tifs information. First, we calculated the signifi-
cantly co-expressedTF-gene pairs (Table 1). Sec-
ond, the target gene significantly enriched of a TF-binding motif was
retained for further study. Finally, the enrichment score (ES) >1 was
considered as significantTF-target pairs forGRNconstruction (Tables
S4 and 1). The constructed GRNs were shown in Figures 3A�3F. We
found that the degree distributions ofGRNs of both the normal epithe-
lial cells and the five molecular subtypes approximately fitted the po-
wer-law distribution (Figures S1A�S1F), which indicated that the 6
networks could exist highly connected hub nodes. The word cloud
map illustrated the degree of the TFs in subtype-specific GRNs (Fig-
ures S2A�S2F). We found that the degree of TFs shows great diver-
gence in each subtype-specificGRN. Furthermore, we found that there
were no regulations (TF-target pairs) conserved in five molecular sub-
type-specific GRNs (Figure S3A), but 10 regulators (TFs) were
conserved in the five GRNs (Figure S3B). We proposed that these
conserved TFs could exert diverse roles in variousmolecular subtypes,
which could be associated with intratumoral heterogeneity.

We then identified the critical genes in the 6 GRNs. First, we em-
ployed the centrality metrics to assess the importance of the gene.
The centrality metrics included degree, PageRank, betweenness,
eigenvalue, and closeness (described in Materials and methods).
Then, theQ statistic was employed to integrate the five centrality met-
rics. The centrality metrics and Q value for each node were presented
in Table S5. The top 1% genes ranked by the integrated Q statistic in
each network were considered as critical genes. Next, to evaluate
whether the critical genes were enriched in cancer genes, we obtained
the known cancer genes from the Cancer Gene Census (https://
cancer.sanger.ac.uk/census).17 We found that the critical genes in
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Table 1. Number of candidate TF-target regulations in six GRNs

Normal-like Her2+ LumA LumB Basal-like Normal epithelial

Co-expressed 352,255 197,997 311,071 277,920 350,142 176,041

TF-binding motif 7,212 2,098 9,838 4,550 7,718 113,678

ES > 1 5,421 1,467 7,491 3,133 5,329 2,944
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each molecular subtype-specific GRN were significantly enriched in
the known cancer genes (hypergeometric test p-value: normal-like,
2.55 � 10�4; basal-like, 3.27 � 10�4; Her2+, 8.97 � 10�5; LumA,
4.12 � 10�4; LumB, 7.94 � 10�5). The critical genes involved in
the known cancer genes in each subtype showed great diversity (Fig-
ure S4). For example, we found that the oncogenic gene MYC was a
critical gene in basal-like and LumB subtype-specific networks with
a high node degree (basal-like: degree = 323; LumB: degree = 116).
The elevated expression of MYC was demonstrated to be associated
with the poor prognosis of breast cancer patients.18 Besides, the onco-
genic gene ELK4 was another critical gene in the subtype-specific
network. Mesquita et al.19 found the copy number gain of ELK4
was associated with tumorigenesis. The diversity of critical nodes in
each subtype might elucidate the intratumoral heterogeneity in the
network perspective.

Diverse function of critical genes

To investigate the functions of the critical genes in the five molecular
subtypes, we focused on the conserved critical genes in these molec-
ular subtypes. We found that ETV6 was ubiquitously activated in five
molecular subtype-specific GRNs rather than normal epithelial cell
GRN (Figures 3B�3F). We speculated that ETV6 could play impor-
tant roles in the five molecular subtypes. Then we focused on the
functional diversity of ETV6. We found that ETV6 regulated diverse
genes in different subtypes. There were several subtype-specific genes
in each subtype, which could be associated with intratumoral hetero-
geneity of breast cancer (Figure 4A). Besides, ETV6 showed the high-
est degree in the basal-like subtype-specific GRNs (degree = 411),
which could be critical for the malignant character of the basal-like
subtype. Next, we employed Gene Ontology (GO) annotation sce-
nario to assess the functions of genes regulated by ETV6 in each sub-
type. Here, we considered the hallmark-associated GO terms for visu-
alization.20 We found that the genes regulated by ETV6 participated
in diverse roles in different subtypes, which showed a high level of in-
tratumoral heterogeneity (Figure 4B). For example, the basal-like
subtype was specifically annotated in the vasculogenesis biological
process, which was owing to the specific regulation of ETV6 to
SGPL1 in the basal-like subtype. Engel et al.21 found that the expres-
sion of SGPL1 in breast cancer might be a prognostic marker and
served as a potential drug target for breast cancer treatment.

Then, we investigated the expression level of ETV6 in different sub-
types. At the single cell resolution, we found that ETV6 was signifi-
cantly upregulated in five molecular subtypes than the normal epithe-
lial group (Figure 4C). Furthermore, we inspected the expression of
ETV6 in The Cancer Genome Atlas (TCGA) basal-like patients and
normal breast samples. We found that ETV6 was significantly upre-
gulated in basal-like patients compared with normal control (Fig-
ure 4D). In addition, Osmanbeyoglu et al.22 demonstrated that the
strong nuclear ETV6 staining could be associated with poor prognosis
of uterine serous tumor. We suspected that the activation of ETV6
could be associated with the survival of TNBC patients. Based on
the METABRIC dataset, we found that the patients with higher
expression of ETV6 were associated wshangdddith a relatively poorer
clinical outcome (Figure 4E). Thus, the activation of ETV6 in the five
molecular subtypes might cause intratumoral heterogeneity through
regulating diverse genes. Thus, the dysregulated ETV6 might be a po-
tential target for tumor therapy.

DISCUSSION
TNBC is a subtype of breast cancer in women accompanied with
high intratumoral heterogeneity. Network analysis leveraging the
scRNA-seq data could help us to dissect the critical genes in tumor-
igenesis. In this study, we concentrated on the GRNs of molecular
subtypes for TNBC patients. We proposed a comprehensive analysis
of the GRNs in five molecular subtypes of TNBC patients using
scRNA-seq data. With the integration of the gene-expression pro-
files and TF-binding motif information, we constructed the GRNs
of the five molecular subtypes and normal epithelial cells. In addi-
tion, the critical genes in each subtype were identified in the con-
structed GRNs. The results showed that ETV6 was specifically acti-
vated in the five molecular subtypes rather than in the normal
epithelial cells, which indicated the crucial regulatory roles in the
five molecular subtypes. Functional analysis further indicated that
ETV6 might exert various functions through regulating diverse
target genes in each subtype. In addition, the survival analysis sug-
gested that the overexpression of ETV6 could be associated with
poorer prognostic in TNBC patients. Thus, we speculated that the
critical genes might play diverse roles in different subtypes, and
the dysregulated critical genes might serve as potential drug targets
for chemotherapy.

Recently, several studies investigated the tumor microenvironment of
breast cancer.23,24 The tumor microenvironment could be involved in
paracrine interactions with malignant cells, leading to evading the im-
mune surveillance and tumor progression. In this study, we focused
on the malignant epithelial cells for network construction and re-
vealed the essential roles of the critical genes. Although we did not
take the impact of the immune cells and stromal cells into consider-
ation, the results could still reveal the critical genes that play key roles
in TNBC patients. The combination of the impacts of the tumor
microenvironment, such as immune infiltration, might be meaningful
Molecular Therapy: Nucleic Acids Vol. 23 March 2021 685
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Figure 3. GRNs of normal epithelial cells and five

molecular subtypes

Colored nodes imply the critical genes. (A�F) TheGRNs of

normal epithelial (A), normal-like (B), basal-like (C), Her2+

(D), LumA (E), and LumB (F).
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as well. In this study, we employed the pySCENIC package for
network construction. In addition, the AnimalTFDB and hTFtarget
databases also curated the comprehensive TFs and TF-target regula-
tions.25,26 Construction of GRNs through integrating more informa-
tion would be more reliable. In addition, the cells expressing ligand-
receptor genes implied that cell-cell communications across the
numerous cell types could be fundamental for the tumor microenvi-
ronment.27 The cell-cell interaction quantified by gene-expression
profiles in the tumor could be used to study the ligand-receptor inter-
action inside the tumor.28 Further study focused on the cell-cell inter-
action network, which could be valuable for elucidating the crosstalk
among different cell types. Besides, the GRN constructed for a single
cell is another strategy for dissecting the intratumoral heterogeneity.
Dai et al.29 developed a pipeline for cell-specific network construction
at single-cell resolution, which would be used for accurate cell clus-
tering and pseudo-trajectory inference. Although our study focused
on the GRNs in the holistic view, we could dissect the intratumoral
heterogeneity in the view of an intrinsic subtype. Moreover, we could
also reveal the critical genes that play important roles in the molecular
subtypes of TNBC.

As we all know, the “zero dropouts” of scRNA-seq data could be inev-
itable for the small fraction of mRNA in single cells. Several data
imputation methods were developed30,31 to impute the zero value.
In this study, the detected genes of the Smart-seq2 platform are suf-
ficient for network construction. What’s more, the co-expression-
based scenario used in this study was verified to overcome this
constraint.32 Besides, there might be a patient’s specific factors, but
the correlation-based method for network construction could over-
come these confounding factors. In this study, we only picked up
the top 1% rank genes as critical genes in each GRN. Albeit this sce-
nario would be arbitrary, but it enables us to explore the functional
686 Molecular Therapy: Nucleic Acids Vol. 23 March 2021
genes for the corresponding GRNs. Undoubt-
edly, further external independent data valida-
tion could make our results more reliable. The
dysregulation of ETV6 has been found to be
associated with several cancer types, such as leu-
kemia and prostate cancer,33,34 but the func-
tional diversity and the prognostic value of
ETV6 in TNBC have not been investigated. In
this study, we found that the expression of
ETV6 was elevated in the basal-like subtype
based on both scRNA-seq and RNA-seq data
(Figures 4C and 4D). Moreover, the TNBC pa-
tients with higher expression of ETV6 showed
a worse outcome (Figure 4E), which indicated
that ETV6might play an oncogenic role in TNBC. In previous studies,
the TFs, such as p53, and the non-coding RNAs (ncRNAs), such as
microRNA (miR)-21, miR-10b, and NEAT1, could regulate different
target genes in different subpopulations or subtypes of cancers.35–37

In this study, we found that ETV6 could play diversified roles through
regulating different genes in the five molecular subtypes, which might
be associated with intratumoral heterogeneity. To explore the poten-
tial drugs related to the ETV6 gene, we used the ChEMBL database to
scrutinize the candidate compounds.38 As a result, we supposed that
ceritinib might be a potential drug for breast cancer treatment. In this
study, we proposed that the dysregulation of ETV6 in TNBC patients
might be a potential drug target for breast cancer treatment. Further
experimental verification is also necessary to make our results more
reliable.

MATERIALS AND METHODS
Data collection and processing

We downloaded the scRNA-seq data of 6 TNBC patients (PT039,
PT058, PT081, PT084, PT089, and PT126) from GEO (https://
www.ncbi.nlm.nih.gov/geo/) database (GEO: GSE118390), which
comprised 1,189 high-quality cells with annotated cell types.12 As
described in a previous study, malignant cells of breast cancer were
originated from epithelial cells.11 Thus, only the 868 epithelial cells
were retained for identification of malignant cells. In addition, the
gene-expression profiles of 240 normal breast epithelial cells were
downloaded from previous research,39 which served as reference
(normal) cells for copy number estimation and normal breast epithe-
lial cell GRN construction. In addition, the gene-expression profiles of
105 normal and 115 TNBC samples were obtained from TCGA data-
base40 for differential gene-expression analysis. The METABRIC
database41 collected 186 TNBC patients with clinical information,
which was used for survival analysis.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/


Figure 4. Functional diversity of ETV6

(A) ETV6 regulates diverse genes in each subtype. The line colors indicate the ETV6 regulations in different subtypes. (B) GO annotation of ETV6-regulated genes in each

subtype. The colored lattice showed the ETV6-regulated genes annotated in the corresponding GO term. (C) Expression of ETV6 in normal epithelial cells and five molecular

subtypes. (D) Expression of ETV6 in TCGA normal and TNBC samples. (E) Survival analysis of TNBC patients in theMETABRIC dataset based on ETV6 expression. The lower

expression of ETV6 showed better clinical outcome.
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Identification of malignant epithelial cells and breast cancer

subtypes

As mentioned in a previous study,42 malignant cells always accom-
pany a high variable of CNV. Here, we inferred the CNV for the
868 epithelial cells from the gene-expression profiles. The 240 normal
epithelial cells were set as a reference set for CNV inference. The genes
were sorted by the genomic location, and then the average gene
expression of upstream and downstream genes was considered as pu-
tative CNV. In this study, the infercnv R package was used for CNV
estimation.43 After inferring the CNV from gene-expression profiles,
hierarchy clustering was performed for identification of malignant
cell clusters. The clusters with a high variable of CNVwere considered
as malignant cells for subtype identification.

The malignant cells were then classified into five molecular subtypes
(normal-like, basal-like, Her2+, LumA, and LumB), according to
their gene-expression profiles by using the PAM50 model,2 which
was widely used for identification of breast cancer subtypes based
on 50 marker genes (PAM50 gene signatures).44 The gene-expression
value was transcripts per million (TPM) value. We then performed
log2(TPM + 1) transformation for the gene-expression profiles. The
subtype for each breast cancer cell was assigned by using the Sub-
Pred_pam50 function of the genefu R package.45

Cell-cell communication and GSVA analysis

To investigate the cell-cell communication in different cell types,
including the five molecular subtypes, first, the cell-type annotations
were obtained from a previous study, including B cell, T cell, macro-
phage, stroma, and endothelial cell.12 Then the python CellPhoneDB
(https://www.cellphonedb.org/) package was used to estimate the sig-
nificance of ligand-receptor pairs in different cell types.46 The ligand-
receptor pairs with p < 0.05 were considered as significantly inter-
acted in two cell types.

To test the differentially activated gene sets in the five molecular sub-
types, we first downloaded the 50 hallmark gene sets from the Molec-
ular Signatures Database (https://www.gsea-msigdb.org/gsea/
msigdb). Then, the GSVA analysis for the five molecular subtypes
was performed using the R GSVA package.47

Construction of GRNs and identification of critical nodes

We used the gene co-expression and transcription-binding motif in-
formation to build the GRN for each subtype of breast cancer and the
normal epithelial cells. First, the TFs were obtained from a previous
study, which contains 1,797 unique TFs.32 Next, the co-expression
analysis was performed to estimate the potential regulation strength
between TFs and target genes.48 Then, the TF-target gene pairs, which
were significantly enriched with TF-binding motifs, were retained as
real regulations in each subtype and normal epithelial cells. The co-
expression and TF-binding motif enrichment analyses were per-
formed by using the python pySCENIC package.32

After we obtained the GRNs of normal epithelial cells and five
molecular subtypes, the node centrality metrics were employed
Molecular Therapy: Nucleic Acids Vol. 23 March 2021 687
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Figure 5. Schematic diagram of this study

First, the scRNA-seq data were used to infer CNV. The malignant cells were identified based on the inferred CNV. Then the subtype of each cell was assigned by using the

PAM50model, and the GRNwas constructed for each subtype. Second, five centrality metrics were calculated tomeasure the importance of nodes. Then theQ statistic was

used to integrate these centrality metrics. Finally, the diverse roles of the common critical genes were assessed. Differential expression analysis and survival analysis were

performed for the critical gene.
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to measure the importance of nodes in the constructed networks.
In this study, we used degree, betweenness, eigenvalue, PageRank,
and closeness to evaluate the centrality of nodes.13 Degree is the
number of adjacent nodes of the corresponding node. Node with
high degree is usually considered a hub with essential functions.
Betweenness is calculated based on the number of shortest paths
passed through the corresponding node. Node with high between-
ness could be the bottleneck of the GRN. The eigenvalue mea-
sures the node importance by taking the importance of neighbors
into consideration. PageRank is the probability of the random
walk of the corresponding node. PageRank is similar to eigen-
value, whereas PageRank introduces the damping factor (default
0.85). Closeness measures the average distance to all nodes
for the corresponding node. Node with high closeness denotes
that the node is located in the central location of network. All
688 Molecular Therapy: Nucleic Acids Vol. 23 March 2021
of these centrality metrics were calculated by using the R igraph
package.

After calculating the five centrality metrics for each node of each
GRN, we employed the Q statistic49 to integrate the five centrality
metrics of the nodes for each GRN.

Q r1; r2; :::ri; :::; rNð Þ=N!VN

Vk =
Xk

j= 1
�1ð Þj�1Vk�j

j!
rjN�k+ 1

where V0 = 1, N = 5, ri is the rank ratio of the i
th centrality metric, and

rj is r to the power of j in this study. Finally, we obtained the integrated
Q statistic for each node in the corresponding GRN. The genes with
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the top 1% Q statistic were considered as critical nodes in each GRN,
respectively.

Function enrichment analysis and survival analysis

To obtain the function of TFs in the five molecular subtype-specific
GRNs, we used the Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) online tool to perform GO annotations.50

In addition, we downloaded the cancer hallmark-associated GO
terms from previous research.20 Only these cancer hallmark-associ-
ated GO terms were retained for visualization. In this study, we
also investigated the expression of ETV6 in the five molecular sub-
types and the clinical outcome of TNBC patients. The R survival
and survminer packages were used to evaluate the gene expression
and prognostic significance. The flowchart of this study was shown
in Figure 5.

SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.
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