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1 | INTRODUCTION

Zane Mills?

| Zhong Zheng**

Abstract

A plethora of both acute and chronic conditions, including traumatic, degen-
erative, malignant, or congenital disorders, commonly induce bone disorders
often associated with severe persisting pain and limited mobility. Over 1 million
surgical procedures involving bone excision, bone grafting, and fracture repair
are performed each year in the U.S. alone, resulting in immense levels of pub-
lic health challenges and corresponding financial burdens. Unfortunately, the
innate self-healing capacity of bone is often inadequate for larger defects over
a critical size. Moreover, as direct transplantation of committed osteoblasts is
hindered by deficient cell availability, limited cell spreading, and poor surviv-
ability, an urgent need for novel cell sources for bone regeneration is concurrent.
Thanks to the development in stem cell biology and cell reprogramming technol-
ogy, many multipotent and pluripotent cells that manifest promising osteogenic
potential are considered the regenerative remedy for bone defects. Considering
these cells’ investigation is still in its relative infancy, each of them offers their
own particular challenges that must be conquered before the large-scale clinical
application.

KEYWORDS
bone regeneration, multipotent stem cells, pluripotent stem cells

with a robust innate self-healing repair mechanism of
spontaneous resorption and reformation, allowing small

The typical human skeleton is composed of 206 bones;
however, individuals may have varying numbers of bones
present, including various small unnamed bones that gen-
erally form in high-friction areas. As the hardest and most
rigid structures (aside from the teeth) in the body, bone
provides mechanical support, mobility, and load-bearing
capacity. In addition, bones play a critical role in the pro-
duction of blood cells, the storage of minerals, and the reg-
ulation of the endocrine system.

Bone injuries comprise 25-30% of all musculoskeletal
pathologies.! Fortunately, bone is one of the few tissues

bone injuries to heal in most cases.” However, bone regen-
eration capacity is not sufficient in regard to reestablish-
ing the skeletal system’s integrity and functionality when
the damage reaches a critical size, such as those resulting
from severe injuries, maxillofacial surgeries of cleft palates,
or salvage excision of tumors. A variety of musculoskele-
tal diseases and congenital conditions also significantly
impair bone development and regeneration. In particular,
osteoporosis and osteoarthritis are two prevalent diseases
within the geriatric population that present major chal-
lenges for orthopedic reconstruction. Prevalence of these
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diseases is shown in the fact that 33-50% of women and 20-
35% of men over the age of 50 are at risk of experiencing
osteoporotic fractures, generating an estimated cost of $25
billion in medical expenses by 2025.%”

Various efforts have been made to improve bone regen-
eration for decades, including restricted or modified activ-
ity, immobilization of injured structure, acupuncture,
physical therapy, administration of anti-inflammatory
medication, application of corticosteroids, and revision
surgeries. However, these therapies are palliative for bone
defect management, as they do not directly stimulate the
proliferation, differentiation, and maturation of osteogenic
progenitor cells to reestablish the tissue; they merely ale-
viate the symptoms therein. Due to the advent of tissue
engineering and regenerative medicine, new strategies to
restore homeostasis in bone deficiency, such as bone graft
usage, have been recently proposed.®!! To date, the auto-
genous bone graft is still considered the gold standard for
reconstructing large skeletal defects, as it not only provides
a construction composed of a natural osteoconductive scaf-
fold accompanied by supportive growth factors but also
supplies immunotolerated osteogenic-committed cells.'?
Although this may be true, the limited resources for auto-
genous bone grafts and the harvesting procedure’s morbid-
ity have fueled the search for alternative bone regeneration
approach(s).

In order to be comparable to autogenous bone graft as
the ideal blueprint for efficacious bone regeneration, any
candidate therapies should provide one or more of the fol-
lowing: (1) a supportive osteoconductive or osteoinductive
scaffold, (2) a suitable microenvironment to stimulate cel-
lular osteogenesis differentiation and maturation, and (3)
immune-tolerant osteogenic-committed cells or progeni-
tor cells harboring the osteogenic potential in vivo.

In regard to the scaffold, functional material design has
accelerated the application of biodegradable biomaterials
in bone tissue engineering. Several diverse natural proteins
(such as collagen,*" fibrin,'®! and silk?°~??), polysac-
charides (such as hyaluronic acid>** and chitosan’*-3"),
bioceramics,*** demineralized bone matrix,>* synthe-
sized polymers (such as saturated aliphatic polyesters
as presented by poly(p -lactic acid-co-glycolic acid),*>-°
poly[(amino acid ester) phosphazenes]’’**), and their
composites (such as collagen-hydroxyapatite-tricalcium
phosphate complex® and polyhydroxyalkanoate/ceramic
complex*’) have been used to construct bone graft
substitutes.*! Meanwhile, bone graft infection is one of
the most serious complications in orthopedic surgery,
as they are extremely difficult to treat and typically
lead to signficantly worse outcomes.*”*’ Thus, antibi-
otics, such as gentamicin,48 and antiseptics, such as sil-
ver nanoparticles,’>*>*" are incorporated into the bone
grafts to eliminate the contamination/infection and pro-

hibit biofilm formation. These modified scaffolds provide
a new avenue for winning the “race” between the infec-
tious organisms that seek to contaminate, colonize, and
ultimately infect the graft, and the body’s endogenous tis-
sues or embedded exogenous osteogenic progenitors that
seek to grow into the graft to attain a functional reunion.
Meanwhile, numerous efforts have been devoted to scaf-
fold optimization for accelerating the on growth cells pro-
liferate and differentiate into the mature osseous tissue and
deposit bone extracellular matrix (ECM).>>?

Multiple growth factors have also been investigated to
promote bone formation, among which bone morpho-
genetic protein 2 (BMP2; Infuse™ Bone Graft) has been
approved for use in sinus augmentation and localized alve-
olar ridge augmentation. Although the osteogenic activ-
ity of BMP2 is well documented, its off-target effects such
as postoperative inflammation,>**>* osteoclastogenesis, >
adipogenesis,”*>>>7% and ectopic bone formation®® have
also been recognized and raised concerns for clinical
application of BMP2. Another intensively investigated
group factor is BMP7 (also known as osteogenic protein-1
[OP-1]). Accumulating evidence demonstrates the effi-
cacy of BMP7 on bone regenration.”~ Unfortunately, the
application of BMP2 and BMP7in the clinical settings faces
an array of obstacles, including the high costs, lingering
safety concerns (vertebral osteolysis, ectopic bone forma-
tion, radiculitis, or cervical soft tissue swelling), consider-
able failure rates, and controversies. Consequently, recom-
binant human BMP7 was withdrawn from the market, and
restrictions were imposed in the clinical use of recombi-
nant human BMP2.4-%7 Aside from the BMP family mem-
bers, other growth factors also step onto the arena of bone
regeneration. For example, in 1999, Ting’s group first iden-
tified the osteogenic activity of another secretory protein,
neural EGFL like 1 (NELL1), in active bone formation sites
of human craniosynostosis patients.®® Since then, NELLI’s
osteogenic potency has been verified in several small and
large animal models consisting of rodents, sheep, and non-
human primates®~’? without detecting the adverse effects
seen in BMP2 administration.”"”>~7° These studies suggest
that NELL1 may be an alternative therapeutic option for
local or systemic bone regeneration.

In addition to osteogenic growth factors, ultrasound
and electrical stimulation are also used to promote
bone regeneration.””””® However, a recent systematic
review of randomized controlled trials reveals that
low-intensity pulsed ultrasound stimulation did not
reduce time to return to work or the number of sub-
sequent operations of patients with fractures, and its
benefits on pain management, days to weight-bearing,
and radiographic healing were also to be insignificant.”
Although the mechanism is not entirely understood,
collagen’s piezoelectric property is able to generate a
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built-in electric field in the organic bone matrix,*° which
may activate the membrane receptors on osteoprogenitor
cells to subsequently induce osteogenesis.’ Beyond this
inherent property, faradic products generated around
cathodic sites during electrical stimulation also appear
to contribute to bone regeneration.®? The cations, such
as Ca’*, can rapidly deposit around the cathode, and
anions, such as PO,*>~, HPO,?~, and OH™, subsequently
aggregate around the cations.®® These depositions result
in hydroxyapatite formation at the cathode, which, in
turn, promotes bone formation.** In attempts to induce
osteogenesis with electric forces, various methods such
as direct electrical current,®* capacitive coupling,®> and
inductive (:oupling,86 have been used. Recently, through
the engineering of a nanoscale galvanic redox system
between silver nanoparticles and 316L stainless steel
alloy, novel osteogenic stimulation properties and the
bactericidal activities have been introduced into the
composite material system,®” which offers an innovative
strategy to design multifunctional biomaterials for bone
formation.

Despite the development in support materials and stim-
ulating methods, cells hold the predominant role in bone
regeneration. It is without a doubt that resident stromal
resident stem cells, such as perivascular hosted CD146%
skeletal stem cells (SSCs)®® and newly identified epiphy-
seal located CD146~ SSCs® response to damage on the
front line and play essential immunomodulatory and pro-
osteogenic roles in the local environment (as reviewed in
Refs. 90-93). Nonetheless, for critical-size defects, the local
osteoprogenitors are insufficient in restoring tissue conti-
nuity or function. Several disadvantages, such as the donor
site morbidity, inadequate cell availability, poor survivabil-
ity, restricted proliferation, limited spreading, and dedif-
ferentiation, significantly hinder the clinical use of mature
cells, such as osteoblasts.”**® Therefore, isolation or gen-
eration of safer and more readily available regenerative cell
sources remains a major challenge, demanding alternative
cell-based regenerative therapies.

Since Becker, McCulloch, and Till first defined the stem
cells functionally in 1963,”” stem cells’ pluri- or multipo-
tent properties have been a hot investigating topic among
the scientific community. This broad excitement has led
to continuous improvements in the understanding of stem
cell biology, accompanied by worldwide competition for
employing stem cell techniques in clinical applications.”
This is particularly evident in skeletal regenerative
medicine,”>!?° although inevitable clinical implementa-
tion barriers remain intact. A growing diversity of pluri- or
multipotent cell sources have been investigated for bone
regeneration (Figure 1), each of which present unique
advantages and, on the other hand, challenges.

Open Access,

2 | ADULT MESENCHYMAL STEM
CELLS (MSCs)

2.1 | Adult MSCs were first isolated from
bone marrow

In 1966, A. J. Friedenstein and colleagues detected the
ectopic bone formation by a population of cells isolated
from mature mouse bone marrow,'”! which provided
that the first evidence endorsing Cohnheim’s hypothe-
sis nonhematopoietic regenerative cells exist in the bone
marrow.'”? Under the appropriate in vitro culture condi-
tion, these colony forming unit-fibroblasts (CFU-F) can
differentiate toward a wide range of cell types, includ-
ing osteoblasts, chondrocytes, myocytes, and adipocytes.
This being the case, these cells were retermed and are
now commonly known as bone marrow-derived stromal
cells (BMSCs). On account of their relationship with mes-
enchymal tissue development and regeneration, BMSCs
are recognized as the prototype of MSCs.!”* Since BMSCs
enhanced bone healing in numerous small and large
animal models,'%41%° human BMSCs are considered the
current gold-standard cell source for bone regeneration.
For example, applying BMSCs to stimulate posterolateral
spinal fusion was transferred from the preclinical inves-
tigation into the clinical assessment in 2008.""Y However,
the invasive and painful harvesting procedure presents a
significant obstacle for BMSCs’ application. Also, the per-
centage of BMSCs among bone marrow nucleated cells
obtained from bone marrow aspiration is typically 0.001-
0.01%."""12 Therefore, large quantities of bone marrow
must be procured as starting material to obtain a sub-
stantial amount of BMSCs, causing additional donor site
morbidity, and thus, remains extremely challenging for
BMSCs’ clinical translation. Meanwhile, purification and
expansion of BMSCs via passaging are generally neces-
sary to eliminate other cell types.'”* Unfortunately, BMSCs
purified by the conventional plastic adherence method and
assessed by the fibroblastic morphological criteria are het-
erogeneous populations containing a diversity of single
stem cell-like and progenitor cells with different lineage
commitment.'* As a result, even in the seemingly pure
preparation of BMSCs, only a subpopulation of BMSCs will
be susceptible to osteogenesis.!> Further, BMSCs have a
relatively low proliferative ability, while the growth factors
used to help BMSC expansion can jeopardize their differ-
entiation potential.'!6-1!8

In 2006, Aslan et al isolated a population of CD105
(endoglin)-expressing cells from bone marrow aspirate.'”
Since these CD105" cells can be culture-expanded, express
CD90 but not CDI14, CD34, CD45, or CD31, and are
able to differentiate into osteogenic, chondrogenic, and
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A plethora of both acute and chronic conditions, including traumatic, degenerative, malignant, and congenital varieties, often

play key roles in reducing the quality of life for many people. This is particularly true in the case of critical-size defects where the innate self-

healing capacity of bone is inadequate for a reunion. To date, a diversity of novel multipotent/pluripotent cell sources is regarded as regenerative
medicine, particularly for bone regeneration, in virtue of continued worldwide collaboration. Although their potential is irrefutable, each of the

cell sources mentioned has its own drawbacks, which must be entirely understood and overcome before they are released for human clinical

application

adipogenic lineages,"” they could be considered a subsec-
tion of BMSCs according to the Mesenchymal and Tis-
sue Stem Cell Committee of the International Society
for Cellular Therapy (ISCT) criteria.'” Excitingly, freshly
immunoisolated CD105% cells can differentiate into chon-
drocytes and osteoblasts in vivo with the stimulation with
BMP2."” A follow-up randomized and prospective pre-

liminary study demonstrates the efficacy of these noncul-
tured, immunoisolated CD105" cells on fracture reunion in
a clinical setting.'*! However, these CD105% cells only rep-
resent 2.3 + 0.45% of the mononuclear cells in bone mar-
row aspirate.!'” Therefore, novel technologies that easily
and safely isolate sufficient highly osteogenesis-potential
BMSC:s are still urgently demanded.
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2.2 | Adult MSCs can also be isolated
from other tissues

To overcome the aforementioned disadvantages of BMSCs,
great efforts have been made to collect MSCs from other
tissues. Until now, in addition to bone marrow, MSCs
were isolated from a broad range of tissues, such as
perichondrium,'?? cartilage,'*>'?* tendon,'*> muscle,'?6-1%
skin,'”® dental pulp,*°'*? gut,'3* liver,** and salivary
glands."*>13¢ However, isolating MSCs from these tissues
also involves invasive and painful harvesting procedures
and is limited by the insufficient supply for cell harvesting.

2.2.1 | Oral-derived MSCs

One typical example is the dental pulp. Although studies
on a laboratory-scale demonstrated the benefits of dental-
pulp-derived MSCs (DMSCs) in the regeneration of cran-
iofacial bone defects,'*’~'*? the small yield of DMSCs from
a single tooth leads to the long-term cultivation of DMSCs,
accompanied with the escalated costs and risks to acquire
sufficient DMSCs for clinical implementation. As a result,
the regulatory bar for DMSCs seems extremely high. In
addition to DMSCs, the oral cavity hosts several other stem
cell populations capable of bone regeneration (as reviewed
in Ref. 92), while similar cell availability limitation and reg-
ulatory concerns faced by DMSCs also hindered these cells’
clinical applications.

2.2.2 |
(ADSCs)

Adipose-derived stem cells

On the other hand, adipose tissue may provide an alter-
native avenue for MSCs isolation.'**"'*® The human adi-
pose tissue is relatively abundant and can generally be
obtained through a liposuction procedure.'** More impor-
tantly, adipose tissue yields a higher amount of MSCs
than bone marrow: ADSCs can be harvested at the ratio
of 5000 CFU-F per gram of adipose tissue; in other
words, approximately 2% of nucleated cells in processed
lipoaspirate are ADSCs.'*>>° In comparison with BMSCs,
ADSCs also have a great proliferation capability'">? and
are generally considered stable throughout long-term in
vitro expansion,'>* exhibiting their potential to be a prac-
tical regenerative medicine. Unfortunately, although it
has become the second most common cosmetic surgical
procedures,>*!> lipoaspiration/liposuction is still an inva-
sive and painful surgery performed with anesthesia.>®"’
Consequently, reports of severely secondary complica-
tions of lipoaspiration, such as blood clots, negative reac-
tions to anesthesia, pulmonary complications, infections,

and venous thromboembolism, have been significantly
increased.”®">® Moreover, deaths secondary to lipoaspi-
ration procedures are as high as one death in 5000
surgeries.>>!%-70 Thus, lipoaspiration alone may not be
safe for patients with heart problems or blood clotting dis-
orders, women who are pregnant,® or patients with a
body mass greater than 35 kg/m? and thus is associated
with a very high risk of secondary complications.'>>!7-173
More importantly, combined procedures of lipoaspiration
for ADSC harvesting and implantation for bone regener-
ation, particularly with obese or geratiric individuals, will
significantly increase the complication rates and often lead
to critical safety concerns.'®

2.3 | Defination of MSCs is still an open
question under investigation

ADSCs are present in a stromal vascular fraction (SVF)
that constitutes less than 10% of adipose tissue.”*!”> SVF is
a heterogeneous cell population, including preadipocytes,
fibroblasts, vascular smooth muscle cells, endothelial cells,
resident monocytes/macrophages, lymphocytes, and puta-
tive ADSCs.!”*"'77 Because the presence of mixed stro-
mal and endothelial cells in SVF may dilute and interact
with the ADSCs, the benefit of SVF or unpurified ADSCs
on bone regeneration is minimal."”®"'®0 Consequently, a
method to purify ADSCs from the SVF is vital, which turns
out to post a question in regard to the characterization of
MSCs.

Interestingly, MSCs, including BMSCs, DMSCs, ADSCs,
and muscle-derived stem cells,'2°"1?® are identified in cul-
tures of its dissociated original tissues instead of their
native character, frequency, and anatomic location. In
2006, the Mesenchymal and Tissue Stem Cell Committee
of the ISCT established a four-point minimal criterium to
define MSCs'?’;

1. Are plastic-adherent when kept in standard culture
conditions?

2. Are phenotypically positive for CD73, CD90, and
CD105?

3. Lack of expression of CD45, CD34, CD14 or CD1lb,
CD19 or CD79a, and human leukocyte antigen-antigen
D related (HLA-DR).

4. Hold the so-called “tri-lineage” differentiation poten-
tial towards osteoblasts, adipocytes, and chondroblasts
in vitro.

It is worth noticing that CD44, a previously identified
essential MSC-expression cell surface antigen,'®'** is not
admitted to the ISCT standard. These criteria may be suit-
able for purifying ADSCs from SVF on account of the
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more homogenous CD9t/CD44%/CD737/CD90" pheno-
type presented in the SVF after cultivation.'®* Nonethe-
less, accumulating evidence suggests that these crite-
ria may not be completely applicable for identifying
ADSCs in vivo or isolating ADSCs from the bulk adi-
pose tissue directly without additional in vitro cultivation
steps. For instance, it is known that fibroblasts and stro-
mal cells share the CD73%/CD105"/CD90%/CD44" phe-
notype, and this quadruple-positive panel is only suf-
ficient to discriminate these cells from hematopoietic
counterparts.'3>188

The expression of CD34 is another important issue
for characterizing MSCs in vivo. Traditionally, CD34
was considered a unique endothelial and hematopoietic
marker, which should not be expressed by MSCs.'*° Con-
sequently, CD34 expression was used to identify and iso-
late hematopoietic stem cells (HSCs),'”” and it was a
common misconception that CD34* cells represented the
hematopoietic contamination in nonhematopoietic sam-
ples. Nevertheless, when Simmons and Torok-Storb origi-
nally generated the monoclonal antibody Stro-1, which has
been extensively used as a selection tool of MSCs, CD34*
bone marrow cells were employed as the immunogen.'”!
Surprisingly enough, CD34% cells constitute the major-
ity of SVF cells (60-80%),°>'> and ADSCs harvested
from lipoaspirate before in vitro cultivation exhibited
some degree of CD34 expression,'**'% suggesting that
CD34 may not be a real negative marker of MSCs in
vivo.1??200 Meanwhile, CD34 expression is also present
in various stem/progenitor cells, including muscle satel-
lite cells,””! hair follicle stem cells,’’>?** and keratinocyte
stem cells.’’* Further studies show that the standard pas-
saging of ADSCs gradually declines the expression of
CD34,'® accompanied by the downregulation of other
MSC-associated markers such as CD106, CD146, and
CD271.1%6:205-207 Be this as it may, the expression of
ISTC classified MSC markers CD73, CD90, and CD105 is
increased upon cell expansion in vitro.'® The similar dis-
appearance of CD34 expression was duplicated in muscle
satellite cells when the cells were propagated and differ-
entiated into adipogenic cells.?® Additionally, upon acti-
vation, the quiescent CD34% Kkeratocytes lost the CD34
expression and acquired a fibroblastic phenotype.???2!!
Further, the high expression level of Stro-1 antigens
in ADSCs is also diminished in response to passaging
or induced differentiation.”’ When considered together,
these phenotypical shifts represent a response of multi-
potent cells to the environmental changes that induce an
activation/differentiation from their in vivo quiescent state
and indicate that CD34 could be treated as a common
marker of quiescent multipotent stem/progenitor popula-
tion, including ADSCs in vivo.??

2.4 | Adult MSCs are tightly related to
pericytes and adventitial cells

Through their emperrical work, Tintut et al demonstrated
the multilineage differentiation potency of a subpopula-
tion of vascular cells.?'* Together with the distribution of
Stro-1 antigens in adipose tissue predominantly located
in the endothelium of arterioles, capillaries, and some
veins,”"” this report inspired an enthusiastic investigation
to reveal the relationship between MSCs and perivascular
cells. In mice, ADSCs have been shown to reside in the
adipose vasculature’'® with the expression of CD34 and
stem cell antigen-1 (Sca-1; a marker for tissue-resident
stem/progenitor cells’’’) as well as three mura cell
markers: a-smooth muscle actin (a-SMA), S-type platelet-
derived growth factor receptor (PDGFRp), and neural/glial
antigen 2 (NG2). In 2008, Péault’s group demonstrated
that pericytes derived from multiple human organs
(including white adipose tissue, skeletal muscle, pancreas,
placenta, heart, skin, lung, brain, eye, gut, bone marrow,
and umbilical cord) display a CD347/CD45 /HLA-
DR~/CD44*%/CD73%/CD90"/CD105" phenotype after in
vitro cultivation.?’® Moreover, when cultured in suitable
conditions, pericytes exhibit the capability for colonial
formation as well as osteogenic, chondrogenic, and adi-
pogenic differentiation, which qualified them as MSCs
based on the ISCT standard.?’® This astonishing equiva-
lency of pericytes with MSCs soon after drew the scientific
community’s attention and led to the hypothesis that “all”
MSCs are derived from pericytes.”"”

The comparison between ADSCs and pericytes fur-
ther emphasizes this theory. Intrestingly, like ADSCs,
intact pericytes in their native origin are positive for a-
SMA, PGDFRS, and NG2 expression, which is not dimin-
ished during in vitro expending.?'* However, unlike mouse
ADSCs that are CD34" in vivo and early-passage in
vitro,'”%21¢ Jack of CD34 expression in pericytes led to con-
fusion regarding their natural affiliation.

In addition to the pericytes that closely associate with
microvessel endothelial cells surrounding capillaries and
microvessels, multipotent progenitor cells with MSC char-
acters have also been isolated from the bovine artery
wall?"* and the tunica adventitia of the human pulmonary
artery,” which suggests the existence of nonpericyte
perivascular cells as alternative originators of MSCs.?*!
After exclusion of myogenic (CD56) and hematopoietic
(CD45) populations, two distinct populations derived
from human white adipose tissue without the expres-
sion of endothelium-specific antigen CD31 could give
rise to MSCs: CD1467/CD34~ pericytes and a second
CD146~/CD34" population,’”” because the clones devel-
oped from the CD146~/CD34" cells displayed the MSC
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hallmark molecules CD44, CD73, CD90, and CD105, and
can undergo osteogenic, adipogenic, and chondrogenic
differentiation.??” Besides, flow cytometry analysis simi-
larly confirmed that these CD146~/CD341 adventitial cells
homogeneously express the typical MSC-associated mark-
ers CD44, CD73, CD90, and CD105 in their native origin.?*?
Compared with pericytes, adventitial cells surround the
largest vessels and are not closely associated with endothe-
lial cells.”?*?>* Because adventitial cells hold the capabil-
ity to differentiate into pericyte-like cells under inductive
conditions in vitro, they are proposed to be the precursors
of pericytes.””??> A study evaluated human lipoaspirate
from 70 donors to reveal that pericytes and adventitial cells
comprise an average of17.1% and 22.5% of SVF, respectively,
which, in turn, accounts for approximately 39.6% of total
nonadipocyte lipoaspirate cells or 3.96% of total adipose-
nucleated cells.!”®

Although distinguishing these two populations provides
significant impacts for stem cell biology research, combin-
ing pericytes and adventitial cells together—collectively
termed perivascular stem cells (PSCs)—may maximize the
MSC source in a clinical setting, especially when autol-
ogous cells are used to avoid immunogenic rejection. To
bypass the in vitro cultivation steps for the plastic-adherent
cells, which generally takes weeks and increases the risk of
spontaneous cellular transformation, Péault’s group estab-
lished a simple sorting procedure to safely and effectively
obtain PSCs from routine liposuction.??* In this procedure,
adipose tissues obtained from liposuction or lipectomy are
first digested with collagenase and centrifuged to remove
adipocytes. Then, the CD31~/CD45~/CD34~/CD146™ per-
icytes and CD31~/CD45~ /CD34"/CD146~ adventitial cells
are collected from the yielded SVF by fluorescent-activated
cell sorting (FACS).'”® Thanks to the effects of a multidis-
ciplinary research group led by Drs. Péault and Soo, the
entire procedure has been optimized to be completed in a
few hours, making the direct sorting-based PSC applica-
tion feasible in a clinical setting. As expected, the purified
PSCs enhanced bone formation in animal models and were
superior to SVF in forming bones.!”®?2>-227 Thus, purified
PSCs seem to be an alternative MSCs source to confer bone
formation.

2.5 | Adult MSCs may benefit tissue
repair via bioactive soluble factor
production and secreation

In the last few decades, there has been a debate regarding
the way in which MSCs ameliorate tissue damages.
One possibility is that MSCs directly differentiate or
transdifferentiate into parenchymal cells.””® Yet, previous
studies showed a surprisingly low (less than 1%) and

transient engraftment of MSCs in newly formed tissue
given the associated therapeutic efficacy.>*** A recent
study that tracked the fate of pericytes in vivo in injured
skeletal muscle or brain suggested that pericytes did
not transdifferentiate as progenitor cells in these two
circumstances, further questioning the direct engraftment
of MSCs in tissue regeneration in vivo.”*! Currently, it
is believed that the long-lasting therapeutic benefits of
MSCs rely on their bioactive soluble factor production
and secretion.”*>"?** Particularly, by secreting trophic
factors (growth factors, cytokines, and specific proteins),
MSCs present their regenerative potency in neurovas-
cular and musculoskeletal therapies.”>>?3® MSCs also
produce multiple inflammatory cytokines to modulate
the interaction between osteoblast-lineage and monocyte-
macrophage-osteoclast lineage; both of which are essential
for bone remodeling.>?*” Viewing MSCs as “an injury
drugstore,”!76:232.238-240 Dr. Arnorld 1. Caplan, a pioneer of
MSCs research,'”® suggested renaming the MSCs as “the
Medicinal Signaling Cells” to more accurately depict their
function in nature.?*>23424

2.6 | Application of adult MSCs in tissue
regeneration faces multiple obstacles

2.6.1 | Risk of rejection

Similarly to the way in which autologous cell source is the
best choice for clinical application, allogeneic MSCs must
be considered in some scenarios such as the geriatric pop-
ulation, who are the primary targets for stem cell therapy
since the therapeutic effectiveness of MSCs is dependent
upon the age of the donor.?*>"?*> MSCs were previously
considered immunoprivileged?*® because undifferentiated
MSCs express low to intermediate levels of HLA class I
and negligible to low HLA class I1.'2°-*7 However, MSCs
exposed to interferon (IFN)-y or differentiated into mature
cell types can significantly express more HLA class I and
HLA class I1.*%2* Besides, long-term in vitro culture
was reported to impair the immunosuppressive activity
of MSCs.?*° Moreover, animal model studies displayed a
trend of the early death of allogeneic MSCs,>'">>* con-
firming in the human autopsy of patients who received
allogeneic MSCs within a year.”* Furthermore, rejection
and chronic immune responses of allogeneic MSCs have
also been reported in animal studies and human clinical
trials.2>~%7 Therefore, the current view of MSCs is “immu-
noevasive” instead of “immune-privileged.”>*?> Accu-
rately measuring immune responses following MSCs treat-
ment in a timely manner is necessary to assess the safety
of allogeneic MSCs application. Also, developing novel
technologies to prolong the “escaping” status of allogeneic
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MSCs from the donor’s immune system may prolong their
persistence in vivo and improve their clinical outcomes.

2.6.2 | Risk of tumor formation

Another prudence of MSCs’ usage is their association with
tumorigenesis. In 2005, Rubio et al reported the malig-
nant transformation of human ADSCs that had passaged
more than 4 months in vitro.’®” In the same year, Wang et
al identified an outgrowth transformed subpopulation of
cultured human BMSCs with a round, cuboidal to short
spindle shape, distinguished from the typical MSCs.?"!
These cells later termed transformed mesenchymal cells
(TMCs), also displayed contact-independent growth and
anchorage-independent growth when released into the
suspension”®' —typical phenotypes seen in tumorigenic
cells with metastatic potential.’> Rosland et al reported
that the ratio of spontaneous malignant transformation of
human BMSCs to be as high as 45.8%.%%° TMCs were also
obtained in cultured mouse and monkey BMSCs,?0426>
while injection of mouse and monkey TMCs resulted
in tumor formation in recipient animals.?>?°° Follow-
up studies argued that spontaneous transformation of
MSCs might be false, and the so-called TMCs may
arise from the cross-contamination with malignant cells
that were residents in origin, such as fibrosarcoma and
osteosarcoma.2?’-2%° This claim, whether correct or incor-
rect, highly emphasizes the drawback of the MSC expan-
sion procedure. Nevertheless, this explanation may not
be sufficient for lowering the tumorigenic caution for in
vivo MSC implementation, especially for bone regenera-
tion, as bone provides one of the most congenial metastatic
microenvironment for tumor progression.”’%?”! Recent
studies have shown that purified human MSCs developed
chromosomal aberrations during cultivation?’? and under-
went spontaneous tumorigenic transformation,?’? which
cannot be explained by the cross-contamination theory.
Recently, a significant amount of efforts have been devoted
to optimizing the cultivation of MSCs,””*?”> which may
eventually result in a practical strategy to control the spon-
taneous tumorigenic transformation of MSCs.

Certainly, accumulating data have also clearly demon-
strated the unbalanced signal transduction in MSCs
directly lead to sarcoma formation in vivo.?’® Besides, the
immune suppression potential of MSCs may diminish
T-cell proliferation, thus weakening the antineoplastic
response.’’”"?%*  More importantly, various cytokine,
chemokines, and growth factors secreted by MSCs have
been shown to increase the proliferation, migration, and
angiogenesis of tumor cells.”’® Akimoto et al revealed
that ADMCs promote the growth of cocultured glioblas-
toma multiforme (GBM) cells in vitro and support GBM

development in vivo by at least two distinct mechanisms-
enhancing angiogenesis and inhibiting apoptosis.’®
Meanwhile, Ren et al reported that similar to tumor-
derived MSCs, tumor necrosis factor o (TNFo)-pretreated
BMSCs enhanced tumor progression by recruiting more
macrophages into tumor.?®® This discovery highlights
the possibility that, with an inflammatory stimulation,
normal MSCs can convert into a more tumor-promising
phenotype usually found in the tumor microenvironment.
These direct and/or indirect involvements of MSCs in
tumorigenesis suggest that MSCs hold a high risk for bone
reconstruction patients with a history of malignancies.

Taken together, as the current gold standard cell source
for bone engineering therapies, adult MSCs from different
tissue were intensively investigated (Table 1). The identity,
function, safety, and efficacy of these cells are still debat-
able. Aiming to answer these questions and optimize the
clinical application of adult MSCs, a large-scale, expensive,
and time-consuming investigation is inevitable, which will
require a global collaboration of academia and pharma-
ceutical companies. In addition, the regulation of MSC-
based therapies must be fully and accurately implemented,
and most importantly, the long-term follow-ups that define
the associated risks must be carried out in the clinical
trials.

3 | FETAL MSCs

In addition to adult MSCs mentioned above, less mature
MSCs isolated from the umbilical cord have been consid-
ered for bone regeneration. These umbilical cord-derived
MSCs (UCMSCs) have similar surface marker expres-
sion, high differentiation potential, and low immuno-
genicity compared with BMSCs.?*”~?%? Likewise, UCMSCs
and BMSCs share the mitogen-activated protein kinase
(MAPK) signal pathway for osteogenic commitment and
differentiation.?>2°* UCMSCs are isolated from umbil-
ical cords, a generally discarded tissue, without ethical
concerns,?>?°7 potential pain, and medical or surgical
risks such as bleeding and anesthetic adminstration.””®
Moreover, in comparison with adult MSCs, UCMSCs
share a high expansion capability with other fetal-derived
stem cells'®>?°? but rarely transform into tumor-associated
fibroblasts.>’C These advantages support the potential of
UCMSCs for bone regeneration.>"!

The human umbilical cord consists of an outer amniotic
membrane (amniotic epithelium) that envelops a mucoid
connective tissue, which can be characterized as three
regions lacking clearly visible structural boundaries: sub-
amnion, Wharton’s jelly, and adventitia (a strong, elastic
muscle-like tissue layer), along with three blood vessels
(a vein and two arteries).>"” Among them, Wharton’s
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TABLE 1 Comparison among adult MSCs derived from different tissues

Cell types Pros Cons

BMSCs 1. Prototype of Adult MSCs 1. Relatively low yield

2. Current gold-standard for stem-cell based 2. Purification and expansion generally needed
therapies 3. Heterogenous
4. Relatively low proliferative capability
Oral-derived MSCs 1. Less invasive harvesting procedure 1. Low yield
(including DMSCs) 2. Long-term cultivation needed
ADSCs 1. Relatively high proliferation capability 1. Associated with severe secondary complications

2. Relatively stable through long-term in vitro

expansion

3. No-cultivation protocol has been established

jelly contains the most abundant source of UCMSCs.>%

A population of plastic-adherence, spindle-shaped cells
that express CD44, CD73, CD90, and CD105, but not the
hematopoietic markers CD14, CD34, or CD35, can also be
isolated from the amniotic membrane,***-3¢ although the
amniotic membrane was previously considered as solely
epithelium and not a source of MSCs.*"” These amniotic
membrane-derived cells also have the tri-lineage differ-
entiation potential and can be recognized by Stro-1. Thus,
according to ISCT, they are qualified as MSCs and termed
as amniotic membrane-derived MSCs (AMMSCs). A
recent study showed that the proliferation and self-renewal
capacity of AMMSCs are significantly lower than Whar-
ton’s jelly-derived UCMSCs,**® indicating the disadvan-
tages of AMMSCs to fulfill the clinical scale requirement
in comparison with UCMSCs. Although recent compari-
son studies suggest that Wharton’s jelly-derived UCMSCs
offer the best clinical utility (mainly due to the high
isolation percentage and less nonstem cell contaminants
to avoid excessive in vitro purification and expansion%?),
the time-consuming and labor-intensive dissection of the
cord into discrete regions may not be necessary to obtain
a valuable population of cells for clinical application,"’
particularly when FACS-based purification is employed.
Kargozer et al revealed that implantation of human
UCMSCs with three-dimensional bioactive glass/gelatin
scaffold in critical-sized calvarial defects resulted in a simi-
lar degree of bone formation compared to those implanted
with unpurified human ADSCs, which is statistically lower
than that of the human BMSC-implanted group.'”’ Inter-
estingly, neovascularization was significantly increased in
the human UCMSC group, leading to better healing than
using the unpurified human ADSCs.'”” In another study
using RGD (Arg-Gly-Asp)-peptide-coated macroporous
tetracalcium phosphate and dicalcium phosphate anhy-
drous as a scaffold, human BMSCs and UCMSCs resulted
in similar levels of bone formation and vascularization in
critical-sized calvarial defects.*"! In addition to the influ-

ences of the different scaffold materials, another explana-
tion of these paradoxical results could be the known fact
that the yield and the differentiation potential of USM-
SCs highly depend on the method of cell isolation.?*>2%4312
Therefore, a standard isolation/purification methodology
should be established and validated before the clinical
application of UCMSCs.

Although UCMSCs hold the ability to modulate natu-
ral killer (NK) cells and promote regulatory T (T,g) cell
expansion and thus present a lower rejection risk,*31*
immunogenic concern remains the main obstacle for their
allogeneic usage.’!' Meanwhile, the proper cryopreserva-
tion of the umbilical cord from childbirth for an extended
time is an essential step for autologous usage, which
is accompanied by nonnegligible financial and resource
inputs.

Umbilical cord blood (UCB) was also recognized as
a source of MSCs,*>?*!® although UCB has been consid-
ered a reliable source of HSCs for a long time.’'” These
UCB-derived MSCs (UCBMSCs) were also explored as an
alternative cell source for bone tissue engineering and
regeneration.’'®*!” Contrary to ADSCs that support GBM
development, UCBMSCs inhibit GBM growth while simul-
taneously inducing apoptosis,”® suggesting that UCBM-
SCs are much safer than adult MSCs for clinical usage.
However, UCBMSCs shared a similar immunogenic con-
cern for allogeneic usage and costly storage difficulty
for autologous application with UCMSCs. In addition,
the yield of MSCs from UCB is extremely low, and the
isolation of UCBMSCs is not guaranteed as UCMSCs,
while UCMSCs also exhibit a great advantage in terms
of proliferation.?~3*> Amniotic fluid is another potential
MSCs source®?*—32°; however, due to the invasive proce-
dure, limited availability, and ethical concern, the yielded
amniotic fluid MSCs (AFMSCs) will not be further dis-
cussed in this chapter, as there are no superior clinical
benefits to use AFMSCs than to use aforementioned fetal
MSCs based on the current understanding.
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Generally, using fetal MSCs for tissue regeneration
seems to be associated with higher technological and reg-
ulatory standards, as well as a significant financial bur-
den. Making the fetal MSC-based therapies to be standard
care available for everyone is tremendously challenging in
reality, although it holds remarkable scientific interest and
may be practical for some specific circumstances.

4 | EMBRYONIC STEM CELLS (ESCs)
In 1998, Thomson et al first derived the human ESCs from
blastocysts.>?® Briefly, the inner cell mass from the blas-
tocyst stage of embryos is separated from the trophecto-
derm and plated onto mouse embryonic fibroblast feeder
cells to form human ESC colonies.*?* These human ESCs
have normal karyotypes, exhibit high levels of telomerase
activity, and display prolonged undifferentiated prolifera-
tion. They also express cell surface markers that character-
ize primate ESCs, present the ability to generate embryoid
body (EB) in vitro, maintain the developmental potential
to form trophoblast and derivatives of all three embryonic
germ layers, and produce teratomas after injection into
severe combined immunodeficient (SCID)-beige mice.
Since their discovery, human ESCs have been broadly
used for drug discovery and development.*?’-33! As hold-
ing the pluripotent differentiation potential to any tissues,
human ESCs have also been investigated as regenerative
medicine, including the osteogenic aspect.>***** Human
ESC-based therapies develop very quickly, ie, from Thom-
son’s discovery of human ESCs to their clinical trial for
spinal cord injury repair in 2009 (ClinicalTrials.gov Iden-
tifier: NCT01217008), it took merely 12 years.
Nevertheless, three inevitable impediments must be sur-
mounted prior to the broad application of ESCs in humans.
First, vigorous debates over ESC research and applica-
tion ethics are continuing, as the human embryos have to
be destroyed during the isolation of ESCs.**”3* To those
who believe that “human life begins at conception” and
an embryo is a person with the same moral status as an
adult or a live-born child, taking a blastocyst and remov-
ing the inner cell mass to derive an ESC is equivalent to
murder.**® On the contrary, many others believe that an
embryo becomes a person in a moral sense at a later stage
of development than fertilization. Taking this into account,
the International Society for Stem Cell Research (ISSCR)
issued a regulatory guideline that mandates the research
on human embryos should be limited to the first two weeks
after fertilization.** Although this “14-day rule” reflects
the laws of at least 12 countries,**? different administra-
tions may hold varying positions in regard to the creation
of new human ESCs, as seen in the Bush administration
versus the Obama administration.*!

Second, the immunogenicity of ESCs should be dis-
closed, as their clinical usage is clearly allogeneic. To date,
reports about the immunological properties of ESCs are
still controversial, consisting of those that claim ESCs are
uniquely immunoprivileged, those reveal that ESCs hold
negligible immunogenicity, and those suggest ESCs can
trigger an immune response.**?347

Last but not least, the genomic instability and
tumorigenic nature®*=>¢ of ESCs raise a credible con-
cern for their implantation in human bodies. Therefore,
although the investigation of ESCs may pave the path for
the investigation of reprogrammed pluripotent or multipo-
tent cells, as discussed below, the clinical usage of ESCs
seems impractical in the present stage.

348-353

5 | INDUCED PLURIPOTENT STEM
CELLS (iPSCs)

5.1 | Generation iPSCs from diverse
somatic cell origins in vitro starts a new era
of cellular biology and regeneration
medicine

Since circa 2006, somatic cells are now able to be repro-
grammed into an ESC-like state with pluripotency utilizing
viral-mediated genomic integration of a panel of transcrip-
tional factors essential for embryonic development.®’-3%
The potential to use a patient’s own cells to create iPSCs
provides a promising new venue for personalized cell
therapies by overcoming the ethical paradox and poten-
tial immunogenicity of ESCs and fetal MSCs mentioned
above. In addition, iPSCs can be directly derived from eas-
ily accessible and expandable dermal fibroblasts®° and
blood cells,**® which places iPSCs above adult MSCs by
avoiding the invasive harvest pressures to generate suf-
ficient cell source. In acknowledgement of this break-
through discovery, Dr. Shinya Yamanaka at Kyoko Uni-
versity was awarded the 2012 Nobel Prize in Physiology or
Medicine.

Recently, there has been great enthusiasm for apply-
ing iPSCs for bone regeneration, with or without an
MSC-intermediate stage. Initially, creating EBs from iPSCs
before MSC generation was involved in gaining iPSC-
derived MSCs (iPSC-MSCs),3!1:301-38¢ while soon after, an
alternative strategy that obained iPSC-MSCs from disso-
ciated iPSC colonies without the EB formation step was
employed.*®’ %7 In comparison with adult MSCs, iPSC-
MSCs not only have the advance in regard to prolifer-
ation but also present higher telomerase activity lead-
ing to less senescence, which is favorable for clinical
application.**>*° Meanwhile, directly inducing osteogenic
commitment of iPSCs without an MSC intermediate step
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was also reported by several independent groups around
at the same time,80:386,398-405

It has been demonstrated that the donor’s age has no
effects on the differentiation potential of iPSCs,*** while
some studies have revealed the influence of gender on
the epigenetic stability of iPSCs.**® From scientific per-
spective, further investigations are warranted to elucidate
the impotence of iPSCs’ epigenetic memory on their
osteogenic commitment due to the current conflicting
evidence and numerous variables in these studies3®®*%3;
however, based on the clinical consideration of mini-
mizing the risk of the cell harvesting procedure, dermal
fibroblasts may be the top, if not the only, cell choice for
iPSC generation.

Due to the fact that complex spatiotemporal signals
and molecular interactions regulate the in vivo osteogenic
commitment of pluripotent cells, a diversity of stimulation
is applied to promote the direct osteogenic differentiation
of iPSCs, including electronic stimulation,” chem-
ical inducers, 80.363.365,367.374,375,379,380,382,389,400,402,403 gpna]]
molecules,*0%30%404 growth factors in Refs. 366, 374, 376,
380, 382, 389, 399, 403, gene modification,¢!365370-377
as well as modified two-dimensional*”® and three-
dimensional microenvironment in Refs. 364-366, 370-373,
375, 377, 378, 381-383, 387, 388, 391, 399-403. Among
which, osteogenic medium containing ascorbic acid,
B-glycerophosphate, and dexamethasone formulation is
most commonly used in vitro,303364367,374-376,379,382,359
while the three-dimensional porous scaffold or hydrogel
is popular in vivo. Although some studies suggested
that iPSC-MSCs may not completely differentiate into
mature osteoblasts in vitro as evidenced by relatively
lower or postponed expression of osteogenic markers,
especially those indicating the late-stage osteogenic
development,>386:3973%  the performance of human
iPSC-based therapies on bone regeneration was not worse,
and maybe even better, than human BMSCs, ADMCs, and
UCMSCs at the same circumstances in vivo.'8%-31137

5.2 | Tumorigenesis is a significant
drawback for iPSCs’ application in humans

“Above all, do no harm.”*%” Tumor formation associ-
ated with cell transplantation must always be avoided
in human use. The widely accepted procedure for iPSC
generation, in which transcriptional factors essential for
embryonic development (such as Yamanaka factors or
Thomson factors) are introduced into the genome of tar-
get somatic cells, may induce unwanted gene activation
and genomic alterations.*’® As a result, iPSCs are likely to
carry a higher tumorigenicity risk than ESCs.*?%*13 Ter-
atoma formation was confirmed in about 20% of SCID

Open Access,

mice that had received osteogenic-induced iPSC for bone
defect regeneration.*®” iPSCs also possess a potential risk
for somatic tumor development, which is not present
when using ESCs.** iPSCs’ tumorigenic nature was con-
sidered an inevitable subsequence of retroviral or lentiviral
transduction, resuling in genetic dysfunction, insertional
mutagenesis, and tumor formation with genome inte-
gration. Thus, different integration-free techniques were
explored for iPSC generation, including adenovirus,*>#1°
Sendai virus,*” expressing plasmid vector,*®** epi-
somal vector,*'"*?* single mini-circle vector,*** piggy-
Bac transposon-based vector,*> RNA,*%7%*° and cell-
penetrating protein.***43! However, retroviral-derived and
transgene-free human iPSCs exhibit similar tumorigenic-
ity with no appreciable difference in teratoma formation
capability or teratoma microvascular density.*'*#3> Mean-
while, great efforts are also being devoted to replacing
Yamanaka factors (OCT4, SOX2, KLF4, and ¢c-MYC) or
Thomson factors (OCT4, SOX2, NANOG, and LIN28) that
tightly associate with tumor progression by defined small
molecules to achieve chemical induction of pluripotency
(CIP).#33-%7 Nonetheless, current research indicates that
bromodeoxyuridine (BrdU), a mutation inducer that can
incorporate into the newly synthesized DNA by replacing
thymidine during DNA replication, is required for CIP.*¥/
In addition, iPSCs generated through CIP still possess
a tumorigenic nature.**3~**” Some reports suggested that
using iPSC-MSCs may be safer than using iPSCs directly,
as MSCs provide a relatively lower risk of tumorigenic
deviation;**>#4® however, the tumor-supporting potency of
MSCs, as mentioned above, will also jeopardize the clin-
ical application of iPSC-MSCs. In the interim, in order
to prevent potential tumor formation from undifferenti-
ated iPSCs, cell purification, such as flow cytometry- and
magnetic bead-based sorting, is empolyed before trans-
plantation and after differentiation to ensure that only
well-differentiated cells will be transplanted in a gener-
ally adopted approach.*** Another strategy is to use iPSCs
harboring a chemical-inducible suicide gene such that they
will have to self-destruct when tumors are created.*"4!
Moreover, resveratrol and irradiation were investigated to
prohibit tumor formation from iPSCs and their derivatives
during in vivo bone repair,*°*%” which paves a new avenue
to battle the “evil side” of iPSCs. Unfortunately, even only
a small portion of undifferentiated iPSC contamination is
still sufficient to induce tumor formation.*9:40:451 Thys,
purification and selective induction of cell death of undif-
ferentiated iPSCs are inefficient and inadequate to elim-
inate the risk of teratoma and malignant tumors upon
transplantation.**”

Taken together, while many challenges still exist before
the bench-to-bedside translation of iPSC techniques, the
high capacity of osteogenic differentiation of iPSCs grants
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the cautious optimism of iPSCs’ promising potential to
become a clinical reality in personalized bone tissue engi-
neering and cell therapy.

6 | FIBROMODULIN
(FMOD)-REPROGRAMMED CELLS

6.1 | Initial inspiration of fibromodulin
reprogramming

Inspired by the pioneer exploration that transferred a
somatic cell nucleus to an oocyte*? 4% or fused a somatic
cell with an ESC*%40 to gain pluripotency, Xenopus egg
extracts,*! fish oocyte extracts,*®* ESC extracts,**® and
even carcinoma extracts*®® are used to successfully obtain
induced multipotent stem cells (iMSCs) from somatic cells.
From a regulatory aspect, the undefined component of
these extracts makes it almost impossible to use these
iMSCs in humans. However, these studies strongly sup-
port the hypothesis that pluripotent cells’ surrounding
microenvironment may play an important role in cell
fate determination, including maintaining and/or induc-
ing pluripotency.*®*

As mentioned above, UCMSCs are predominantly har-
vested from Wharton’s jelly, a proteoglycan-rich connec-
tive tissue.>”>3! Interestingly, like other fetal MSCs,*0>46¢
UCMSCs seem to lie between the adult MSCs and ESCs
on the development map as they present specific mark-
ers of ESCs in addition to those of adult MSCs.?'34¢7
These observations provoke a question: can we reprogram
connective tissue somatic cells to some degree of multi-
potent/pluripotent by reestablishing a proteoglycan-rich
microenvironment?

Bi et al reported that FMOD, an ECM proteoglycan
broadly distributed in connective tissues, is a critical
component for maintaining endogenous stem cell niches
by modulating the bioactivities of growth factors.**® As a
59-KD small leucine-rich proteoglycan (SLRP) member,
FMOD contains a central region composed of leucine-rich
repeats, with four keratan sulfate chains flanked by
disulfide-bonded terminal domains.*®**! Holding high
conservation among the mammalian species, FMOD
core protein binds to an array of molecules including
collagen,***472 transforming growth factor § (TGFR),*”*
and lysyl oxidase.*’* Accumulating evidence provides
that, in addition to its originally described roles in ECM
structural support, FMOD also serves as a key regulator of
intracellular signaling cascades that govern multiple bio-
logical processes,*’*”> such as angiogenesis.*’*"*’® During
our long-time investigation into fetal scarless wound heal-
ing, we demonstrated that the single loss of FMOD is
adequate to induce scar formation in early-gestation

fetal animals, which normally heal without scarring. On
the other hand, exogenous administration of FMOD is
sufficient in restoring scarless fetal repair to late-gestation
animals.*” This evidence not only highlights the essential
role of FMOD plays in scarless fetal wound healing, but
we also demonstrate that FMOD reduces scar formation in
adult cutaneous wounds by eliciting a fetal-like phenotype
of adult dermal fibroblasts.**" These studies suggest the
potential of FMOD in cell rejuvenation and maybe even
reprogramming.

6.2 | Generation and characterization of
FMOD-reprogrammed (FReP) cells

In 2012, we first reported a strategy to generate multipotent
cells from human dermal fibroblasts by continuously stim-
ulating with recombinant human FMOD under a serum-
free condition.*®! Through using this technology, dermal
fibroblasts isolated from donors of different ages and gen-
ders have been successfully reprogrammed into a multi-
potent stage.*3*8? The yield dome-shaped, clustered FReP
cells can be easily separated from the surrounding spindle-
shaped, monolayer FReP-basal cells with a Xeno-free and
enzyme-free reagent developed for passage of human ESCs
and iPSCs.**> These FReP cells express the ESC/iPSC
markers, such as NANOG, SOX2, SSEA4, TRA-1-60, and
TRA-1-81, while their OCT4 expression is lower than that
of iPSCs generated from the traditional viral-mediated
method.**! The activation of these essential transcriptional
factors for cell reprogramming, accompanied by a specific,
biphasic Smad3 phosphorylation, was also validated by
multiple methods.**! Similar to ESCs and iPSCs, FReP cells
can form EBs in suspension culture and are capable of dif-
ferentiating into neuron (ectoderm derivative), pancreatic
lineage (endoderm derivative), and multiple mesoderm
derivatives, such as osteoblasts, cardiomyocytes, skeletal
myocytes, and adipocytes in vitro.*%-484

6.3 | FReP cells exhibit superior potential
for bone regeneration than iPSCs

Not only did FReP cell exhibit a similar capability of
triploblastic differentiation in vitro as ESCs and iPSCs, the
in vivo myogenesis and osteogenesis of FReP cells were
also documented in SCID mouse models.**!~#3* Notably, in
the broadly accepted critical-sized calvarial defect model,
radiograph analysis revealed significantly more bone for-
mation of the FReP cell implanted group than that of
the empty scaffold, parent fibroblasts, and even iPSCs-
implanted groups at eight weeks posttransplantation (Fig-
ure 2A).*¥ This observation was further supported by the
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FIGURE 2

QO cCell-free scaffold
V Scaffold + BJ-iPSCs

Scaffold + BJ fibroblasts
/\ Scaffold + FReP cells

Radiographic analysis of bone regeneration in critical-sized SCID mouse calvarial defects at week eight postimplantation.

Three days prior to implantation, 5 X 10° tested cells were seeded on porous poly(y -lactic acid-co-glycolic acid)/hydroxyapatite scaffold and
culture in an osteogenic medium containing ascorbic acid, 5-glycerophosphate, and dexamethasone for in vitro induction. (A) MicroCT images
of bone regeneration in critical-sized calvarial defects implanted with cell-free scaffold (N = 5), scaffold + parental BJ fibroblasts (N = 9),
scaffold + BJ fibroblast-derived iPSC through conventional c retrovirus-mediated method (BJ-iPSCs; N = 5), and scaffold + BJ-FReP cells (N
= 11). Images were documented at a resolution of 20.0 um. Quantification of bone volume density (B) and bone mineral density (C) revealed

that implantation of FReP cells resulted in significantly more new bone formation than other groups. *, statistical significance revealed by
Mann-Whitney analysis; green stars indicate the difference from the cell-free scaffold group; red stars indicate the difference in comparison
with the group of scaffold + FReP cells. Modified from Li et al*** with permission from Elsevier

quantification of bone volume density and bone mineral
density (Figure 2B-2C).**? Histological staining also iden-
tified a mineralized bony bridge connecting the two defect
ends without ectopic bone formation in the FReP cell
group. In contrast, the bone formation of the iPSC group
was limited at the defect edges.*®” Additionally, engraft-
ment and differentiation of both iPSCs and FRePs were
demonstrated by the colocalization of human markers and
osteogenic markers in the newly formed bone,**? confirm-
ing that both iPSCs and FReP cells are directly involved in
the new bone formation in vivo (Figure 3). Considering the
significantly higher bone formation correlated with higher
density of the FReP cell group when compared to those
of the iPSC group,**? FReP may be the superior option in
bone regeneration efficacy.

6.4 | FReP cells carry significantly less
tumorigenic risk than iPSCs

Like iPSCs, FReP cell generation is unfettered by the ethi-
cal and logistical constraints that overshadow the genera-
tion of ESCs. Another advantage of FReP cells is that they
are generated from a protein-based technology without
genome integration or oncogene activation. Importantly,
unlike iPSCs that form teratomas as a consequence of the
uncontrolled cellular proliferation,** FReP cells have low
proliferative capabilities under undifferentiated circum-

stances, which can be disrupted by osteogenic or myo-
genic stimulation.*®! Under an intramuscular microenvi-
ronment, iPSCs implantation led to 25% tumor formation,
while no teratoma or other kinds of tumors were gener-
ated from FReP cells in SCID mice.*®* Likewise, when
FReP cells were intratesticuarly implanted in Fox Chase
SCID-Beige mouse with Matrigel® carrier, no teratoma
was observed in a 4-month experimental period, while
100% of the animals with iPSC implantation developed ter-
atoma with progressive growth.*** Because teratoma for-
mation of FReP cells was not found in the kidney capsule of
Fox Chase SCID-Beige mouse either,*®! FReP cells are con-
sidered to be a safer cell source for regenerative medicine
than iPSCs. Albeit, as FReP cells’ investigation is still in its
infancy, an abundance of in-depth investigations must be
conducted before translating FReP cells to a clinical set-
ting, including but not limited to the optimization of pro-
ductivity and the long-time safety and efficacy assessment.

6.5 | FReP cells and multilineage
differentiating stress enduring (MUSE)
cells present a group of multipotent cell
sources for regenerative medicine

Interestingly, FReP cells bear several critical characteris-
tics of MUSE cells: 1483485 (3) express pluripotent mark-
ers, albeit at lower levels than ESCs and iPSCs, (b) hold
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sized SCID mouse calvarial defects at week eight postim-

plantation. Hematoxylin and eosin (H&E) and Masson’s trichrome staining confirmed that only minimal new bone regeneration occurs in the

Engraftment, persistence, and osteogenesis of FReP cells in critical

FIGURE 3

group implanted with the cell-free scaffold (A), while implantation of BJ-fibroblasts resulted in bone formation underneath the calvarial defect

with obvious “cyst-like bone voids” in the newly generated bone area (B). The newly formed bone tissue was predominantly observed at the
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the capability to differentiate into all three germline cells
under specific inductions, (c) have low levels of proto-
oncogenes, such as LIN28 and ¢-MYC, (d) retain a sta-
ble karyotype, and most importantly, (e) do not form ter-
atomas. Although FReP cells and MUSE cells are both
excluded from being considered pluripotent due to the
stringent mandatory criteria of teratoma formation when
introduced to an in vivo environment, they may represent
a different group of cells processing triploblastic differenti-
ation capability that holds tremendous potential in regen-
erative medicine.

Nevertheless, FReP cell generation is distinct from
MUSE cell collection. Activation and isolation of MUSE
cells require severe cellular stress conditions, such as
lengthy incubation and digestion, hypoxia, and low
temperatures,* which assist in killing off all of the
other viable cells. FMOD reprogramming does not require
hypoxia or low temperatures, and the resultant FReP cells
and FReP-basal cells are both viable. FReP cells resem-
ble quiescent stem cells in multiple ways,**! and as such,
the mechanism by which FMOD assists in reprogramming
demands a thorough exploration. Bearing in mind the mul-
tiple striking similarities shared by FReP and MUSE cells,
the relationship between these two populations should
also be further investigated. MUSE cells are considered a
primary source of iPSCs in human fibroblasts in the elite
model for iPSC generation.*3%*%” However, the mechanism
governing the transition from nontumorigenic MUSE cells
to tumorigenic iPSCs remains an enigma. Further explo-
ration into the mechanism of MUSE cell generation, as
well as FMOD reprogramming, may also benefit to clarify
the molecular roadmap of somatic cell reprogramming in
general.

7 | CONCLUSION

A diversity of novel multipotent/pluripotent cell sources
is recruited as regenerative medicine outlets (Figure 1),
particularly for bone regeneration in virtue of contin-
ued worldwide collaboration. Although their potential is
irrefutable, and the opportunity to develop personalized
cell therapy (in the cases of iPSCs and FReP cells) is
extremely enticing, each of these cell sources has its own

Open Access,

obstacles (Table 2) that must be understood entirely and
overcome before they may be used on a large scale in a
clinical setting. Despite the preliminary efficacy and safety
assessment in a laboratory setting, further clinical data
are necessary to determine their therapeutic benefits and
safety, as well as to optimize their use as a part of the
novel regenerative medicine strategy. Furthermore, ways
in which we can promote seeding cells survive, growth,
and differentiation into desired tissues via the implanta-
tion vehicle or scaffolds is also an open question for global
collaboration, although previous studies may already point
out some fundamental directions.”>> We believe that in
light of the currently existing evidence, a new era of cell-
based bone regeneration is becoming a reality with the con-
tinued collaborative efforts of scientists, physicians, indus-
try, and regulatory agencies.
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edge of the defects in the group implanted with iPSCs (C). On the contrary, implantation with FReP cells led to a mineralized bony bridge
connecting the two defect ends without ectopic bone formation (D). In Masson Trichrome staining, the mature bone is stained in red, and the

osteoid is stained in blue. Green dotted lines outlined the initial edges of the calvarial defects, while blue dotted lines outlined the implanta-

tion area, respectively. Furthermore, immunostaining of human nuclei and human major histocompatibility complex (MHC) Class I as well as

osteogenic markers runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN) confirmed the osteogenic differentiation of iPSCs and
FReP cells in active osteogenic regions of the defects, while BJ fibroblasts were only detected in the fibrotic area instead of the newly formed

bone tissue. Bar = 500 um (red) or 50 um (black). Reprinted from Li et a!
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