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Abstract  
Age-related neurodegenerative disorders such as Alzheimer’s disease (AD) have become 
a critical public health issue due to the significantly extended human lifespan, leading to 
considerable economic and social burdens. Traditional therapies for AD such as medicine 
and surgery remain ineffective, impractical, and expensive. Many studies have shown 
that a variety of bioactive substances released by physical exercise (called “exerkines”) 
help to maintain and improve the normal functions of the brain in terms of cognition, 
emotion, and psychomotor coordination. Increasing evidence suggests that exerkines may 
exert beneficial effects in AD as well. This review summarizes the neuroprotective effects 
of exerkines in AD, focusing on the underlying molecular mechanism and the dynamic 
expression of exerkines after physical exercise. The findings described in this review will 
help direct research into novel targets for the treatment of AD and develop customized 
exercise therapy for individuals of different ages, genders, and health conditions.
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Introduction 
Alzheimer’s disease (AD) is a neurodegenerative disorder 
whose incidence increases exponentially with age and is 
currently the most common cause of dementia (accounting for 
60–80% of cases) (Scheltens et al., 2021). An epidemiological 
survey showed that AD was the sixth leading cause of death 
in the United States between 2000 and 2019, and that the 
number of deaths attributed to AD rose by 145% during this 
time period (No authors listed, 2021). It is estimated that 
there will be over 13.8 million Americans over 65 years old 
with AD by 2060. AD imposes heavy economic and social 
burdens. In 2020, care for patients with AD consumed more 
than 256 billion US dollars and 15.3 billion hours of nursing 
services provided by over 11 million nurses and family 
members (No authors listed, 2021). 

Physical exercise, an intervention that does not include 

the use of pharmacological agents, has frequently proven 
useful in combatting cognitive decline and dysfunction 
in neurodegenerative diseases and may be associated 
with a variety of beneficial effects such as upregulation of 
mitochondrial biogenesis, inhibition of oxidative stress and 
neuroinflammation, reduction of autophagic impediment, 
protection of the blood-brain barrier (BBB), and promotion of 
angiogenesis and neurogenesis (Mahalakshmi et al., 2020). 
Exercise-elicited neuroprotection is potentially mediated by 
a series of mechanisms from the molecular level to organ 
level, and exerkines could be critical regulators involved in 
this process. A recent report from Horowitz et al. (2020) 
confirmed that the beneficial effects of exercise on the 
aging brain [e.g., enhanced neurogenesis and neuronal 
differentiation, increased brain-derived neurotrophic factor 
(BDNF) levels, improved spatial learning and memory] can 
be transferred through systemic plasma administration. This 
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surprising therapeutic effect is attributed to the elevated 
plasma concentration of glycosylphosphatidylinositol specific 
phospholipase D1, a glycosylphosphatidylinositol-degrading 
enzyme that cleaves glycosylphosphatidylinositol-anchored 
substrates, thereby triggering downstream signaling cascades 
required for exercise-induced benefits. This work highlights 
the crucial role of exerkines in maintaining brain health.

First introduced by Safdar et al. (2016), the term “exerkines” 
was originally used to describe a series of exercise-stimulated 
exosomes that are released into the extracellular environment 
through autocrine, paracrine, or endocrine processes and 
enable beneficial crosstalk between various systems, organs, 
and tissues. Exerkines are believed to mediate many systemic 
benefits of exercise, including regulation of metabolism and 
inflammatory responses, exertion of protective effects within 
the central nervous system (CNS) (e.g., promoting nerve 
regeneration, strengthening synaptic plasticity, remodeling 
dendritic morphology), and enhancement of cognitive 
function (Li et al., 2019). Although the effects of exerkines on 
AD have not been explored comprehensively, it is likely that 
bioactive factors promote exercise-induced AD remission in a 
similar way. Here, we provide an overview of several essential 
exerkines that are not only released and present at elevated 
levels in the central or peripheral regions of the body following 
physical exercise, but also have definite neuroprotective 
effects in the context of AD. The aforementioned biomolecules 
can be divided into four categories: growth factors and 
hormones, enzymes and coenzymes, metabolites, and 
microRNAs (miRNAs). This review summarizes these four 
categories and discusses the potential molecular mechanisms 
underlying their neuroprotective effects and their dynamic 
expression following physical exercise.

Search Strategy and Selection Criteria
We designed a two-step search strategy to conduct a 
comprehensive review of the literature regarding exerkines 
that display anti-AD properties published from July 2020 
to March 2021. For the first step, we performed a PubMed 
search using the term ((exercise) AND (Alzheimer’s disease)) 
AND (English [Language]) to identify potential molecules 
that are stimulated by physical exercise and involved in 
neuroprotection in AD. In the second step, candidates 
identified during the first search, including BDNF, nerve 
growth factor (NGF), vascular endothelial growth factor 
(VEGF), insulin-like growth factor 1 (IGF-1), fibronectin type III 
domain containing 5 (FNDC5), adiponectin (ADN), kynurenic 
acid (KYNA), lactate, superoxide dismutase (SOD), glutathione 
(GSH), neprilysin (NEP), insulin-degrading enzyme (IDE), and 
miRNA, were used as additional keywords. As an example, 
the search terms “(brain-derived neurotrophic factor) AND 
(Alzheimer’s disease)” and “(brain-derived neurotrophic 
factor) AND (exercise)” were used to identify articles related 
to the association among BDNF, physical exercise, and AD, 
with a specific focus on the anti-AD mechanism, as well as 
the dynamics of BDNF expression following physical exercise. 
Searches for the other candidate exerkines listed above were 
performed in the same manner as for BDNF. We set the filters 
to retrieve full-text articles published between 2000 and 
2020 and manually confirmed the relevance of each article by 
scanning the abstracts. We also searched the reference lists 
of any articles retrieved by the two-step search strategy to 
identify additional relevant original articles.

Classification of Exercise Paradigms
Human exercise training is routinely categorized into 
four types according to whether the emphasis is placed 
on improving endurance, strength, flexibility, or balance 
(Ketelhut and Ketelhut, 2020; Kramer, 2020). Endurance or 
aerobic exercise, which promotes endurance performance, 
cardiovascular function, and metabolic capacity, provides 

systemic benefits when a sufficient oxygen supply is available. 
This form of exercise typically involves running, cycling, 
swimming, or other complex training protocols such as long, 
slow-distance training, tempo training, interval training, 
moderate-intensity continuous training, and high-intensity 
interval training. Strength or resistance exercise promotes 
the maintenance or development of muscular strength and 
power and includes weightlifting, sit-ups, push-ups, eccentric 
or concentric exercise, and isometric exercise. The third type 
of exercise focuses on flexibility and is designed to enhance 
joint range of motion and body flexibility by stretching or 
lengthening specific tendon groups; this form of exercise 
often involves static or dynamic stretching, proprioceptive 
neuromuscular facilitation stretching, self-myofascial release, 
and yoga. Exercises that focus on balance, such as standing on 
one leg on an unstable surface, enhance the control of body 
posture and are important for fall prevention (Ketelhut and 
Ketelhut, 2020; Kramer, 2020). Animal training paradigms such 
as swimming, wheel running, treadmill training, laddermill 
climbing, and weightlifting, can be divided into similar 
categories – the first three are endurance training exercises, 
while the last two are strength exercises. Of note, animals are 
rarely subjected to flexibility and balance training; instead, 
they are permitted to engage in voluntary exercise that 
allows them to move freely, or are subjected to compulsory 
exercise that relies on an offensive stimulus to regulate 
behavior (Arida et al., 2011; Landers et al., 2013). In addition 
to the categories described above, exercise paradigms 
can also be classified by factors such as duration (acute or 
chronic) and intensity (low, medium, or high). However, these 
classifications vary greatly for a variety of reasons. First, the 
techniques used to assay the same parameter may not be 
identical. For example, the most accurate way to measure 
exercise intensity is to monitor oxygen consumption during 
exercise and determine the maximal oxygen uptake capacity 
(VO2max). Exercises that result in a VO2max of < 65%, 65–90%, 
and > 90% are considered low, middle, and high intensity, 
respectively (Kramer, 2020). However, due to the difficulty in 
quantifying VO2max, heart rate, rating of perceived exertion, 
metabolic equivalents, and specific speeds or watts are used 
as alternatives for VO2max, which makes these classifications 
less uniform (Kramer, 2020). Second, researchers may have 
their own measurement preferences that result in divergent 
standards. Taking exercise duration as an example, “long-
term” is used to describe training programs ranging from 4 
weeks to 21 months in two different studies conducted in the 
same mouse strain (Belaya et al., 2018; Inoue et al., 2018). 
Accordingly, the lack of uniform protocols for conducting 
specific types of exercise intervention can make the outcomes 
inconsistent and difficult to compare directly.

Pathological Basis of Alzheimer’s Disease
Pathological symptoms of AD
As one of the most common neurodegenerative diseases, 
patients with AD can be roughly classified into a preclinical 
stage and a dementia stage based on the appearance of 
canonical pathological symptoms. The dementia stage is 
further divided into mild, moderate, and severe phases 
according to the degree of cognitive impairment. In the mild 
dementia stage, AD is characterized by paroxysmal short-term 
memory impairment, but long-term memory is less affected. 
As AD progresses, executive function is increasingly impaired 
(e.g., deficits in judgment, problem solving, and organization), 
and this is accompanied by dysfunction in visuospatial skills 
and language. The development of AD also compromises the 
maintenance of new information, ultimately depriving patients 
of their ability to live independently (Tarawneh and Holtzman, 
2012). It is worth emphasizing that some preclinical symptoms 
such as withdrawal, apathy, depression, and heightened 
anxiety may occur long before the clinical diagnosis of 
dementia (Atri, 2019). Likewise, the olfactory dysfunction 
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reportedly precedes the clinical cognitive signs of AD or 
mild cognitive impairment, and relates the apolipoprotein 
E-epsilon4 genotype, a pre-symptomatic risk factor for 
dementia (Graves et al., 1999; Wilson et al., 2009). Of note, 
the clinical symptoms mentioned above are correlated with 
pathological changes in the brain. Moderate or severe cortical 
atrophy (especially in the multimodal association cortices and 
limbic lobes) and melanin deposition in the locus coeruleus 
are the two most significant macroscopic changes. At the 
microscopic scale, the most notable features are the formation 
of intracellular neurofibrillary tangles (NFTs) and extracellular 
amyloid plaques, accompanied by other common pathological 
changes such as granulovacuolar degeneration, the presence 
of eosinophilic Hirano bodies and dystrophic neurites, the 
development of cerebral amyloid angiopathy, the emergence 
of tau-positive neuropil threads, and the loss of neurons and 
synapses (DeTure and Dickson, 2019).

Pathological mechanism of AD
The pathogenesis of AD is complex and involves multiple 
interrelated processes. To date, there are four more or less 
accepted theories of AD pathogenesis that emphasize the 
potential involvement of beta-amyloid peptide (Aβ) plaques, 
Tau NFTs, neuroinflammation, and oxidative stress (Figure 1).

and Swerdlow, 2017; Zhang et al., 2019a). A diverse range of 
APP secretases degrade APP in either a non-amyloidogenic or 
an amyloidogenic manner. Non-amyloidogenic degradation, 
known as the α-degradation pathway, mainly produces 
neurotrophic or neuroprotective fragments (e.g., carboxy-
terminal α fragments and soluble APP α) and inhibits Aβ 
formation through cleavage of the Aβ domain within APP. In 
contrast, the β-degradation pathway generates a variety of 
neurotoxic Aβ peptides composed of 39–43 amino acids (e.g., 
Aβ1–40/42) through the continuous cleavage activity of β [e.g., β 
secretase 1 (BACE1)] and γ secretases (Wilkins and Swerdlow, 
2017). As the major component of amyloid plaques, Aβ1–42 
monomers assemble sequentially into oligomeric species, 
short proto-fibrils, and mature insoluble fibrils. These 
extracellular, insoluble deposits of fibrous proteins form 
plaques in multiple brain regions (e.g., the molecular layer 
of the cerebellum and hippocampus) (Reiss et al., 2018), and 
thus cause apparent neurotoxicity including axonal dystrophy 
and transport interruption, mitochondrial dysfunction, 
autophagic impediment, exaggerated inflammation, and 
oxidative stress due to activation of astrocytes or microglia, 
eventually leading to neurodegeneration (Fiala, 2007). 
Although these amyloid plaques are considered a hallmark 
of AD pathology, abundant literature also reports a low 
correlation between fibril burden and cognitive decline, as 
opposed to the dominant role of low molecular weight Aβ 
oligomers in AD pathology. Indeed, soluble Aβ oligomers 
are more cytotoxic to neurons than Aβ fibrils in a myriad of 
ways. The latest research has confirmed that Aβ1–42 tetramers 
and octamers can embed into the lipid membrane and form 
marginally conductive pores that disrupt the integrity of cell 
membranes as well as the homeostasis of intracellular ions 
(Ciudad et al., 2020). These findings substantiate the amyloid 
pore hypothesis, which was initially proposed nearly three 
decades ago (Arispe et al., 1993). Furthermore, other studies 
have reported that Aβ oligomers can aggravate Tau pathology, 
oxidative stress, and inflammation, thereby compromising 
mitochondrial function and synaptic plasticity via diverse 
downstream effectors (e.g., nicotinic/GABAergic/insulin 
receptors, prion proteins, pro-inflammatory cytokines) (Lee et 
al., 2017; Mroczko et al., 2018; Reiss et al., 2018).

Tau NFT theory
Similar to the amyloid plaques mentioned above, NFTs formed 
of abnormally assembled Tau proteins are another hallmark 
of AD pathology. Tau is a microtubule-associated protein 
translated from an alternatively spliced mRNA that generates 
six Tau isoforms ranging from 352 to 441 amino acids in length. 
The mature protein contains a projection domain at the amino 
terminus and a microtubule-binding domain at the carboxyl 
terminus. Under physiological conditions, Tau is a highly 
soluble, unfolded protein distributed mainly in the axons of 
CNS neurons, and plays an indispensable role in the assembly 
and structural stability of tubulin, thus maintaining normal 
neuronal physiology (e.g., axonal transport, synaptic function) 
(Savelieff et al., 2013; Chong et al., 2018). However, following 
abnormal post-translational modification (e.g., hyper-
phosphorylation, glycosylation, ubiquitination, nitration), 
Tau undergoes conformational changes that promote Tau-
Tau interactions and aggregates into paired helical filaments 
and NFTs that prevent it from binding to microtubules. Tau 
aggregates first appear in the entorhinal cortex, and gradually 
spread to the hippocampus and other regions, including the 
limbic and association cortices (Ballatore et al., 2007; Chong 
et al., 2018). The neurotoxicity of NFTs may be attributable 
in part to the loss of Tau’s microtubule-stabilizing function, 
which adversely affects the normal structure and function of 
the cytoskeleton, thus inevitably resulting in the disruption of 
axonal transport, synaptic dysfunction, and loss of dendritic 
structure. Moreover, the accumulation of fibrous aggregates 
inside neurons also physically blocks normal cellular 

Figure 1 ｜ Theories regarding the pathogenesis of AD.
(A) Amyloid-β plaque theory. APP is degraded into Aβ monomers, which 
then assemble into Aβ oligomers and ultimately pathological Aβ plaques. (B) 
Tau NFT theory. Abnormal post-translational modification of Tau (especially 
hyperphosphorylation) promotes Tau-Tau interactions, leading to the 
sequential formation of tangles, PHFs, and NFTs. (C) Neuroinflammation 
theory. Quiescent immune cells in the CNS (mainly microglia and astrocytes) 
can be activated by toxic Aβ aggregates and then secrete a large number of 
proinflammatory cytokines, leading to chronic inflammation. (D) Oxidative 
stress theory. Certain pathological stimuli (e.g., Aβ plaques and NFTs) can 
disrupt metal homeostasis and mitochondrial dysfunction, both of which 
increase ROS generation and cause neurodegeneration due to oxidative injury. 
These four mechanisms may work independently or interactively, eventually 
resulting in AD pathology, including cerebral cortical shrinkage, ventricular 
enlargement, and hippocampal atrophy. AD: Alzheimer’s disease; APP: 
amyloid precursor protein; Aβ: beta-amyloid peptide; CNS: central nervous 
system; NFT: neurofibrillary tangle; PHF: paired helical filament; ROS: reactive 
oxygen species.

Aβ  plaque theory
The presence of neurotoxic amyloid plaques, which Aβ 
forms as a result of a pathological cascade reaction, is 
considered the gold standard for AD neuropathological 
diagnosis. Amyloid precursor protein (APP), the precursor 
of Aβ, is a widely-distributed type I membrane glycoprotein 
that exists in several isoforms (e.g., APP 751/770, which is 
mainly expressed in glial cells; and APP 695, which is primarily 
expressed in neurons) and has various activities, including 
participating in cell adhesion, providing nutrition, supporting 
cell growth, and regulating mitochondrial function (Wilkins 
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functions (Ballatore et al., 2007). Similar to Aβ, small, soluble 
Tau oligomers (including the 140- and 170-kDa isoforms) 
may be predominant mediators of AD neurotoxicity and 
synaptic disorder due to their ability to induce misfolding of 
endogenous Tau, mitochondrial damage, intracellular Ca2+ 
imbalance, and compromised synaptic plasticity, eventually 
triggering neurodegeneration (Guerrero-Muñoz et al., 2015; 
Jouanne et al., 2017; Shafiei et al., 2017). A growing body 
of evidence shows that Aβ- and Tau-related pathology are 
not mutually exclusive: formation of an Aβ-Tau complex 
enhances the sensitivity of Tau to glycogen synthase kinase 
3β, which increases Tau phosphorylation and aggravates its 
pathological effects; in turn, upregulation of Aβ may indirectly 
contribute to Tau pathology by promoting the expression 
of Tau-phosphorylating kinases, activating proinflammatory 
cytokines, and inhibiting degradation of phosphorylated Tau 
(Ittner and Götz, 2011; Savelieff et al., 2013). Interestingly, 
it is NFTs rather than Aβ plaques that determine cognitive 
performance in patients with AD (Nelson et al., 2012).

Neuroinflammation theory
Evidence is accumulating that neuroinflammation plays 
a critical role in the pathogenesis of AD. For example, 
immunoproteins and Aβ plaques frequently co-localize. In 
addition, administration of anti-inflammatory drugs seems 
to alleviate AD pathology (Rogers et al., 1988; Rich et al., 
1995; Mizobuchi and Soma, 2021). A variety of receptors 
expressed on the surface of microglia and astrocytes, the 
two glial cell types that are crucial for neuroinflammation, 
can detect Aβ ligand signals and drive the expression of 
downstream inflammatory response genes. These receptors 
can be categorized into different subtypes, including Toll-like 
receptors 2/4/6/9, which recognize Aβ fibrils signals; receptors 
for advanced glycoxidation end-products, which detect Aβ 
oligomer signals; NOD-like receptors, which identify cell 
damage signals; and others such as scavenger receptor A1, 
cluster of differentiation (CD) 36 (CD36), CD14, and CD47 (Glass 
et al., 2010; Heppner et al., 2015). Interestingly, inflammation 
appears to be a double-edged sword at different stages of 
AD development. During the acute phase, activated microglia 
respond to Aβ stimulation by migrating toward Aβ fibrils and 
subsequently clearing them and other toxic substances via 
phagocytosis. Meanwhile, extracellular proteases released 
by microglia (e.g., NEP, IDE, matrix metalloproteinase 9) 
degrade extracellular soluble Aβ and help counteract AD-
related pathology at this early stage (Heneka et al., 2015; 
Wang and Colonna, 2019). However, prolonged or persistent 
neuroinflammatory challenges are known to exacerbate AD. 
The continuous inflammatory response impairs the normal 
function of microglia and hence reduces their phagocytic 
capacity, increases the secretion of proinflammatory cytokines, 
and accelerates the spread and seeding of Aβ aggregates. 
In addition, chronic exposure to proinflammatory cytokines 
causes functional and structural neuronal abnormities. The 
above-mentioned alterations may eventually provoke neuronal 
degeneration (Heneka et al., 2015; Calsolaro and Edison, 
2016; Wang and Colonna, 2019). Furthermore, nuclear factor 
kappa B (NF-κB) binding sites reportedly exist in the promotor 
region of APP, presenilin (a component of γ-secretase), and 
BACE1, implying that these molecules can be upregulated 
by proinflammatory cytokines and thereby accelerate Aβ 
pathology (Chami et al., 2012). In addition, upon deregulation 
of the cyclin-dependent kinase 5/p35 axis, proinflammatory 
cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis 
factor α (TNF-α) also increase the proportion of hyper-
phosphorylated Tau (Quintanilla et al., 2004).

Oxidative stress theory
An imbalance between the production of reactive oxygen 
species (ROS) and the defensive effects of antioxidants is 
called oxidative stress and disrupts the maintenance of 

normal cellular functions (Pizzino et al., 2017; Tabassum 
et al., 2020). Abnormal Aβ plaques and Tau proteins cause 
mitochondrial dysfunction and disrupt transition metal 
homeostasis, which ultimately promotes the generation 
of ROS and causes oxidative stress. In turn, oxidative 
stress mediates Aβ and Tau neurotoxicity, and potentially 
enhances the Aβ production and aggregation, as well as 
Tau hyperphosphorylation and polymerization (Zhao and 
Zhao, 2013; Bhat et al., 2015). Furthermore, oxidative stress 
triggers neuroinflammation by stimulating proinflammatory 
cytokine and chemokine activity, and inflammatory responses 
can activate microglia and astrocytes to produce more ROS 
(Bhat et al., 2015). Oxidative stress is inseparable from other 
pathological processes, which together create a complex, 
vicious circle that aggravates AD pathology.

Exerkines that Potentially Mitigate Alzheimer’s 
Disease
As mentioned above, exerkines are potentially the most 
important factors mediating the neuroprotective effects 
of exercise. Physical activity triggers the upregulation of 
exerkines in diverse tissues that directly or indirectly mitigate 
AD pathology through a series of biological processes 
illustrated in Figure 2. We classify these exerkines into 
four categories: growth factors and hormones, enzymes 
and coenzymes, metabolites, and miRNAs. In this section, 
we elaborate on the potential roles that exerkines play in 
ameliorating AD.

Figure 2 ｜ How physical exercise may benefit AD brains.
Physical exercise triggers the release of numerous exerkines from peripheral 
tissues/organs. Most of these exerkines can permeate through the blood-
brain barrier and elicit a variety of biological changes in the central nervous 
system, such as a reduction in oxidative stress, phosphorylation of Tau, and 
neuroinflammation, while enhancing Aβ clearance, synaptic plasticity, and 
neurogenesis. These processes can be neuroprotective and thereby mitigate 
AD pathology. The exerkines shown in the upper right panel are color-coded 
to correspond to the main tissue/organ of origin, as shown in the upper left 
panel. The exerkine numbers shown in the upper right panel correspond with 
the numbers shown in parentheses in the lower panel, indicating the reported 
neuroprotective mechanisms of these exerkines with regard to mitigating 
AD pathology. AD: Alzheimer’s disease; ADN: adiponectin; Aβ: beta-amyloid 
peptide; BDNF: brain-derived neurotrophic factor; CNS: central nervous 
system; FNDC5: fibronectin type III domain containing 5; GSH: glutathione; 
IDE: insulin-degrading enzyme; IGF-1: insulin-like growth factor 1; KYNA: 
kynurenic acid; miRNA: microRNA; NEP: neprilysin; NGF: nerve growth factor; 
SOD: superoxide dismutase; VEGF: vascular endothelial growth factor.
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Growth factors and hormones
Endogenous growth factors and hormones are “canonical” 
exerkines that are released into the circulation by various 
secretory tissues/organs in response to physical exercise 
and mediate exercise-induced neuroprotection by initiating 
numerous signaling pathways in different brain regions. 
Generally, these endogenous hormones are divided into 
different categories based on their origin: myokines are 
secreted by muscle (e.g., FNDC5), adipokines are secreted 
by adipose tissue (e.g., ADN), hepatokines are secreted by 
the liver (e.g., IGF-1), and neurotrophins are secreted by the 
nervous system (e.g., BDNF).

BDNF
Belonging to the family of neurotrophic factors, mature 
BDNF (~13.5 kDa) is produced in the endoplasmic reticulum 
from its precursor pro-BDNF (~26 kDa) through a series of 
tightly-controlled procedures, including sortilin-dependent 
folding in Golgi apparatus, carboxypeptidase-E–mediated 
protein sorting, and intra-/extracellular protease cleavage. 
Interestingly, signals initiated by mature BDNF and pro-
BDNF are mutually antagonistic. BDNF specifically binds to 
tyrosine-related receptor kinase (Trk) B, triggering intracellular 
signaling cascades [e.g., the mitogen activated protein 
kinase (MAPK), phospholipase c γ, and phosphatidylinositol 
3-kinase (PI3K) pathways] that promote neuronal survival, 
the growth of dendritic spines, long-term potentiation (LTP), 
and synaptogenesis. In contrast, pro-BDNF binds to p75 
neurotrophin receptor (p75NTR) and elicits neural cell death 
(Huang and Reichardt, 2001; Lu et al., 2005). Neeper et al. 
(1995) first reported a positive correlation between physical 
activity and BDNF expression in the hippocampus and caudate 
neocortex, which has been supported by subsequent animal 
and clinical data (Additional Table 1) and suggests that 
physical exercise results in BDNF-associated neurological 
benefits. Low levels of BDNF have been observed in both 
serum and postmortem brain samples from patients with AD 
(Phillips et al., 1991; Ng et al., 2019), suggesting the possible 
involvement of BDNF in AD pathology. In contrast, activation of 
BDNF signaling may be closely associated with the beneficial 
effects of treadmill running on cognitive function (Dao et al., 
2013; Koo et al., 2013; Kim et al., 2014; Sim, 2014; Lin et al., 
2015; Xiong et al., 2015; Azimi et al., 2018)  and emotional 
health (Rosa et al., 2019) that have been observed in various 
AD rodent models. Further investigation demonstrated that 
BDNF can directly restore cognitive dysfunction (especially 
memory impairment) in animal models of AD, which may 
involve BDNF-related enhancements of hippocampal 
neurogenesis, dendritic spine density, and synaptic plasticity 
(Hsiao et al., 2014; Choi et al., 2018; de Pins et al., 2019). 
Moreover, the BDNF/NF-κB pathway significantly reduces 
neuroinflammation in AD transgenic mice by suppressing glial 
activation and downregulating the proinflammatory cytokines 
IL-1β, IL-6, and TNF-α, ultimately protecting memory function. 
Additionally, the BDNF/cyclic AMP response element-
binding protein pathway could increase apurinic/apyrimidinic 
endonuclease 1 expression, thus enhancing DNA-repair 
capacity and protecting neurons from DNA oxidative damage 
(Yang et al., 2014c; Fang et al., 2019). Notably, BDNF not only 
protected neurons from Aβ-induced neurotoxicity in vitro and 
in vivo (e.g., increasing cortical neuron survival and choline 
acetyltransferase activity, mitigating morphological damage 
to the corpus callosum, and inhibiting miniature excitatory 
postsynaptic currents, as well as LTP), but also blocked Aβ 
production by shifting APP degradation to the α-secretase-
dependent non-amyloid pathway (Holback et al., 2005; 
Arancibia et al., 2008; Zeng et al., 2010; Kitiyanant et al., 
2012). BDNF was also reported to reduce the phosphorylation 
of multiple AD-related sites on Tau in neurons through the 
PI3K-Akt pathway (Elliott et al., 2005). Although no previous 
study has directly investigated how BDNF knockout would 

affect the beneficial effects of exercise on AD, some animal 
studies provide evidence for BDNF’s role in AD in response to 
exercise. For example, strength training decreases the B-cell 
lymphoma protein 2-associated X protein/B-cell lymphoma 
protein-2 ratio in an animal model of AD, subsequently 
attenuating apoptotic signaling and spatial  memory 
impairment through the BDNF/extracellular regulated protein 
kinases (ERK)/calcium calmodulin-dependent protein kinase 
II/cyclic AMP response element-binding protein signaling 
pathway (Martini et al., 2020). Additionally, exogenous 
application of BDNF partially recapitulates the neurological 
benefits of exercise in AD. Nigam et al. (2017) demonstrate 
that wheel running-triggered increases in BDNF expression 
enhanced α-secretase activity and stimulated the production 
of soluble APP-α, which prevents β-secretase from degrading 
APP into Aβ1–40/42, in 2xTgAD mice. Additionally, treating SH-
SY5Y human neuroblastoma cells with BDNF induces certain 
phenotypes (e.g., elevation of soluble APP-α and reduction 
of Aβ1–40/42) that reflect the changes seen in in vivo models 
following exercise interventions (Nigam et al., 2017). Similarly, 
treating adult 5xFAD mice with the chemical P7C3 and Wnt3-
overexpressing lentivirus to enhance neurogenesis, as well as 
with 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside 
to induce BDNF upregulation in the hippocampus, mimicked 
exercise-elicited cognitive improvement (Choi et al., 2018).

NGF
NGF, a nerve growth-inducing protein consisting of 118 
amino acid residues, was the first neurotrophin discovered, 
and was originally identified in snake venom and mouse 
salivary glands (Cohen and Levi-Montalcini, 1956; Cohen, 
1960). Located on chromosome 1, the NGF gene is translated 
into a precursor protein called pro-NGF, which is then cleaved 
into the biologically mature form, a 26-kDa homodimer 
connected through non-covalent linkage. NGF is expressed 
at detectable level in neurons and glial cells (e.g., microglia, 
astrocytes, oligodendrocytes), but its expression level is 
contingent on both the region of the nervous system and 
the developmental stage. Interestingly, NGF is also widely 
expressed by peripheral cells, such as macrophages, 
platelets, and myocytes. Similar to BDNF, NGF and pro-NGF 
bind to two different receptors: TrkA and p75NTR. NGF has 
high affinity for TrkA, while its affinity for p75NTR is very low. 
Activation of TrkA by NGF initiates PI3K- or ERK-dependent 
signaling, which promotes neuronal survival, whereas pro-
NGF binds to p75NTR and stimulates the apoptotic c-Jun 
N-terminal kinase pathway (Allen et al., 2013; Xu et al., 
2016; Canu et al., 2017a). A growing body of evidence from 
animal and clinical studies has demonstrated that physical 
exercise upregulates both peripheral and central NGF levels 
(Additional Table 1), suggesting that NGF participates in 
exercise-induced neurological changes. Unexpectedly, AD 
pathology is reportedly associated with lowered serum NGF 
levels but increased NGF synthesis in specific brain regions 
(Gelfo et al., 2011), which indicates that the release of NGF 
following physical exercise may be tissue-/organ-specific and 
could explain why the downstream biological effects of NGF 
are so variable. NGF plays a pivotal role in neuroprotection 
by maintaining normal function of the cortical cholinergic 
system, which is an important neuromodulator indispensable 
for memory, mood, sleep cycle, and cognition in AD 
(Ferreira-Vieira et al., 2016). NGF/TrkA signaling is essential 
for the survival and maturation of cholinergic neurons in 
the striatum and basal forebrain. NGF reverses cholinergic 
neuron degeneration in the basal forebrain and attracts their 
axons in a gradient-dependent manner, thereby stabilizing 
the rate of cognitive decline in patients with AD (Tuszynski, 
2000; Tuszynski et al., 2005; Nagahara et al., 2009). Also, 
NGF participates in the regulation of synaptic plasticity. 
NGF/TrkA signaling strictly controls the presynaptic effects 
and homeostasis of three presynaptic proteins (synapsin 



NEURAL REGENERATION RESEARCH｜Vol 17｜No. 6｜June 2022｜1215

NEURAL REGENERATION RESEARCH
www.nrronline.orgReview

I, synaptosomal-associated protein 25, and α-synuclein) in 
cholinergic neurons through a protein-degrading mechanism 
mediated by the ubiquitin-proteasome system. In contrast, 
NGF withdrawal provokes rapid presynaptic dysfunction 
and loss of the three aforementioned presynaptic proteins 
(Latina et al., 2017, 2018). Furthermore, NGF/TrkA signaling 
favors the non-amyloidogenic APP degradation pathway, 
consequently inhibiting the formation of neurotoxic Aβ 
peptides (especially Aβ1–40/42). Specifically, NGF promotes 
TrkA-APP binding, which facilitates APP transportation to the 
Golgi apparatus, thus hindering the APP-BACE1 interaction. 
In addition, NGF treatment moderately downregulates BACE1 
expression and concurrently upregulates enzymes with 
α-secretase activity (e.g., disintegrin, metalloprotease-17, 
metalloprotease-10, and matrix metallopeptidase 9) 
(Fragkouli et al., 2011; Yang et al., 2014a; Triaca et al., 2016; 
Xie et al., 2016; Canu et al., 2017b). 

VEGF
VEGF is a homodimeric vasoactive glycoprotein that is 
considered to be a key mediator for angiogenesis and is 
widely distributed in a variety of cells and tissues, such as 
macrophages, platelets, astrocytes, white blood cells, and 
endothelium (Melincovici et al., 2018). The VEGF family 
contains more than six structurally-related protein members, 
including VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, and 
placental growth factor. Among them, VEGF-A and -B 
regulate blood vessel growth, while VEGF-C and -D regulates 
lymphangiogenesis (Ferrara et al., 2003). VEGF receptors 
(VEGFRs) mainly comprise the high-affinity tyrosine kinase 
receptor VEGFR1 and the low-affinity receptor VEGFR2, which 
has high homology to VEGFR1. Different VEGF subtypes 
have varying affinities for the VEGFRs: VEGF-B and placental 
growth factor preferentially bind to VEGFR1, VEGF-C and -D 
preferentially bind to VEGFR3, and VEGF-A binds to VEGFR1/
R2 equally. Notably, VEGF-A and placental growth factor 
binding to neuropilin 1 increases their affinity for VEGF-R2 
(Apte et al., 2019). Breen et al. (1996) reported that a single 
bout of exercise significantly elevated VEGF mRNA expression 
in muscle 2- to 4-fold, which may be partly due to a decrease 
in the intracellular partial pressure of oxygen. Later studies 
have reported that exercise significantly increases VEGF 
levels in both the central and peripheral regions of the body 
(Additional Table 1). Interestingly, treadmill exercise in 
pregnant rats also increases VEGF expression in the prefrontal 
cortex of their offspring (Aksu et al., 2012). Serum VEGF levels 
have been observed to decline in AD (Mateo et al., 2007; 
Huang et al., 2013). The slight increase in hippocampal VEGF 
levels that occurs in the initial stage of AD disappears rapidly 
as the disease progresses, and is thus presumably a response 
to the hypoxia and vascular changes that occur at the onset 
of AD (Kim and Kim, 2012; Tang et al., 2013). Indeed, the 
neuroprotective properties of VEGF make it a key participant 
in the regulation of AD pathology. For example, VEGF restores 
memory impairment in animal models of AD by enhancing 
vascular survival and angiogenesis (Wang et al., 2011; 
Religa et al., 2013). In addition, activation of the caveolin-1/
VEGF signaling pathway mediates physical exercise-induced 
promotion of neurogenesis, dendritic modification, and 
synaptic plasticity, resulting in the recovery of neurological 
dysfunction (Zhao et al., 2017; Xie et al., 2019). Moreover, 
the VEGF-C/VEGFR3 complex is crucial to attenuating 
neuroinflammation, as it induces M2 microglial polarization 
and prevents apoptosis (Ju et al., 2019). Additionally, VEGF 
exposure not only decreases the levels of soluble Aβ peptides 
and APP-β, but also attenuates the activity of β-secretases in 
cultured primary neurons or brain slices taken from Tg2576 
mice, a transgenic model for AD (Bürger et al., 2009, 2010). 
Also, administration of exogenous VEGF has been reported to 
significantly reduce the level of Tau hyper-phosphorylation in 
AD mice. For instance, intra-hippocampal injections of VEGF-

expressing lentiviral particles can reverse the accumulation 
of hyper-phosphorylated Tau (Salomon-Zimri et al., 2016). 
Likewise, a substantial decrease in the level of hyper-
phosphorylated Tau has been observed in mice treated 
with the encapsulated VEGF-secreting cells for 3 months 
(Spuch et al., 2010). Given the above-mentioned benefits 
(e.g., promoting angiogenesis, neuronal proliferation, and 
cognitive function and reducing Aβ burden and Tau hyper-
phosphorylation), investigators are devising novel strategies 
to deliver VEGF more effectively and precisely to appropriate 
neural regions, such as stereotactic transplantation of 
microcapsules containing VEGF-secreting cells or bone 
marrow mesenchymal stem cells that express VEGF (Spuch et 
al., 2010; Antequera et al., 2012; Garcia et al., 2014).

IGF-1
IGF-1 is a 70-amino acid tissue growth factor that is produced 
following stimulation by growth hormone. It is widely 
expressed in both the CNS (e.g., cerebellum, olfactory bulb, 
hippocampus) and peripheral non-neuronal tissues (e.g., 
liver) (Orrù et al., 2017; Wrigley et al., 2017). Generally, 
IGF-1 binds to specific receptors on target cells, activates 
tyrosine kinases, and then phosphorylates certain substrates, 
including insulin receptor subsets 1/2 and Src-homology/
collagen. These phosphorylated substrates are subsequently 
recognized by second messengers containing SH2 domains 
(e.g., PI3K), which initiate downstream signaling cascades 
(e.g., MAPK) that mediate multiple growth factor–induced 
biological activities (Hakuno and Takahashi, 2018). Studies 
involving both animal and human subjects have shown 
that peripheral and central levels of IGF-1 are upregulated 
by various physical activities, implicating the potential 
modulatory role of IGF-1 in exercise-elicited neuroprotection 
(Additional Table 1). According to the research conducted 
in rodents, blockade of IGF-1 signaling may cause a series of 
pathological changes in AD, including cerebral amyloidosis, 
Tau phosphorylation deposition, loss of synaptic proteins, and 
cognitive dysfunction (Carro et al., 2006). IGF-1 is reported 
to regulate the physiology of neural stem cells (NSCs). For 
example, it promotes NSC proliferation in the subgranular 
and subventricular zones in adult mice through the mitogen-
activated ERK, or RAS-like protein expressed in many tissues 
1/Akt/sex-determining region y-box 2, pathway (Yuan et al., 
2015; Mir et al., 2017). Also, IGF-1 induces NSC differentiation 
through the PI3K/Akt signaling cascade (Yuan et al., 2015). 
Additionally, IGF-1 modulates inflammatory responses, as 
restoration of insulin/IGF-1 signaling in the streptozotocin-
induced rat model of sporadic AD decreased the expression 
of multiple proinflammatory cytokines, as well as the severity 
of neuroinflammation (de la Monte et al., 2017). Moreover, 
it assists in preventing Aβ toxicity by promoting α-secretase 
processing of APP and shedding of the amyloid precursor-like 
protein 1/2 extracellular domain, as well as inhibiting BACE-
1 expression through PI3K/Akt or MAPK/ERK signaling (Adlerz 
et al., 2007; Zhang et al., 2011b). Finally, IGF-1 can prevent 
Aβ oligomer–induced neuronal death and reduce the Aβ load 
by enhancing the transport of Aβ carrier proteins to the brain 
(Carro et al., 2002; Kitiyanant et al., 2012; Hou et al., 2017).

FNDC5
FNDC5, a glycosylated type I membrane protein formerly 
known as peroxisomal protein, is composed of 209 amino 
acid residues and contains an N-terminal signal peptide, a 
type III fibronectin domain, a hydrophobic transmembrane 
domain, and a C-terminal cytoplasmic tail. Upon cleavage of 
the C-terminus, the N-terminal fragment of FNDC5, called 
irisin (112 amino acids), is secreted into the circulation; 
this exercise-responsive myokine is highly conserved in all 
mammals (Boström et al., 2012; Schumacher et al., 2013). 
Both FNDC5 and irisin are expressed ubiquitously throughout 
the body, including in the skeletal muscle, adipose tissue, 
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brain, spinal cord, and peripheral nerves (Aydin et al., 2014). 
Previous studies have shown that FNDC5 expression in muscle, 
bone, serum, and the hippocampus is uniformly upregulated 
by physical exercise (Additional Table 1). Overexpression 
of FNDC5 dramatically enhances differentiation of mouse 
embryonic stem cells into neural precursors and mature 
neurons, whereas knocking out FNDC5 significantly inhibits 
neuronal differentiation and maturation of neurons, as well as 
astrocytes (Hashemi et al., 2013; Forouzanfar et al., 2015). 

FNDC5/irisin levels in the brain tissue and cerebrospinal fluid 
(CSF) of patients with AD are dramatically lower than they 
are in healthy subjects, and FNDC5/irisin expression levels 
are inversely associated with AD symptoms in mouse models, 
suggesting that FNDC5/irisin as a potential biomarker for and 
regulatory target of AD (Lourenco et al., 2019). Transcription 
of proliferator-activated receptor-co-activator 1 α (PGC-1α) 
and estrogen-related receptor α was increased in response 
to endurance training, which stimulated the synthesis and 
secretion of FNDC5 (in the form of irisin) (Wrann et al., 
2013). Thereafter, irisin permeated through the BBB and 
ultimately exerted neuroprotective effects by upregulating 
BDNF expression. Interestingly, increased BDNF expression 
can trigger a negative feedback signal downregulating 
FNDC5, thus forming a steady-state regulation loop (Wrann 
et al., 2013; Azimi et al., 2018; Belviranlı and Okudan, 2018). 
Taken together, these lines of evidence suggest that the 
PGC-1α/FNDC5/BDNF axis is crucial for FNDC5/irisin-elicited 
neuroprotection. In addition, several studies have confirmed 
that irisin is essential to neural differentiation of mouse 
embryonic stem cells, affects hippocampal neurogenesis, 
and induces neuronal proliferation by regulating signal 
transducer and activator of transcription 3 signaling (Jung 
et al., 2006; Hashemi et al., 2013; Moon et al., 2013). Irisin 
also reportedly protects neurons from oxidative stress by 
activating Akt/ERK1/2 signaling to attenuate the secretion 
of proinflammatory cytokines (e.g., TNF-α) and exhibits 
neuroprotective effects by inhibiting ROS–Nod-like receptor 
family pyrin domain containing 3 inflammatory signals 
(Annibalini et al., 2017; Peng et al., 2017). Furthermore, 
many studies have demonstrated that irisin can protect the 
nervous system against Aβ-induced neurotoxicity. Azimi et 
al. (2018) showed that moderate treadmill exercise could 
restore AMP-activated protein kinase (AMPK) activity and 
PGC-1α/FNDC5/BDNF levels to reduce the spatial learning 
and memory impairment induced by Aβ1–42 injection in rats. In 
addition, irisin can suppress NF-κB activation by preventing its 
phosphorylation and loss of IκBα (inhibitor α of NF-κB) in Aβ-
exposed astrocytes (Wang et al., 2018). Likewise, increased 
PGC-1α and FNDC5 expression can offset the influence of 
Aβ1–42 oligomers on neuronal apoptosis in the transformed 
neuroblastoma cell line Neuro-2a (Xia et al., 2017). Irisin 
blocks the binding of Aβ oligomers to neurons, thereby 
alleviating memory and synaptic plasticity impairments 
resulting from AD. Of note, peripheral injection of FNDC5 can 
increase hippocampal FNDC5/irisin levels, thus exerting a 
similar neuroprotective effect (Lourenco et al., 2019).

ADN
ADN is a hormone secreted by fat tissue that was first isolated 
from rat adipose cells by Scherer and colleagues (Scherer et 
al., 1995). The 244-amino acid ADN protein has a molecular 
weight of 30 kDa and contains an N-terminal collagen-
like domain and a C-terminal complement factor C1q-like 
globular domain (Turer and Scherer, 2012). ADN exists in the 
bloodstream in three major oligomeric complexes, namely the 
hexamer, trimer, and high-molecular-weight forms (Wang and 
Scherer, 2016), and is well known to participate in regulation 
of insulin sensitivity and catabolism of fatty acids and glucose. 
It is negatively correlated with some risk factors for dementia, 
such as insulin resistance and type 2 diabetes mellitus 
(Gustafson, 2010). Three ADN receptors have been identified, 

including ADN receptor (AdipoR) 1, AdipoR2, and T-cadherin; 
mouse and human AdipoR1/2 share 95% homology (Yamauchi 
et al., 2014). Numerous animal and clinical studies have 
reported the positive regulatory effect of exercise on ADN 
signaling in the CNS and peripheral tissues, and suggest 
that exercise may be extremely important for inducing 
ADN-mediated neurological benefits (Additional Table 1). 
Emerging epidemiological evidence has shown that metabolic 
abnormalities in the brain or peripheral tissues (e.g., type 2 
diabetes mellitus) are a risk factor for dementia (Chatterjee 
et al., 2016). Previous investigations have confirmed that 
ADN can improve insulin sensitivity by promoting AMPK 
phosphorylation (Caselli, 2014), while the activation of AMPK 
signaling by ADN also enhances hippocampal neurogenesis 
through the AdipoR1/adaptor protein containing a PH domain, 
PTB domain, and leucine zipper motif 1/AMPK cascade (Yau 
et al., 2014, 2018; Yau et al., 2015; Wang et al., 2020). In 
vitro, ADN stimulates the proliferation of adult hippocampal 
NSCs by activating the p38MAPK/glycogen synthase kinase 
3β/β-catenin signaling cascade (Zhang et al., 2011a). In 
aged ADN-deficient mice, AMPK activity is reduced, and 
hippocampal insulin resistance is aggravated, eventually 
triggering AD-like pathological changes, such as spatial 
memory and learning disorders. In contrast, ADN treatment 
suppresses glycogen synthase kinase 3β activation, reduces 
Tau hyper-phosphorylation, and rescues cognitive dysfunction 
in animal models of AD (Ng et al., 2016; Xu et al., 2018). ADN 
may also exert neurological benefits by enhancing synaptic 
plasticity. ADN-knockout mice show synaptic defects (e.g., 
reduced basal synaptic transmission, increased presynaptic 
release probability, defective LTP of hippocampal Schaefer 
collateral pathway), accompanied by cognitive dysfunction in 
various behavioral tests (e.g., new object recognition, Y-maze 
test) (Bloemer et al., 2019). Supplementing with ADN restores 
the hippocampal LTP in 5xFAD mice, a transgenic AD model 
(Wang et al., 2019). Moreover, ADN serves as a key modulator 
of neuroinflammation by blocking the inflammatory response 
of microglia to Aβ oligomers via AdipoR1/AMPK/NF-κB 
signal transduction; as expected, ADN deficiency enhances 
microglial activation and aggravates neuroinflammation in 
AD mice (Jian et al., 2019). Similarly, Acrp30 (a spherical 
form of ADN) regulates Aβ-evoked inflammatory responses 
through peroxisome proliferator activated receptor-γ signal 
transduction, including inducing the M2 phenotype of 
microglia, downregulating proinflammatory cytokines, and 
enhancing Aβ clearance by microglia. In addition, Acrp30 
attenuates Aβ-induced destruction of the BBB via the 
AdipoR1/NF-κB axis (Song et al., 2017). Interestingly, long-
term oral administration of adiporon (a synthetic AdipoR 
agonist) stimulates neuronal insulin signal transduction and 
boosts insulin sensitivity, thereby reducing Aβ levels and 
plaque deposition. The aforementioned changes help to 
counteract the loss of neurons and synapses, and ultimately 
maintain cognitive function and spatial memory in AD mice (Liu 
et al., 2020).

Enzymes and coenzymes
Aβ-degrading enzymes 
Considering that abnormal deposition of Aβ plaque is one 
of the hallmarks of AD pathogenesis (Tam et al., 2019), 
alleviating Aβ burden may be the most direct approach to 
mitigating AD pathology. Inducing the dispersal of Aβ plaques 
into monomers may be problematic, as the Aβ monomers 
could go on to form cytolytic pores that are more detrimental 
to neurons than the plaques themselves. However, rather 
than directly degrading Aβ plaques, the exerkines discussed 
above primarily decrease Aβ burden by lowering soluble 
Aβ monomer production, which prevents both Aβ oligomer 
formation and deposition. BDNF, NGF, and VEGF can 
simultaneously reduce β-secretase activity and increase 
α-secretase activity, thus promoting APP processing by the 
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non-amyloid pathway which does not favor Aβ monomer 
formation (Bürger et al., 2010; Triaca et al., 2016; Nigam et al., 
2017). IGF-1 enhances expression of the Aβ carrier proteins 
albumin and transthyretin and promotes the transport of 
brain Aβ to the CSF, consequently reducing the Aβ burden in 
the brain (Carro et al., 2002). Notably, NEP and IDE, which are 
Aβ-degrading enzymes (ADEs), directly cleave Aβ monomers 
into inactive fragments that lack the capacity to re-aggregate 
into toxic oligomers or plaques (Zuroff et al., 2017; Sikanyika 
et al., 2019). Unlike the aforementioned exerkines, these ADEs 
are often non-secreted factors: NEP is mainly expressed on 
the cytoplasmic membrane, while IDE is primarily expressed 
in the cytosol, mitochondria, and peroxisomes (Nalivaeva 
and Turner, 2019). Nevertheless, we still consider ADEs as 
belonging to the general exerkine family, given that (i) ADEs 
can be upregulated by exercise and exert neural benefits in 
AD by degrading Aβ; and (ii) peripheral supplementation with 
ADEs affects Aβ aggregation in the CNS (Liu et al., 2009, 2010). 

NEP: NEP is a type II integral membrane protein belonging 
to the M13 zinc metal endopeptidase family. It consists of 
742 amino acids and has a molecular weight ranging from 
85 to 110 kDa (Malfroy et al., 1988). NEP is widely and highly 
expressed in various tissues and organs, such as the kidney 
and brain. In the CNS, NEP is mostly present in pre-synaptic 
neuronal termini, but can also be detected in activated 
astrocytes and microglia (Ries and Sastre, 2016). Owing 
to its extensive enzymatic activities, NEP plays important 
roles in many biological processes, including the response 
to inflammatory neuropeptides, bone metabolism, skin 
aging, and stem cell differentiation (Nalivaeva et al., 2020). 
To date, research on the exercise-induced regulation of NEP 
has mainly focused on the CNS. As shown in Additional 
Table 2, physical exercise increases both the expression and 
enzymatic activity of NEP in the hippocampus and cortex. As 
a key ADE, NEP benefits the nervous system by degrading Aβ. 
In vitro studies have demonstrated that recombinant NEP 
can degrade various forms of Aβ (e.g., full-length Aβ1–40 and 
Aβ1–42 and truncated Aβ4–15), thus preventing Aβ accumulation 
and neurotoxicity in AD (Oh et al., 2016; Becker et al., 2018). 
Similarly, in vivo studies have confirmed that, in 5xFAD mice, 
hemizygous NEP deletion aggravates AD-associated behavioral 
and neuropathological deficits, including impaired spatial 
working memory, enlarged astrocyte population, enhanced 
Aβ deposition, and more. In contrast, NEP overexpression 
in this AD mouse model not only increased Aβ degradation, 
but also suppressed the increase in BACE1 expression that 
facilitates the plaque formation, thus reducing the appearance 
of AD-like phenotypes (Devi and Ohno, 2015; Hüttenrauch 
et al., 2015). Some studies have reported that peripheral 
administration of NEP can reduce Aβ levels in both the 
CNS and peripheral tissues. For instance, Liu et al. (2009) 
found that overexpression of NEP in the skeletal muscle of 
an AD mouse strain (3xTg-AD) significantly reduced the Aβ 
burden in the CNS (soluble Aβ peptide decreased by ~60% 
and amyloid deposition by ~50%) and improved cognitive 
function without apparent side effects related to other NEP 
substrates (e.g., bradykinin, endothelin, angiotensin); this 
might be due to the clearance of plasma Aβ and alteration of 
Aβ transport dynamics on the muscle surface. They further 
found that overexpression of soluble secreted NEP in the 
same model led to comparable outcomes. Of note, secreted 
NEP released into the blood stream is undetectable in the CSF, 
because its large size means that it is unable to cross the BBB 
(Liu et al., 2010). This suggests that peripheral, rather than 
intracerebral, NEP mediates the above-mentioned benefits on 
the nervous system. Interestingly, human NEP overexpressed 
in AD mice (APP/PS1) by ultrasound-mediated gene transfer 
of a plasmid encoding the human protein into the skeletal 
muscle of the mouse model was able to permeate through 
the BBB and significantly reduced the Aβ load in the brain, 
which was followed by improvement in spatial learning and 

memory (Li et al., 2020a). Hence, the clinical use of NEP could 
be facilitated by accurate, targeted drug delivery methods 
such as intracerebral injection of recombinant soluble NEP, 
construction of a BBB-permeable NEP fusion protein with a 
brain-shuttle module, or hippocampal transplantation of NEP-
overexpressing NSCs (Park et al., 2013; Blurton-Jones et al., 
2014; Campos et al., 2020).

IDE: IDE, another major enzyme responsible for Aβ 
degradation, is a zinc-dependent metalloprotease with a 
molecular weight of 110 kDa. Although insulin is the preferred 
substrate of IDE, this enzyme can also cleave other peptides 
(e.g., glucagon, atrial natriuretic peptide, Aβ, transforming 
growth factor α, IGF1/2) and is widely expressed in almost all 
types of cells and tissues (e.g., testis, tongue, brain, brown 
adipose tissue) (Duckworth et al., 1998). Unlike NEP, which 
exhibits broad substrate specificity, IDE specifically targets 
β-structure-forming substrates, and thus effectively inhibits 
the generation of toxic oligomers related to neurodegenerative 
diseases (Kurochkin et al., 2018). Investigations have shown 
that exercise can upregulate IDE levels in the hippocampus, 
cortex, liver, muscle, and adipose tissue of rodents (Additional 
Table 2). According to a clinical study, both the concentration 
and the activity of membrane-bound IDE were significantly 
decreased in the hippocampus of patients suffering from 
mild cognitive impairment with a higher risk of developing 
AD compared with healthy individuals (Zhao et al., 2007). In 
contrast, IDE-rich extracellular matrix biomaterials can reduce 
Aβ peptides aggregation, prevent the formation of amyloid 
plaques, and inhibit the phosphorylation of Tau protein in an 
in vitro model of AD overexpressing APP695swe (Zhang et al., 
2019b). Inducing hyperglycemia with streptozocin in APPSwe/
PS1 AD mice significantly lower both IDE and peroxisome 
proliferator activated receptor-γ levels compared with non-
diabetic controls, whereas upregulating IDE by activating the 
peroxisome proliferator activated receptor-γ/AMPK pathway 
results in a marked decrease in Aβ1–40 and Aβ1–42 accumulation 
and improves spatial learning and recognition (Li et al., 2018). 
Similarly, overexpression of either drosophila or human IDE in 
a drosophila model of AD can rescue Aβ-induced neurotoxicity, 
including reducing retinal photoreceptor apoptosis, mitigating 
ectopic wing vein phenotype, and reversing the shortened 
lifespan (Tsuda et al., 2010). Additionally, expression of IDE 
by brain capillary endothelial cells may mediate Aβ clearance 
not only via direct degradation but also by efflux transport 
through the BBB (Ito et al., 2014). Moreover, there is 
considerable evidence that IDE forms irreversible complexes 
with α-synuclein and Aβ, thereby preventing the formation 
of α-synuclein amyloid fibrils and the synthesis of highly toxic 
soluble Aβ oligomers in its role as a “dead-end chaperone,” 
respectively (Llovera et al., 2008; Sharma et al., 2015).

Antioxidative enzymes or coenzymes
As a key element of AD pathogenesis, oxidative stress is highly 
related to neuronal death and neurological dysfunction, 
thereby making antioxidants a potential remedy for AD. By 
increasing the levels of antioxidative enzymes or coenzymes, 
exercise intervention may systematically rectify the redox 
imbalance in AD, and consequently delay the pathological 
process of AD.

SOD: SOD belongs to a family of metal-containing enzymes 
that serve as the first line of defense against oxidative 
stress by catalyzing the conversion of superoxide anions 
(Zelko et al., 2002). Metal cations (e.g., Cu2+, Zn2+, Mn2+) 
are essential for maintaining SOD activity, so disruption 
of metal homeostasis in the CNS is considered a potential 
cause of endogenous oxidative stress and is closely related 
to numerous neuropathies (Jomova and Valko, 2011). There 
are three known subtypes of human SOD: SOD1 is one of the 
most abundant cytoplasmic enzymes and contains Cu2+/Zn2+; 
SOD2 is located in mitochondria and contains Mn2+; and SOD3 
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is a secretory SOD released into the extracellular matrix that 
is also rich in Cu2+/Zn2+ (Zelko et al., 2002; Lewandowski et al., 
2019). According to previous animal and clinical studies, both 
intracellular (SOD1 and SOD2) and extracellular (SOD3) SOD 
expression levels are significantly elevated by physical exercise 
(Additional Table 3). As the only secreted SOD, SOD3 can 
enter the circulation, thus exerting systematic antioxidative 
effects and playing other protective roles. Indeed, in an 
animal model of ischemia/reperfusion injury, overexpressed 
pulmonary SOD3 that entered the arterial blood exerted a 
distal effect on the CNS, including reducing the percentage 
of damaged cortex area and raising the neurological function 
score; this might be attributable to SOD3-mediated anti-
inflammatory effects, given that SOD3 can suppress hyper-
activation of polymorphonuclear neutrophils, and therefore 
diminish their neurotoxicity, without affecting their migration 
into the CNS (Mai et al., 2019, 2020). Similarly, tail vein 
injection of SOD3-overexpressing mesenchymal stem cells 
clearly alleviated neuronal apoptosis and ischemic stroke 
in a rat model of ischemia-reperfusion injury (Sun et al., 
2019). Additionally, SOD3 is believed to eliminate free 
radicals, ameliorate neuronal damage, and reduce the 
cognitive decline associated with senescence in individuals 
with age-related neurodegenerative disease (Levin, 2005). 
Specifically, SOD3 alleviates Aβ25–35-induced oxidative injury 
and promotes neuroblastoma cell survival through regulation 
of the mitochondrial pathway by decreasing levels of ROS, 
cytochrome c, caspases-3/9, MDA, and cytosolic Ca2+ (Yang 
et al., 2017). In addition, as shown in Additional Table 3, the 
increased expression of intracellular SODs in the CNS also 
helps combat AD. For example, overexpressing mitochondrial 
SOD2 in AD transgenic mice reduced oxidative stress (e.g., 
hippocampal superoxide levels), decreased the ratio of 
Aβ1–42/Aβ1–40 and the number of Aβ plaques, prevented Aβ-
induced LTP impairment, and reversed AD-related learning 
and memory deficits (Dumont et al., 2009; Massaad et al., 
2009; Ma et al., 2011). Similarly, SOD1 can rescue APP-
induced cerebrovascular endothelial dysfunction, which may 
cause cerebral blood flow changes and neuronal dysfunction 
in AD, thereby preventing APP-related premature death in an 
animal model of AD (Iadecola et al., 1999). In addition, SOD1 
treatment reportedly decreases the production of superoxide 
anions catalyzed by the Cu-Aβ complex in the AD brain in a 
concentration-dependent manner (Reybier et al., 2016).

GSH: GSH is a tripeptide thiol that is expressed in virtually 
all cells and is essential for maintaining the redox balance 
in vivo. GSH homeostasis is essential for maintaining the 
normal activities of various enzymes (e.g., GSH peroxidase, 
GSH s-transferase) that prevent neurodegeneration (Johnson 
et al., 2012). In particular, GSH acts as a coenzyme rather 
than a substrate for some specific enzymes (e.g., glyoxalase, 
formaldehyde dehydrogenase) that are associated with 
detoxification and antioxidation (Deponte, 2013; Ken et al., 
2014). Also, GSH regulates a variety of cellular processes, 
including gene expression, replication, protein synthesis, cell 
proliferation, apoptosis, signal transduction, and the immune 
response (Wu et al., 2004). A number of clinical and animal 
studies have shown that physical exercise effectively increases 
the GSH/GSH persulfide ratio and the GSH content in both 
the CNS and peripheral tissues (Additional Table 3). GSH 
crosses the BBB by a carrier-mediated mechanism (Kannan 
et al., 1990). As one of the most important reducing agents 
in vivo, a decrease in GSH expression and the accompanying 
oxidative damage to neurons are potential hallmarks of early 
AD in patients with mild cognitive impairment (Bermejo et al., 
2008; Mandal et al., 2015). In GSH-depleted primary neurons, 
Cu2+-induced oxidative stress may lead to DNA damage and 
activation of p53-programmed cell death (Du et al., 2008). 
GSH has also been reported to protect brain endothelial 
cells from peroxide insult, as it inhibits the production 
of nitric oxide, ROS, and 8-hydroxy-2′-deoxyguanosine, 

reverses the decrease in tight junction protein expression, 
and activates the nuclear factor erythroid 2-related factor 
2 (a key regulator of antioxidants) signaling pathway (Song 
et al., 2014). Moreover, GSH exerts neurological benefits by 
suppressing neuroinflammatory responses. In the AppNL-
G-F/NL-G-F mouse model of AD, oral administration of GSH 
increases the expression level of GSH in the brain, as well as 
the GSH/GSH persulfide ratio, in a dose-dependent manner, 
reduces the levels of oxidative stress biomarkers (e.g., 
4-hydroxynonenal), inhibits inflammation, as evidenced by 
blocking the proliferation of microglia and downregulating 
proinflammatory cytokines, and ultimately reverses behavioral 
deficits (e.g., cognitive decline, depression-/anxiety-like 
behaviors) (Izumi et al., 2020). There is also evidence that 
GSH depletion in cultured human microglia and astrocytes 
increases Ca2+ influx through transient receptor potential 
cation channel subfamily M member 2, which subsequently 
activates proinflammatory pathways (e.g., p38MAPK, 
c-Jun N-terminal kinase, NF-κB) and leads to the release of 
TNF-α, IL-6, and nitrite ions (Lee et al., 2010). Likewise, GSH 
deficiency in cultured hippocampal neurons disrupts Ca2+ 
homeostasis, mainly through transient receptor potential 
cation channel subfamily M member 2 and transient receptor 
potential cation channel subfamily V member 1, resulting 
in an increase in cytosolic ROS, mitochondrial dysfunction, 
and eventually cell apoptosis (Övey İ and Naziroğlu, 2015). 
Additionally, GSH plays an indispensable role in protecting 
the brain from the neurotoxicity of amyloid peptides. The 
age-associated decrease in GSH expression coincides with a 
gradual reduction in proteolytic tissue plasminogen activator 
levels and an increase in plasminogen activator inhibitor levels 
in the brain, which reduce the clearance of amyloid peptides; 
similarly, blocking GSH synthesis triggers the accumulation of 
carboxy-terminal fragments of the Aβ precursor protein (Aβ/
carboxy-terminal fragments) and aggravates its cytotoxicity 
(Woltjer et al., 2005; Lasierra-Cirujeda et al., 2013). 

Metabolites
As the by-products of metabolic pathways, metabolites 
are mostly small molecules whose expression levels are 
influenced by physical exercise. Unlike specialized biological 
signaling molecules, metabolites also exhibit broad-spectrum 
neuroprotective effects. For instance, KYNA, which is produced 
during tryptophan metabolism, can reduce the synthesis 
of other neurotoxic metabolites, whereas lactate, which is 
generated by glycolysis, improves neuronal energy supply 
(Agudelo et al., 2014; Bouzat et al., 2014).

Metabolites of the kynurenine pathway 
The kynurenine (KYN) pathway (KP) is one of the most 
important mechanisms of tryptophan metabolism that 
converts more than 95% of tryptophan into KYN and its 
breakdown products. Tryptophan is initially oxidized into 
KYN by tryptophan dioxygenase or its isozyme indoleamine 
2,3-dioxygenase under physiological or pathological (e.g., 
inflammation) conditions, respectively (Cervenka et al., 
2017). Thereafter, KYN is enzymatically degraded either by 
kynurenine-3-monooxygenase into 3-hydroxykynurenine 
(3HK), 3-hydroxyanthranilic acid, quinolinic acid, and NAD+ 
sequentially, or by KYN aminotransferase (KAT) into KYNA 
(Cervenka et al., 2017). Interestingly, the metabolites of these 
two branches of the KP seem to play opposite roles in the 
CNS. For instance, 3HK and quinolinic acid have neurotoxic 
properties that are central to AD pathogenesis, including 
promoting Tau phosphorylation and ROS production, 
destroying the cytoskeleton and BBB, disrupting autophagic 
flux, inhibiting reuptake of glutamate by astrocytes, 
and inducing astrocytes to produce proinflammatory 
factors (Guillemin et al., 2003; Guillemin, 2012). In fact, 
in drosophila and mouse models of AD, inhibition of 3HK 
synthesis can effectively alleviate AD-related phenotypes 
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such as spatial memory deficits, anxiety-related behaviors, 
neurodegeneration, and synaptic loss, thereby improving 
life expectancy (Zwilling et al., 2011; Breda et al., 2016). In 
contrast, KYNA, the only known endogenous inhibitor of 
all types of glutamate ion channels, is neuroprotective, as 
it attenuates glutamate excitatoxicity, which contributes to 
AD pathology (Hilmas et al., 2001; Hynd et al., 2004; Kumar 
and Babu, 2010). In addition, KYNA modulates Aβ-induced 
inflammation and reduces the expression of proinflammatory 
cytokines (e.g., TNF-α, IL-6) in BV-2 microglial cells in its role 
as an endogenous antagonist of the α7 nicotinic acetylcholine 
receptor (Steiner et al., 2014). Moreover, as an endogenous 
antioxidant, KYNA also reduces the production of ROS in 
the CNS through a mechanism independent of N-methyl-
D-aspartate (NMDA) or nicotinic receptor inhibition (Lugo-
Huitrón et al., 2011). Additionally, treatment with KYNA 
reportedly induces the activity and expression of NEP, 
a metalloproteinase that degrades Aβ deposits in the 
brain, thus helping offset Aβ-evoked toxicity in AD (Klein 
et al., 2013; Maitre et al., 2020). Likewise, synthetic KYNA 
analogs can exert neuroprotection through various anti-
AD mechanisms, such as inhibiting the activity of acetyl 
cholinesterase, scavenging free radicals, blocking NMDA and 
type 5 metabotropic glutamate receptors, and inhibiting the 
formation of Aβ1–42 fibrils (Deora et al., 2017). However, the 
relationship between KYNA and AD is somewhat controversial. 
For example, some investigators have found remarkable 
decreases in KYNA levels in the plasma, red blood cells, and 
CSF of patients with AD (Hartai et al., 2007; Sorgdrager et al., 
2019), whereas others have reported that the concentration 
of KYNA in the CSF is significantly increased in patients with AD 
(González-Sánchez et al., 2020). Also, one study showed that, 
in addition to promoting nerve cell survival, increased KYNA 
levels unexpectedly mediated Aβ1–42-elicited impairment of 
NSC plasticity (Papadimitriou et al., 2018). Likewise, excessive 
blockade of NMDA receptors by abnormal accumulation of 
endogenous KYNA in the brains of patients with schizophrenia 
resulted in atrophy of the dorsolateral prefrontal cortex, as 
well as attention deficit (Kindler et al., 2020). These findings 
suggest that even a single KP metabolite may play several 
distinct roles in neurodegeneration, depending on cell/tissue 
type, brain region, disease, disease phase, and the health 
status of the subject. Notably, unlike other KP metabolites, 
KYN and 3HK are the only two intermediate products that 
can permeate the BBB (Fukui et al., 1991). Hence, decreasing 
the neurotoxic metabolic flux by reducing KYN and 3HK 
transport to the CNS may shift the KP to the “safer” branch 
that produces less 3HK and quinolinic acid and more KYNA. 
Indeed, various studies confirm that physical exercise can 
modulate the KP at two key regulatory steps: indoleamine 
2,3-dioxygenase and KAT (Additional Table 4). Mounting 
evidence has demonstrated that chronic exercise inhibits 
abnormal increases in indoleamine 2,3-dioxygenase activity in 
both the CNS and plasma under pathological conditions (e.g., 
depression, AD, pancreatic cancer) (Liu et al., 2013; Souza et 
al., 2017; Pal et al., 2021), whereas exercise-enhanced KAT 
expression in skeletal muscles induced through a PGC-1α-
dependent mechanism results in a decrease in peripheral, 
and subsequently central, levels of KYN and 3HK (Agudelo 
et al., 2014, 2019; Schlittler et al., 2016; Allison et al., 2019). 
Although it remains unclear how and to what extent exercise 
directly affects key KP enzymes in the CNS, it has been 
reported that brain-derived kynurenine-3-monooxygenase 
is activated by systemic inflammation (Connor et al., 2008), 
while exercise has long been known to exert a broad 
spectrum of anti-inflammatory effects (Metsios et al., 2020). 
Also, physical exercise reportedly increases KAT2/4 mRNA 
levels in the hippocampus of BDNFmet/met mice, a model 
for various mental disorders such as depression, anxiety, 
and schizophrenia (Ieraci et al., 2020). Hence, the benefits 
of exercise to AD brains could be mediated by regulation 

of the KP both centrally and peripherally, thereby reducing 
neurotoxic metabolic flux; this warrants further investigation.

Lactate
Lactate is a metabolite of the glycolytic pathway that 
is generated by conversion from pyruvate by lactate 
dehydrogenase when the oxygen supply is limited (Valvona 
et al., 2016). There are two stereo-isomeric forms of lactate: 
L-lactate and D-lactate (Castillo et al., 2015). Lactate is released 
into the circulation from muscles during high-intensity 
exercise and enters the CNS mainly by the action of several 
monocarboxylate transporters (MCTs). It is then exported 
from astrocytes by MCT4 or MCT1 and absorbed into neurons 
by MCT1 or MCT2 (Halestrap, 2013). A variety of exercise 
paradigms have been demonstrated to effectively induce 
increases in the blood concentration of lactate. In addition, 
vigorous exercise causes a significant elevation in brain lactate 
levels, which may be attributable to the enhanced absorption 
of available peripheral lactate (Additional Table 4). Although 
lactate used to be regarded as a waste product of metabolism, 
mounting evidence suggests that it may have neuroprotective 
effects. Rather than glucose, lactate is the preferred energy 
source for neuronal metabolism and protects neurons under 
various pathological conditions such as cerebral ischemia 
(Bouzat et al., 2014; Castillo et al., 2015; Roumes et al., 2021). 
Additionally, lactate transport between astrocytes and neurons 
is essential for maintaining synaptic plasticity (especially LTP of 
synaptic strength and long-term memory formation), whereas 
disrupting MCT expression or inhibiting glycogen breakdown 
in astrocytes leads to memory impairment (Newman et 
al., 2011; Suzuki et al., 2011). Moreover, brain lactate can 
enhance angiogenesis and neurogenesis by facilitating NF-
κB translocation and increasing the expression of VEGF and 
basic fibroblast growth factor. Likewise, peripheral L-lactate 
partially mediates the effects of physical exercise on adult 
neurogenesis in an MCT2-dependent manner (Zhou et al., 
2018; Lev-Vachnish et al., 2019). Also, both exercise-induced 
accumulation and exogenous administration of L-lactate 
can increase expression of VEGF-A in the brain (Morland et 
al., 2017). Similarly, peripheral administration of lactate is 
closely related to elevated BDNF levels in the circulation and 
hippocampus, and this relationship may be modulated by 
the PGC1α/FNDC5 pathway (Schiffer et al., 2011; El Hayek 
et al., 2019). L-lactate reportedly stimulates the expression 
of synaptic plasticity-related genes (e.g., ARC, c-FOS, ZIF268) 
via a mechanism involving NMDA receptor activity and the 
downstream Erk1/2 signaling cascade in neurons (Yang et al., 
2014b). Furthermore, it upregulates TWIK-related potassium 
channel 1, an ion channel that enhances astrocyte potassium 
buffering and glutamate clearance, thereby promoting 
neuronal survival (Banerjee et al., 2016; Ghatak et al., 2016).

miRNAs
miRNAs, endogenous RNAs approximately 20–24 nucleotides 
in length, regulate the expression of approximately 50% of 
mammalian protein-coding genes (Krol et al., 2010) and play 
essential roles in many biological processes, including cell 
survival, proliferation, differentiation, migration, metabolism, 
and apoptosis via post-transcriptional regulation (Tony et 
al., 2015; Leivonen et al., 2017; Ling et al., 2019). In 2018, 
Dong and colleagues found that voluntary physical exercise 
significantly inhibited the increase in miR-132 expression 
seen in the hippocampus of SAMP8 mice (a senescence-
accelerated mouse model of AD), as well as reversing the 
cognitive dysfunction induced by upregulation of miR-132 
expression (Dong et al., 2018). A recent report also revealed 
that physical exercise substantially upregulates miR-129-5p 
expression in both AD mice and patients, whereas knocking 
down miR-129-5p attenuates exercise-induced suppression 
of neuroinflammation and enhanced cognition (Li et al., 
2020b). Taken together, these two studies suggest a potential 
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role for miRNAs in exercise-induced neuroprotection. 
However, in view of the diversity and wide distribution of 
miRNAs, few studies have systematically investigated the 
mechanism by which a specific miRNA mediates exercise-
induced neuroprotection. Improta-Caria et al. (2020) first 
summarized the miRNAs whose expression levels are altered 
by AD and exercise. They identified seven miRNAs in the 
CNS (let-7c, miR-7a, miR-15b, miR-103, miR-200b, miR-200c, 
and miR-504) whose expression is increased by exercise and 
three (miR-34a, miR-34c, and miR-135a) whose expression is 
decreased after exercise. In the blood, miR-18b, miR-26a, miR-
28, miR-130a, miR-148b, and miR-766 expression levels were 
decreased, and miR-103, miR-142, miR-181c, miR-214, miR-
338, miR-424, and miR-532 expression levels were increased 
following exercise (Improta-Caria et al., 2020). Later, many 
of the aforementioned miRNAs were demonstrated to have 
unique neuroprotective or neurotoxic effects that are central 
to AD pathogenesis. For example, in SH-SY5Y cells transfected 
with the APPswe, miR-15b inhibits BACE1 expression and 
Aβ accumulation by directly targeting the BACE1 mRNA 3′-
UTR and reduces APPswe-induced proinflammatory cytokine 
secretion by suppressing NF-κB (Li and Wang, 2018). The 
serum and CSF levels of miR-135a and miR-200b in both 
AD patients and APP/PS1 mice are significantly decreased; 
miR-135a represses BACE-1 activity and expression, while 
miR-200b inhibits APP mRNA expression by targeting its 3′-
UTR in primary mouse neurons and SH-SY5Y cells (Liu et al., 
2014a). However, another study reported that miR-135a 
inhibited the transcription of thrombospondin 1, and was 
therefore correlated with an increase in neuronal apoptosis 
and a decrease in neurite outgrowth; meanwhile, the miR-
135a antagonist AM135a prevented neuronal apoptosis and 
improved spatial learning ability in APP-Tg mice (Chu et al., 
2016). Overexpression of miR-200b/c in neurons reportedly 
reduces Aβ secretion, and intracerebroventricular injection of 
miR-200b/c in mice alleviates the memory and spatial learning 
impairment caused by oligomeric Aβ, which may be due to the 
role of miR-200b/c in promoting insulin signal transduction 
(Higaki et al., 2018). Also, the abnormally low miR-181c 
expression seen in SAMP8 mice may lead to an increase in the 
expression of collapsin response mediator protein 2, whose 
hyperphosphorylation is an early event in AD, while miR-181c 
overexpression decreases collapsin response mediator protein 
2 abundance (Zhou et al., 2016). According to a clinical study, 
a decrease in miR-181c-5p serum levels is associated with an 
increase in Aβ1-40 plasma concentrations, as well as cerebral 
vulnerability, during the aging process (Manzano-Crespo et al., 
2019). miR-214-3p suppresses autophagosome accumulation 
and reduces hippocampal neuron apoptosis in SAMP8 mice 
by negatively regulating the expression of Atg12, an important 
factor promoting caspase-3/7-dependent apoptosis (Zhang 
et al., 2016). Furthermore, miR-338-5p expression in the 
hippocampus of 5xFAD mice and AD patients was significantly 
downregulated by NF-κB signaling, whereas hippocampal 
overexpression of miR-338-5p in 5xFAD mice may diminish AD 
pathology, for example by reducing BACE1 and Aβ expression, 
suppressing neuroinflammation, and restoring long-term 
synaptic plasticity, as well as learning capacity and memory 
(Qian et al., 2019). Collectively, a wide variety of miRNAs are 
involved in exercise-induced neuroprotection in the context of 
AD, and it is worth pursuing studies of their specific roles and 
underlying mechanisms in the future.

Conclusion
Physical exercise enhances the expression and/or activity 
of various factors in the central and peripheral systems 
through various pathways (Additional Table 5). Although 
some of these factors are not canonical endogenous 
cytokines, all of these molecules constitute the novel family 
of exerkines, which potentially mediate exercise-elicited 
neurological benefits in the context of AD through a variety of 

mechanisms, including promoting Aβ degradation, inhibiting 
Tau phosphorylation, and reducing neuroinflammation and 
oxidative stress. However, there are some challenges that 
cannot be ignored when applying exercise-based therapy 
to clinical situations. First, the outcome of this type of 
intervention is somewhat uncertain and is easily affected 
by a variety of factors, particularly the exercise paradigm 
and individual patient characteristics. As mentioned before 
(see “Introduction”), the variations in exercise protocols 
(e.g., exercise type, duration, intensity) may lead to them 
having diverse effects. For example, serum concentrations 
of BDNF and VEGF in elderly individuals with mild cognitive 
impairment are increased to a greater extent by acute 
endurance exercise than by acute resistance exercise (Tsai et 
al., 2018). Likewise, the impact of voluntary wheel running 
on increasing hippocampal BDNF expression in elderly people 
is less significant than in their younger counterparts (Adlard 
et al., 2005). Second, the changes induced by exerkines 
are variable and complex, for several possible reasons: (1) 
Different exerkines elicit non-identical biological alterations at 
the transcriptional, translational, and post-translational levels. 
For instance, mature BDNF derived from post-translational 
modification of pro-BDNF by proteases is neuroprotective, 
whereas pro-BDNF itself induces the expression of p75NTR 
and sortilin, subsequently causing neuronal apoptosis in the 
hippocampus of patients with AD (Fleitas et al., 2018). (2) 
Different brain regions have potentially divergent sensitivities 
to the same exerkine. As an example, AdipoR1, which is highly 
expressed in the medial prefrontal cortex, hippocampus, 
and amygdala displays a high affinity for globular ADN and 
mediates ADN-promoted neurogenesis, whereas AdipoR2, 
whose expression is relatively limited in the hippocampus 
and certain hypothalamic nuclei, exhibits comparable 
affinities for both globular and full-length ADN and regulates 
synaptic function (Liu et al., 2012; Yau et al., 2014; Li et al., 
2015; Zhang et al., 2017). (3) Certain exerkines function 
through secondary signaling cascades, resulting in a much 
more complex regulatory network. As an example, lactate 
can exert neuroprotective effects by serving not only as the 
preferred energy source for neuronal metabolism, but also as 
a molecular regulator via the silent information regulator 1/
PGC1a/FNDC5/BDNF and VEGF signaling pathways (Zhou et al., 
2018; El Hayek et al., 2019; Roumes et al., 2021). (4) Exercise 
training is not suitable for every AD patient. Cognitive decline 
(particularly impaired spatial learning and memory) may 
prohibit patients with AD from voluntarily and safely engaging 
in adequate exercise. In addition, motor dysfunction caused by 
AD pathology and aging could further jeopardize their ability 
to exercise (Garvock-de Montbrun et al., 2019). Notably, to 
date few laboratory biomarkers have been identified that can 
objectively and accurately reflect the effectiveness of exercise 
intervention, which further restricts the clinical application of 
this treatment approach. Despite these difficulties, profiling 
exerkines still has far-reaching significance. On one hand, 
unmasking exerkine-regulated molecular processes may assist 
in devising new targets for treating patients with AD or other 
neurodegenerative diseases, or for enhancing cognition in 
healthy people. On the other hand, the dynamic changes in 
exerkine levels could be used as laboratory biomarkers for 
monitoring the effectiveness and appropriateness of the 
clinically prescribed exercise interventions, thus enabling the 
development of customized exercise therapy for individuals 
of varied ages, genders, and health states. Moreover, for 
people who are unable to engage in exercise training, 
supplementation with appropriate exerkines or treatment with 
drugs that modulate exerkine levels or are pharmacologically 
analogous to exerkines may provide anti-neurodegenerative 
benefits, and these exercise-mimetics could be safer and 
better targeted than routine drugs or even physical exercise 
per se. In fact, a few exercise-mimetics are currently available 
for clinical use. To name a few, agonists of the BDNF/TrkB 
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signaling cascades include LMDS-1, apelin-13, donepezil, 
angelica polysaccharide, and safflower yellow (Zheng et al., 
2018; Luo et al., 2019; Du et al., 2020; Fan et al., 2020; Pang 
et al., 2020). Likewise, chemicals used to upregulate NGF are 
GM6, memantine, propentofylline, lamotrigine, and arginine 
vasopressin 4–8 (Yamada et al., 1998; Liu et al., 2014b; 
Zhang et al., 2014, 2020; Yu et al., 2019), and those for IGF-
1 include T3D-959, phycocyanin, ginsenoside Rg5, melatonin, 
and donepezil (Obermayr et al., 2005; Chu et al., 2014; 
Rudnitskaya et al., 2015; de la Monte et al., 2017; Agrawal et 
al., 2020). For activating the VEGF pathway, IRL-1620, S38093, 
sildenafil, and perlecan domain V are frequently applied 
(Parham et al., 2014; Briyal et al., 2015; Guilloux et al., 2017; 
Ibrahim et al., 2021), while for stimulating ADN signaling, 
the homolog osmotin and ADN-mimetic novel nonapeptide 
(Shah et al., 2017; Yoon et al., 2018; Ali et al., 2021), as well 
as the AdipoRs agonist AdipoRon (Liu et al., 2020; Sun et al., 
2020), are widely used. β-Hydroxybutyrate, γ-hydroxybutyrate, 
resveratrol, KVN93, perindopril, and naringenin can enhance 
NEP expression of (Klein et al., 2015; Corpas et al., 2019; Yang 
et al., 2019; Lee et al., 2020; Messiha et al., 2020; Wu et al., 
2020). Similarly, IDE pathways can be initiated by administering 
metformin, rapamycin, 17β-estradiol, resveratrol, KVN93, 
perindopril, or naringenin (Zhao et al., 2011; Chen et al., 2019; 
Corpas et al., 2019; Yang et al., 2019; Lee et al., 2020; Lu et 
al., 2020; Messiha et al., 2020). Notably, agonists stimulating 
Nrf2 signal transduction, including FA-97, NXPZ-2, astragalus 
polysaccharide, and resveratrol, promote the expression of 
both SOD and IDE (Hui et al., 2018; Wan et al., 2019; Qin 
et al., 2020; Sun et al., 2020). In conclusion, elucidating the 
identity, involvement, and underlying molecular mechanism 
of exerkines will provide novel strategies for treating AD, and 
is therefore worthy of further investigation.
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