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A B S T R A C T

One of the largest issues facing the field of tissue engineering is scaling due to tissue necrosis as a result of a lack of
vascularization. We have developed an accessible method for generating large scale vascular networks
of arbitrary geometries through the self-assembly of endothelial cells in a collagen gel, similar to vasculogenesis
that occurs in the developing embryo. This system can be applied to a wide range of collagen concentrations and
seeding densities, resulting in networks of varying phenotypes, lending itself to the recapitulation of vascular
networks that mimic those found across different tissues. Methods are thus described for the generation and
imaging of these self-assembled three-dimensional networks in addition to image processing methods for
rigorous quantitative measurement of various morphological parameters. There are several advantages to the
system described herein.

� Varied molding procedures allow for irregular geometries, similar to those that would be required for tissue
grafts.

� Robust network formation translates into centimeter scale constructs.

� Whereas similar processes suffer from a high degree of variability and inconsistent characterization, our
method employs image analysis techniques to stringently characterize each network based on several objective
characteristics.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Specifications Table
Subject Area: Engineering
More specific subject area: Biomedical engineering, regenerative medicine
Method name: Generation and analysis of self-assembled vascular networks
Name and reference of
original method:

Morgan JT*, Shirazi J*, Comber EM, Eschenburg C, Gleghorn JP "Fabrication of centimeter-
scale and geometrically arbitrary vascular networks using in vitro self-assembly" (2019)
Biomaterials 189:37-47 (*indicates equal contribution)

Resource availability: NA

ethod details

ntroduction

Here we describe a protocol for the fabrication of millimeter scale vascular networks in collagen
els of arbitrary shape and size. By seeding human umbilical vein endothelial cells (HUVECs) in
ollagen gels, we can induce vasculogenesis, or the de novo formation of a self-assembled vascular
etwork [1]. We have also developed a novel image processing method to characterize the resulting
etwork architecture and quantify network connectivity, coverage, tortuosity, lumenization, and
essel diameter. The advantage of using this accessible method is that it would introduce consistency
o a field that otherwise relies on various methods of quantifying network formation. By quantitatively
haracterizing multiple aspects of the resulting vascular network, we are able to compare conditions
n a way that captures a large range of variability among culture conditions.

rocedure

A. Collagen isolation
Collagen isolation can be carried out as described by others [2]. Whereas commercial sources of

ollagen may be used, rat-tail extraction protocols allow for greater flexibility in terms of starting stock
oncentration. We recommend dissolving the collagen sponge in 0.1% acetic acid at 8 mg/mL to take
dvantage of a larger range of collagen densities.
B. Creating wells of varying shapes and sizes
Large scale collagen gels can be seeded in polydimethylsiloxane (PDMS) wells of arbitrary shape

nd size. Wells can be shaped by cutting the desired shape out of the PDMS with a biopsy punch, or the
DMS can be poured around a 3D printed shape.
Materials:

 90 mm petri dish
 Sylgard 184 Elastomer Base
 Sylgard 184 Curing Agent
 Biopsy punch (7 mm or other size, can go up to 19 mm), Leather punches of various shapes and sizes,
3D printed molds

 Scalpel or razor blade

Protocol (for punched wells):

1 Pour 18 g of Sylgard 184 elastomer base and 2 g of Sylgard 184 curing agent into a 90 mm petri dish.
Mix well and allow to degas under vacuum for thirty minutes to remove air bubbles. Place the
mixture into an oven (65 �C) overnight to cure. This will result in a 3 mm layer of PDMS. While
the PDMS will cure in several hours, it is better to leave it overnight to minimize uncured oligomers,
which are cytotoxic.
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2 Use a biopsy punch of the desired size to punch holes into the PDMS. Four wells with a diameter of
7 mm (100 mL of final gel mixture in each) are enough for a 500 mL final gel volume (Fig. 1A).

3 Alternatively, leather punches with irregular shapes can be used to form wells of varying shapes and
sizes (Fig. 1B).

4 Use a scalpel or razor to cut the wells out. PDMS wells can be stored away from dust or
functionalized as described on the following section.

Protocol (for 3D printed shapes):

1 Place the 3D printed shape in a 90 mm petri dish.
2 Pour 18 g of Sylgard 184 elastomer base and 2 g of Sylgard 184 curing agent into the dish, degas
under vacuum for 30 min (Fig. 1C), and cure in an oven as described above.

3 De-mold (remove) 3D printed constructs from the cured PDMS.
4 Use a scalpel or razor to cut the away excess PDMS (Fig. 1D).
5 PDMS wells can be stored in a dust-free container until surface functionalization as described in the
following section.

C. Surface functionalization of PDMS wells for collagen bonding
In order to avoid cell-induced contraction of the collagen gel, the edges of the PDMS well must be

functionalized so that the collagen is bonded to the PDMS. This ensures that the boundary conditions
of the gel are maintained.

Fig. 1. Wells can be created using (A) a traditional biopsy punch (7 mm shown), (B) leather punches of arbitrary shape (flower,
star, triangle, and heart shown), or (C) 3D printed constructs [“U” and “D” shown] that can be (D) de-molded.
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Materials:

 2% polyethylenimine (PEI) in deionized (DI) water
 0.2% glutaraldehyde (GA) in DI water
 DI water (sterile)
 Harrick Plasma Cleaner
 Coverslips

Protocol:

1 Plasma clean the PDMS wells for 27 s at 800 mTorr on low using a Harrick Plasma Cleaner
2 Place the PDMS wells on a coverslip of appropriate size.
3 Cover the construct in 2% PEI and incubate for 30 min at room temperature
4 Wash three times with DI water
5 Incubate the construct in 0.2% GA for one hour at room temperature.
6 Wash three times with DI water and leave to air dry.
7 Place functionalized wells on coverslip of desired size.

D. Fabrication and culture of cellular collagen gels
Collagen gels of varying densities (2 mg/mL–6 mg/mL) can be fabricated using the values in Table 1.

ell density can be varied between 0.5 � 106 cells/mL to 2.0 � 106 cells/mL. To minimize gel
ontraction and maximize network formation, it is recommended that conditions along the axis
hown in Fig. 2 are used.
Materials:

 Bucket of ice
 Biosafety cabinet
 Positive displacement pipette (P1000)
 10X Hank’s Buffered Salt Solution (HBSS)
 1 M NaOH
 Human umbilical vein umbilical cells (HUVECs) (routinely cultured)
 Endothelial Growth Media-2 (EGM-2)
 Sodium ascorbate
 Phorbol 12-myristate 13-acetate (PMA)
 0.05% Trypsin
 1.5 mL microcentrifuge tubes
 Collagen stock solution in 0.1% acetic acid

Protocol:
NB: Unless stated otherwise, all steps should be performed aseptically on ice.

1 To make a 500 mL gel, pipette 50 mL of 10X HBSS into a 1.5 mL microcentrifuge tube (Table 1)

able 1
omponent ratios for collagen gelation mixture.

Collagen stock conc: 8 mg/mL Final volume: 0.5 mL

2 mg/mL 3 mg/mL 4 mg/mL 5 mg/mL 6 mg/mL

10X HBSS (mL) 50 50 50 50 50
Collagen stock (mL) 125 188 250 313 375
1N NaOH (mL) 3 4 6 7 9
Cell suspension (mL) 322 258 194 130 66
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2 Depending on the desired collagen concentration, add the appropriate amount of 1 M NaOH to
neutralize the acidic collagen stock to a pH of ~7. (Note: Each batch of collagen will require pH
calibration. To do this, create a test sample with no cells using the recommended amount of 1 M
NaOH and test with pH paper. Adjust NaOH as needed, and scale accordingly. For example, if half
the recommended amount of NaOH is required for a 2 mg/mL gel, then also use half of the
recommended amount for a 5 mg/mL gel.)

3 Trypsinize HUVECs, count, and aliquot the appropriate volume (based on desired seeding density)
into a separate microcentrifuge tube.

4 Centrifuge the aliquoted HUVECs at 0.3 rcf for 5 min and resuspend in the appropriate volume of
EGM-2 medium according to Table 1.

5 Pipette the appropriate volume of the stock collagen solution onto the side of the microcentrifuge
tube containing the 10X HBSS and 1 M NaOH. A positive displacement pipette is recommended for
the viscous collagen solution.

6 Quickly add the cell solution to the same tube while also washing the collagen off of the side and
into the mixture. This neutralizes the solution quickly to prevent premature gelation (collagen
rapidly gels under basic conditions) or cell death due to exposure to a base (NaOH) or acid (acetic
acid from the collagen stock).

7 Gently mix everything by slowly pipetting. Aspirate from the bottom of the tube and deposit near
the top. Pipetting too quickly will result in air bubbles.

8 Slowly pipette the appropriate volume into a PDMS well. One 7 mm well can hold 100 mL of gel. A
500 mL sample can fill four 7 mm wells, accounting for sample loss.

9 Leave the resulting gels at 37 �C for 30 min. to polymerize. Gels will look opaque when fully
polymerized (Fig. 2B).

10 Following the incubation, add EGM-2 media supplemented with 50 ng/mL PMA and 50 mg/mL
sodium ascorbate (vasculogenesis media; VM). Culture in an incubator at 37 �C and a humidified 5%
CO2 environment.

Fig. 2. We have characterized a (A) large state space to determine which conditions result in optimal network formation. The
areas highlighted in green will result in robust network formation, the conditions in red result in no network. (B) PDMS well
edges are functionalized so that gels adhere; however parameters in the gray region of the state diagram result in significant
cellular contraction and (C) gel contraction even with our surface functionalization protocol. (D) Brightfield image of robust
network formation (scalebar = 150 mm).
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11 Change the media daily. Network formation should occur within 1–3 days and be complete within
4–7 days.

E. Fixing and staining
Constructs must be fixed and fluorescently stained for subsequent imaging. A simple phalloidin

tain is sufficient for the vascular networks described herein. However, this protocol can be used for
mmunostaining endothelial cell markers such as PECAM or VE-cadherin as well (Fig. 3). This ability
nd compatibility with imaging processing methods described herein allow for identification of
ndothelial cells and vascular networks from any additional stromal cells seeded in the bulk collagen
el.
Materials:

 4% paraformaldehyde (PFA)
 Dulbecco’s phosphate-buffered saline (DPBS)
 Triton-X
 Fluorescently conjugated phalloidin
 Relevant primary and secondary antibodies

Protocol:

1 Wash the cultured gels three times in DPBS.
2 Incubate the gels in 4% PFA with 0.1% Triton-X for 2 h at 4 �C.
3 Wash the gels three times in DPBS.
4 Block overnight at 4 �C with 1% bovine serum albumin/0.2% cold-fish gelatin/0.1% Tween-20 in PBS.
(optional)

5 Incubate the gels overnight in mouse anti- PECAM1 (1:3200) (Cell Signaling), mouse anti-VE-
cadherin (1:500), or any other relevant antibodies overnight at 4 �C and wash three times in DPBS.

Fig. 3. Immunofluorescent staining for vascular markers produces comparable images to phalloidin.
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6 Incubate gels in the appropriate secondary antibodies (optional) along with fluorescently
conjugated phalloidin (1:200) (Cell Signaling) overnight at 4 �C.

7 Wash gels three times in DPBS and store hydrated until imaging (Fig. 4).

F. Imaging
The image analysis and quantification methods in this protocol rely on confocal z-stacks that

capture fluorescently labeled cells (to assess network phenotype) and reflectance microscopy to
capture the collagen gel (to confirm lumenization).

Materials:

Fig. 4. Fixed and stained gels showing (A) no network formation and (B) robust network formation (scalebars = 100 mm), and
(C) large-scale custom shape.
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 Confocal microscope

Protocol:

1 Image collagen gel on a confocal microscope using the following settings:
a 10X objective
b 2 channels: (1) Fluorescence channel that corresponds with phalloidin stain; (2) Reflected light to
capture collagen

c Z-stack: Include as many slices as desired, preferably more than 200. 6 mm increments are
recommended.

d Include a minimum of 4 tiles stitched with 10% overlap

G. Image Analysis
We have developed custom algorithms to quantify various metrics pertaining to network

henotype. For clarity, the overall algorithm is broken into several individual sub-algorithms. Each
ub-algorithm is detailed with steps and pseudocode provided for each step. For clarity, variables are
ndicated with italics and operations in ALL CAPS ().

Materials

 MATLAB (Release 2015a or later, Mathworks, Natick, MA)

Protocol (Enhancing and Segmenting Phalloidin Signal) (Fig. 5):

1 Compensate for decreasing laser illumination with depth using linear adjustment of the image to
provide 5% low-end saturation and 0.2% high-end saturation
a FOR each plane
ADJUST plane mapping to saturate 5% and 0.2% of dark and bright image pixels, respectively
ENDFOR

2 Smooth the image using 3D median filtering with a 5 � 5 � 5 pixel (6.9 � 6.9 � 30 mm) median filter
a MEDIANFILTER volume with 5 � 5x5 kernel

3 Correct for uneven illumination using reconstruction [3] based tophat filtering using a disk
structuring element with a radius of 50 pixel (69 mm)
a DEFINE strel as a 50 pixel (69 mm) disk
FOR each plane
DEFINE mask as plane
DEFINE marker as morphological EROSION of plane using strel
DEFINE newplane as the image RECONSTRUCTION of mask and marker
SUBTRACT newplane from plane to form the tophat filtered plane
ASSIGN tophat filtered plane to plane

ENDFOR
4 Enhance contrast using the CLAHE algorithm [4] with 24 � 24 tiling and 256 output bins

a DEFINE strel as 50 pixel (69 mm) disk
b FOR each plane

APPLY CLAHE to plane using 24 � 24 tiling and 256 output bins
ENDFOR

5 Smooth and connect the enhanced image using morphological closing on a 5 � 5 � 5 pixel
(6.9 � 6.9 � 30 mm) neighborhood
a CLOSE volume with 5 � 5 � 5 kernel

6 Segment the image into a binary volume using hysteresis thresholding with thresholds of 5% and
19% of full-scale intensity
a THRESHOLD volume using hysteresis with a low threshold of 5% and high threshold of 19% full-
scale
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Protocol (Enhancing and Segmenting Reflectance Signal) (Fig. 6):

1 Apply phase-preserving denoising [5] to smooth the reflection signal using the following
parameters: 3 standard deviations of noise rejection, 7 filter scales with a factor of 3 multiplication
between each, 12 filter orientations (15� apart), and no soft thresholding
a FOR each plane

DENOISE plane with 3 standard deviations of noise rejection, 7 filter scales with a factor of 3
multiplication between each, 12 filter orientations (15� apart), and no soft thresholding
ENDFOR

2 Smooth the image using 3D median filtering with a 5 � 5 � 5 pixel (6.9 � 6.9 � 30 mm) median filter
a MEDIANFILTER volume with 5 � 5 � 5 kernel

3 Compensate for decreasing laser illumination with depth using linear adjustment of the image to
provide 1% low-end saturation and 0.5% high-end saturation
a FOR each plane

ADJUST plane mapping to saturate 1% and 0.5% of dark and bright image pixels, respectively
ENDFOR

4 Enhance using reconstruction [3] based bottom-hat filtering using a sphere structuring element
with a radius of 50 pixel (spatially ellipsoidal with radius of 69 mm in image plane and 300 mm)
a DEFINE strel as a 50 pixel sphere (spatially ellipsoidal with radius of 69 mm in image plane and
300 mm)
DEFINE mask as the COMPLEMENT of volume
DEFINE marker as the COMPLEMENT of morphological DILATION of volume using strel
DEFINE newvolume as the image RECONSTRUCTION of mask and marker
SUBTRACT the COMPLEMENT of newvolume from plane to form the bottom-hat filtered volume
ASSIGN the COMPLEMENT of bottom-hat filtered volume to volume

5 Smooth and connect the enhanced image using morphological closing using a sphere structuring
element with a radius of 5 pixel (spatially ellipsoidal with radius of 6.9 mm in image plane and
30 mm)
a CLOSE volume with 5 pixel radius sphere (spatially ellipsoidal with radius of 6.9 mm in image
plane and 30 mm)

6 Correct planar (X–Y) variations in image intensity using reconstruction [3] based tophat filtering
using a 5 � 5 � 61 neighborhood (6.9 � 6.9 � 366 mm)
a DEFINE strel as a 5 � 5 � 61 neighborhood (6.9 � 6.9 � 366 mm).

DEFINE mask as volume
DEFINE marker as morphological EROSION of volume using strel
DEFINE newplane as the image RECONSTRUCTION of mask and marker
SUBTRACT new volume from volume to form the tophat filtered volume
ASSIGN tophat filtered volume to volume

Fig. 5. Enhancement and segmentation of representative phalloidin stain.
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7 Remove small defects in image using area opening to eliminate anything under 100 voxels
(~1140 mm3)
a AREAOPEN volume with 100 voxel threshold (~1140 mm3)

8 Perform an initial greedy segmentation on the image using hysteresis thresholding with thresholds
of 2% and 5% of full-scale intensity
a THRESHOLD volume using hysteresis with a low threshold of 2% and high threshold of 5% full-
scale

9 Reference to phalloidin volume to ignore voids in collagen not lined with cells.
a DEFINE mask1 as the CLOSING of binary phalloidin volume with a 5-pixel radius spherical
structuring element
DEFINE mask2 as the FILLING of mask1 holes.
ASSIGN logical AND of volume and mask2 to binary lumen volume

Protocol (Volume Based Metrics) (Fig. 6)

1 Define a Volume Fraction, VF, as the number of network voxels compared to total number of voxels
a DEFINE network volume as a logical OR of binary lumen volume and binary phalloidin volume
DEFINE volume fraction as the COUNT of true voxels in network volume pDIVIDED by the size of
network volume

2 Define tissue coverage through a representative Diffusion Length, LD, a 90th percentile of tissue
distance from the closest vessel.
a DEFINE distance map as the EUCILDEAN DISTANCE TRANSFORM of network volume
DEFINE cdf as the empirical cumulative distribution function of all voxel values in distance map
DEFINE diffusion length as the 90% percentile distance of cdf

3 Define a Contiguous Fraction, FC, as the volume of the largest connected component normalized to
the network volume
a DEFINE cc as a list of the CONNECTED COMPONENTS of network volume
DEFINE cc volumes as the number of voxels within each entry of cc
DEFINE total volume as the number of voxels in network volume
DEFINE normalized cc volumes as cc volumes DIVIDED by total volume
DEFINE contiguous fraction as the MAXIMUM of normalized cc volumes

Protocol (Skeletonization) (Fig. 7):

1 Perform a skeletonization using a modified form of the fast marching method described by van
Uitert and Bitter [6].
a DEFINE distance map as the INVERSE EUCILDEAN DISTANCE TRANSFORM of network volume
DEFINE max distance as the MAXIMUM value of distance map

Fig. 6. Enhancement and segmentation of representative reflectance image.
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DEFINE speed volume as the distance map DIVIDED by max distance
DEFINE cost volume as RECIPROCAL of speed volume
DEFINE source as the location of the MAXIMUM of distance map
DEFINE geodesic distance map as the GEODESIC DISTANCE TRANSFORM of network volume from
source
DEFINE start as the location of the MAXIMUM of geodesic distance map
DEFINE skeleton branch as the FAST MARCHING PATH between source and start across cost volume
DEFINE branch length as the GEODESIC DISTANCE along skeleton branch
DEFINE length threshold as max distance MULTIPLIED by 2
WHILE branch length is GREATER THAN length threshold
DEFINE source as locations of all prior skeleton branch
DEFINE geodesic distance map as the GEODESIC DISTANCE TRANSFORM of network volume from

source
DEFINE start as the location of the MAXIMUM of geodesic distance map
DEFINE skeleton branch as the FAST MARCHING PATH between source and start across cost

volume
DEFINE branch length as the length of skeleton branch

ENDWHILE
DEFINE skeleton volume as all skeleton branches

Protocol (Skeleton Based Metrics)

1 Define a Lumen Fraction, FL, as the fraction of skeleton voxels that overlap with the binary lumen
volume
a DEFINE skeleton lumen volume as a logical OR of binary lumen volume and skeleton volume
DEFINE lumen fraction as the COUNT of true voxels in skeleton lumen volume pDIVIDED by the size
of skeleton volume

2 Define average diameter based Euclidean distance between the skeleton and the edge of the
network volume
a DEFINE distance map as the INVERSE EUCILDEAN DISTANCE TRANSFORM of network volume
DEFINE average diameter as the average of distance map values using a region defined by skeleton
volume

3 Define average tortuosity, t, as the average of branch length and branch chord overall all skeleton
branches
a DEFINE branch length as the GEODESIC DISTANCE along each skeleton branch
DEFINE branch chord as the EUCILDEAN DISTANCE between ends of each skeleton branch
DEFINE branch tortuosity as branch length DIVIDED by branch chord
DEFINE average tortuosity as the MEAN over all branch tortuosity

Fig. 7. Representative skeletonization (blue) of network volume (red). For clarity, only a partial volume is shown.
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