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Abstract Replisomes are multi-protein complexes that replicate genomes with remarkable speed 
and accuracy. Despite their importance, their dynamics is poorly characterized, especially in vivo. In 
this paper, we present an approach to infer the replisome dynamics from the DNA abundance distri-
bution measured in a growing bacterial population. Our method is sensitive enough to detect subtle 
variations of the replisome speed along the genome. As an application, we experimentally measured 
the DNA abundance distribution in Escherichia coli populations growing at different temperatures 
using deep sequencing. We find that the average replisome speed increases nearly fivefold between 
17 °C and 37 °C. Further, we observe wave-like variations of the replisome speed along the genome. 
These variations correlate with previously observed variations of the mutation rate, suggesting a 
common dynamical origin. Our approach has the potential to elucidate replication dynamics in E. 
coli mutants and in other bacterial species.

Editor's evaluation
This manuscript combines theory with experiments to characterize the replication speed of bacteria 
chromosomes through the cell cycle. The authors show oscillatory patterns in the replication speed 
of E. coli, which they relate to the heterogeneity of mutation rates along the genome, suggesting a 
tradeoff between the speed and accuracy of replication. This work presents an elegant approach for 
investigating bacterial growth from a systems biology perspective.

Introduction
Every cell must copy its genome in order to reproduce. This task is carried out by large protein 
complexes called replisomes. Each replisome separates the two DNA strands and synthesizes a 
complementary copy of each of them, thereby forming a Y–shaped DNA junction called a replication 
fork. The speed and accuracy of replisomes is impressive (Baker and Bell, 1998). They proceed at 
several hundreds to one thousand base pairs per second (Pham et al., 2013; Elshenawy et al., 2015), 
with an inaccuracy of about one mis-incorporated monomer every 10 billion base pairs (Schaaper, 
1993). In bacteria, two replisomes initiate replication at a well-defined origin site on the circular 
genome, progress in opposite directions, and complete replication upon encountering each other in 
a terminal region.

The initiation and the completion of DNA replication conventionally delimit the three stages of the 
bacterial cell cycle (Dewachter et al., 2018; Wang and Levin, 2009). The first stage, B, spans the 
period from cell birth until the initiation of DNA replication. The second stage, C, encompasses the 
time needed for replication. The last phase, D, begins at the end of DNA replication and concludes 
with cell division. While it is established that DNA replication and the cell cycle must be coordinated, 
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their precise relation has been a puzzle for decades (Willis and Huang, 2017). A classic study by 
Cooper and Helmstetter, 1968 finds that, upon modifying the growth rate by changing the nutrient 
composition in Escherichia coli, the durations of stages C and D remain constant at about 40 min and 
20 min, respectively. This means that the replisome speed must be unaffected by the nutrient compo-
sition, at least on average. When the cell division time is shorter than one hour, DNA replication is initi-
ated in a previous generation. This implies that, in fast growth conditions, multiple pairs of replisomes 
simultaneously replicate the same genome (Fossum et al., 2007). Tuning the growth rate by changing 
the temperature has a radically different effect on bacterial physiology. For example, in vivo (Pierucci, 
1972) and in vitro (Yao et al., 2009) studies show that the speed of replisomes is affected in this case.

More precise features of replisome dynamics, such as whether their speed is approximately 
constant or varies along the genome, are important to determine the location of their encounter 
point and the distribution of replication errors on the genome (Niccum et al., 2019; Dillon et al., 
2018). However, this detailed information is hard to obtain (Pham et al., 2013). One way for inferring 
it is to measure the DNA abundance distribution, that is the frequency of DNA fragments along the 
genome in an exponentially growing cell population. In fact, the frequency of these fragments in the 
population depends on the proportions of synthesizing genomes of different lengths, which in turn 
depend on the replisome dynamics. Previous studies have used the DNA abundance distribution to 
understand the functioning of bacterial replication and how different proteins assist completion of 
DNA replication (Wendel et al., 2014; Wendel et al., 2018; Rudolph et al., 2013; Midgley-Smith 
et al., 2019; Midgley-Smith et al., 2018). However, these studies focused on qualitative analysis of 
the observed changes of the DNA distribution in knockout mutants with respect to the wild type, and 
did not attempt to predict the shape of the distribution using quantitative theoretical models. The 
DNA abundance distribution has also been used to identify actively growing species in a microbiome 
(Korem et al., 2015).

In this paper, we introduce a method to infer the replisome dynamics from the DNA abundance 
distribution. As an application, we experimentally measured the DNA abundance distribution of E. coli 
growing at different temperatures between ‍17oC‍ and ‍37oC‍ using high-throughput sequencing. Our 
approach, combined with our experiments, shows that the average speed of replisomes exhibits an 
Arrhenius dependence on the temperature, with an almost fivefold variation in the range we consid-
ered. Moreover, the precision of our experiments reveals that the speed of replisomes varies along 
the genome in a seemingly periodic and highly repeatable fashion around this average value. We find 
that this pattern is highly correlated with previously observed wave-like variations of the single base 
pair mutation rate along the bacterial genome (Niccum et al., 2019; Dillon et al., 2018). We discuss 
possible common causes for these two patterns.

Results
Distribution of genome types
We consider a population of bacteria that grow exponentially in a steady environment. Each cell in 
the growing population can encompass three types of genomes, see Figure 1a and Figure 1b: (i) one 
template genome, that is, the genome that the cell inherited at its birth. (ii) incomplete genomes, that 
is, genomes which are being synthesized. (iii) post-replication genomes that will be passed to new 
cells and become their templates.

In nutrient-rich conditions, bacteria replicate their genome in parallel, so that the numbers of incom-
plete genomes and post-replication genomes per cell are variable, see Figure 1b. The classic Cooper-
Helmstetter model (Cooper and Helmstetter, 1968) describes the dynamics of these genomes in a 
given cell through generations. We adopt a different approach and focus on the abundance dynamics 
of the three types of genomes in the whole population. We call ‍NT(t)‍, ‍NS(t)‍, ‍NP(t)‍ the total number of 
template genomes, incomplete (synthesizing) genomes, and post-replication genomes, respectively, 
that are present in the population at time ‍t‍. Our first aim is to quantify the relative fractions of these 
three types of genomes.

The total number of genomes is ‍N(T) = NT(t) + NS(t) + NP(t)‍. Since each cell contains exactly one 
template, the total number of cells is equal to ‍NT(t)‍. The total number of genomes evolves as effect of: 
(a) replication initiation, which creates new synthesizing genomes at a rate ‍k‍; (b) completion of replica-
tion, which transforms synthesizing genomes into post-replication ones at rate β; and (c) cell division, 
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Figure 1. Dynamics of genome types and DNA abundance distribution in an exponentially growing bacterial population. (a) Cell cycle. In slow growth 
conditions (top panel), newborn cells contain a template (stage B, red). As the cell cycle progresses, two replisomes synthesize a new genome (stage 
C, blue) starting from the origin on the template (yellow spot). When replication terminates, cells contain the original template and a post-replication 
genome (stage D, green). Upon subsequent cell division, the post replication genome becomes the template for the newborn cell. In fast growth 
conditions (bottom panel), newborn cells acquire a template which is already undergoing synthesis. In subsequent stages, multiple replicating genomes 
may exist in the same cell. (b) Composition of genomes in an exponentially growing population of cells. Each cell may contain a different number of 
genomes, depending on its stage in the cell cycle and growth conditions. (c) Dynamics of genome types. Dashed blue arrow represent initiation of 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.75884


 Research article﻿﻿﻿﻿﻿﻿ Physics of Living Systems

Bhat et al. eLife 2022;11:e75884. DOI: https://doi.org/10.7554/eLife.75884 � 4 of 26

which turns post-replication genomes into templates at a rate α, see Figure  1c. This dynamics is 
described by the set of equations:

	﻿‍
d
dt NT(t) = αNP‍� (1)

	﻿‍
d
dt NS(t) = kN − βNS‍� (2)

	﻿‍
d
dt NP(t) = βNS − αNP.‍� (3)

It follows from Equations 1–3 that, in steady growth, the total number of genomes grows expo-
nentially at a rate equal to the fork firing rate ‍k‍. In this exponential regime, the fractions of the three 
genome types are constant:

	﻿‍
NT(t)
N(t) = αβ

(k+β)(k+α)‍� (4)

	﻿‍
NS(t)
N(t) = k

(k+β)‍� (5)

	﻿‍
NP(t)
N(t) = βk

(k+β)(k+α) .‍� (6)

The ratio ‍N/NT ‍ can be interpreted as the average number of genomes per cell. Since this ratio is 
constant, the fork firing rate ‍k‍ can also be identified as the exponential growth rate of the number 
of cells. For this reason, from now on, we refer to ‍k‍ as the ‘fork firing rate’ or the ‘growth rate’ 
interchangeably.

In principle, the rates α, β, and ‍k‍ should depend on the ‘age’ of each genome, that is the time 
spent by the genome in each stage. In Appendix 1, we generalize our model to an age-dependent 
model to account for this fact. We find that this age-dependent model is equivalent to Equations 1–3 
in the exponential growth regime. This result supports the use of our simple model of genome-type 
dynamics.

We now analyze the incomplete genomes in more detail. We call ‍x1‍ and ‍x2‍ the portions of a 
given incomplete genome copied by the two replisomes at a given time, with ‍0 ≤ x1, x2 ≤ L‍, see 
Figure 1d. Replication initiates at ‍x1 = x2 = 0‍ and completes once the replisomes meet each other, 
that is, ‍x1 + x2 = L‍. The replisome dynamics proceeds as follows. Each replisome is characterized by a 
speed which depends, in principle, on the replisome position (be it ‍x1‍ or ‍x2‍) and by a diffusion coef-
ficient representing random fluctuations of the speed. The coordinates ‍x1, x2‍ of the two replisomes 
evolve according to the stochastic differential equations:

	﻿‍

d
dt x1(t) = v(x1) +

√
2D ξ1(t)

d
dt x2(t) = v(x2) +

√
2D ξ2(t) ,‍�

(7)

where ‍ξ1(t)‍ and ‍ξ2(t)‍ are white noise variables satisfying ‍⟨ξ1(t)⟩ = ⟨ξ2(t)⟩ = 0‍, 

‍⟨ξ1(t)ξ1(t′)⟩ = ⟨ξ2(t)ξ2(t′)⟩ = δ(t − t′)‍, and ‍⟨ξ1(t)ξ2(t′)⟩ = 0‍. Here, ‍⟨. . . ⟩‍ denotes an average over realizations.
Close to thermodynamic equilibrium, the diffusion coefficient ‍D‍ can be estimated by the Stokes-

Einstein relation (Hynes, 1977). However, since replisomes are driven far from equilibrium by 
hydrolysis of dNTPs, their diffusion coefficient could deviate from this estimate. In the absence of 
fluctuations (‍D = 0‍), each of the two replisomes copies exactly half of the genome, whereas for ‍D > 0‍ 
their meeting point is characterized by a certain degree of uncertainty.

In steady exponential growth, we call ‍pst(x1, x2)‍ the stationary probability distribution of finding an 
incomplete genome with copied portions x1 and x2. This probability distribution satisfies the equation:

	﻿‍ ∇⃗ · [⃗vpst] + D∇2pst − kpst = 0 ,‍� (8)

replication. The dotted green arrow represents completion of replication. The solid red arrow represents cell division. (d) Replisome dynamics. Two 
replisomes begin replication at an origin and progress in opposite directions. Their speed may depend, in general, on their genome coordinate. 
(e) Sketch of the DNA abundance distribution as a function of the genome coordinate. All three types of genomes contribute to the DNA abundance 
distribution. Because of incomplete genomes, the DNA abundance is largest at the origin and smallest at the terminal region (i.e., towards the 
periphery). (f) Experimental DNA abundance distribution at different temperatures.

Figure 1 continued
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where we introduce the vector notation ‍⃗v = (v(x1), v(x2))‍ and ‍⃗∇ = (∂/∂x1, ∂/∂x2)‍. The last term in the 
right hand side of Equation 8 is a dilution term that accounts for the exponential increase in newborn 
cells. We formally derive Equation 8 and discuss its boundary conditions in Methods.

DNA abundance distribution
The DNA abundance distribution ‍A(y)‍ is the probability that a small DNA fragment randomly picked 
from the population originates from genome position ‍y‍, see Figure 1e. We define the genome coordi-
nate ‍y ∈ [−L/2, L/2]‍, where ‍y = 0‍ corresponds to the origin of replication and ‍L‍ is the genome length. 
Templates and post-replication genomes yield a uniform contribution to the distribution ‍A(y)‍ (red 
and green in Figure 1e). In contrast, incomplete genomes contribute in a way that depends on the 
replisome positions along the genomes (blue in Figure 1e). Our experiments permit to measure the 
distribution ‍A(y)‍ with high accuracy, see Figure 1f and Methods.

To express the distribution ‍A(y)‍ in our model, we first introduce the probability ‍P(y)‍ that a randomly 
chosen genome (either complete or incomplete) in the population includes the genome location ‍y‍. 
This probability is expressed by

	﻿‍
P(y) = k

β+k

[
y copied by 1st replisome� �� �ˆ L

|y|
dx1

ˆ L−x1

0
dx2 pst(x1, x2) +

y copied by 2nd replisome� �� �ˆ L

L−|y|
dx2

ˆ L−x2

0
dx1 pst(x1, x2)

]
+

y in a complete genome� �� �
β

k + β
.
‍�

(9)

where the two terms in square brackets reflect the fact that either of the replisomes can in principle 
have copied position ‍y‍, and we used that a randomly chosen genome is complete with probability 

‍(1 − NS/N) = β/(k + β)‍, see Equation 5. The DNA abundance distribution ‍A(y)‍ is proportional to ‍P(y)‍, 
up to a normalization constant:

	﻿‍
A(y) = P(y)´ L/2

−L/2 P(y′)dy′
.
‍�

(10)

For given choices of ‍v(x)‍, ‍D‍, and ‍k‍, our theory permits to compute the distribution of incomplete 
genomes ‍pst(x1, x2)‍ via Equation 8. From this solution, we can also calculate β as the steady rate at 
which replisomes complete replication (see Methods). This information can be used to compute the 
DNA abundance distribution ‍A(y)‍ using Equation 10. Therefore, by experimentally measuring the 
DNA abundance distribution, we can test our hypotheses on the speed function ‍v(x)‍ and the diffusion 
coefficient ‍D‍.

Constant speed model
We first consider a scenario in which replisomes progress at a constant speed ‍̄v‍ and without fluctua-
tions, ‍D = 0‍. We find that, in this case, the DNA abundance distribution is expressed by

	﻿‍ A(y) = k
2v̄[1−e−kL/2̄v] e−k|y|/̄v ,‍� (11)

see Methods. We fit this distribution to the experimental data using maximum likelihood, see 
Figure 2a. The speed ‍̄v‍ is the only fitting parameter, because we independently measure the expo-
nential growth rate ‍k‍ from the optical density, see Methods.

We find that the speed increases nearly fivefold with temperature in the range we considered and 
appears to follow an Arrhenius law, see Figure 2b. This behavior resembles that of the growth rate. 
The effective activation energy characterizing the cell cycle is larger than that characterizing the repli-
some speed, see Figure 2c, possibly due to the large number of molecular reactions involved in the 
cell cycle. The data point at 17°C appears to deviate from the Arrhenius law for both the speed and 
the growth rate (Roy et al., 2021), see Figure 2c.

As seen in Figure 2c, the replisome speed does not increase as fast as the growth rate at increasing 
temperature. This observation suggests that the number of replisomes per genome should increase 
with temperature to compensate for this gap. Indeed, in the temperature range we studied, our 
model predicts that the average number of replisomes per complete genome increases from two to 
almost six, see Figure 2d and Methods.

https://doi.org/10.7554/eLife.75884
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We now focus on the average genome content per cell. Since the model assumes that genomes 
evolve independently, the average DNA content per cell ‍C‍ is the product of the average genome 
length ‍ℓ‍ times the average number of genomes per cell ‍N/NT ‍. Computing the average genome length 
in the model (see Methods) and using Equation 4 for the average number of genomes per cell, we 
obtain that the average DNA content per cell is expressed by

	﻿‍
C = 2v̄

k
k+α
α

[
ekL/(2v̄) − 1

]
.
‍� (12)
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Figure 2. Results of the constant speed model. (a) DNA abundance distribution for ‍T = 37oC‍. Orange circles represent experimental data. The 
solid black line is the prediction of our model assuming constant speed and ‍D = 0‍. Fits are performed using a maximum likelihood method, see 
Appendix 2 for details. The quality of fits for replicates and other temperatures is comparable, see Figure 2—figure supplement 1, Figure 2—
figure supplement 2, and Figure 2—figure supplement 3. In particular, fits of replicates yield similar values of the speed ‍̄v‍. (b) Replisome speed 
as a function of temperature. Error bars represent sample-to-sample variations. (c) Comparison of the temperature-dependence of speed and 
growth rate (see Methods for details on the growth rate estimation). The solid curves are fits of Arrhenius laws to the data. The fitted parameters are 

‍A = (2.5 ± 5.3) × 108 bp s−1
‍, ‍∆R = (50 ± 5) kJmol−1

‍, ‍B = (6.0 ± 24.9) × 1012 hr−1
‍ and ‍∆C = (74 ± 10) kJmol−1‍. We exclude the data point for 

‍T = 17oC‍ in both fits. (d) Estimated number of replisomes per complete genome at different temperatures. The red triangles represents the estimate 
from Equation 19 in which we use the expression of β for the constant speed model, Equation 22. The black circles are the estimates from Equation 
20.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Fits for replicates and other temperatures (normalization 1).

Figure supplement 2. Fits for replicates and other temperatures (normalization 2).

Figure supplement 3. Fits for replicates and other temperatures (normalization 3).

https://doi.org/10.7554/eLife.75884
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The classic Cooper-Helmstetter model (Cooper and Helmstetter, 1968) predicts the DNA content 
per cell assuming constant durations of stages B, C, and D of the cell cycle. Since we assumed constant 
speed and ‍D = 0‍, the duration of the replication cycle ‍L/(2v̄)‍ is constant in our case as well. As a conse-
quence, the prediction of Equation 12 is equivalent to that of the Cooper-Helmstetter model (see 
Appendix 3).

It is generally believed that the ratio between the average DNA content per cell ‍C‍ and the protein 
content per cell should be maintained approximately constant at varying physiological conditions. 
This implies that ‍C‍ should be proportional to the cell size. If the growth rate is varied by changing 
the nutrient composition, ‍̄v‍ remains constant (Cooper and Helmstetter, 1968). Equation 12 then 
predicts an approximately exponential growth of ‍C‍ with ‍k‍, which is consistent with observations. In 
this case, the Schaechter–Maaloe–Kjeldgaard growth law states that the cell size grows exponentially 
with ‍k‍ (Schaechter et al., 1958), thereby ensuring DNA-protein homeostasis. In the case of varying 
temperature, we find that ‍̄v‍ and ‍k‍ present a similar dependence on ‍T ‍ (see Figure 2c), so that their 
ratio and thereby ‍C‍ weakly depends on ‍k‍ (see Appendix 3—figure 1). Our result is consistent with 
observations showing that, at increasing temperature, the cell size remains approximately constant 
(Shehata and Marr, 1975) or possibly slightly increases (Trueba et al., 1982).

Oscillating speed model
The assumption of constant speed leads to a rather good fit of our DNA abundance data. However, 
the precision of our data permits us to appreciate systematic deviations from the model predictions 
under the constant speed hypothesis, see Figure 3a-e. These deviations appear as regular oscillations 
as a function of the genome coordinate. They are evident at all the temperatures we studied except 
for ‍17oC‍, where they are barely visible. They are highly repeatable (see Figure 3—figure supple-
ment 1, Figure 3—figure supplement 2 and Figure 3—figure supplement 3) and approximately 
symmetric with respect to the origin of replication. We also analyzed previous experimental data 
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Figure 3. Wave-like deviations from the predictions of the constant speed model. (a–e) Colored lines: ratios of the experimental DNA abundance 
over the corresponding prediction assuming constant speed and ‍D = 0‍. The solid black lines represent the ratios of the predictions assuming 
oscillatory speed, Equation 13 and ‍D ≥ 0‍, over constant speed and ‍D = 0‍. Corresponding plots for replicates and other temperatures are presented 
in Figure 3—figure supplement 1, Figure 3—figure supplement 2 and Figure 3—figure supplement 3. (f–j) Experimental DNA abundance 
distribution at different temperatures. The solid black lines are the fits of the oscillatory speed model. Tests based on the Akaike information criterion 
show that the oscillatory speed model should be chosen over the constant speed model for all the replicates and at all temperatures, see Figure 3—
figure supplement 5. The fitted parameters are reported in Table 1.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Discrepancy ratio for replicates (normalization 1).

Figure supplement 2. Discrepancy ratio for replicates (normalization 2).

Figure supplement 3. Discrepancy ratio for replicates (normalization 3).

Figure supplement 4. Discrepancy ratio computed from previous data (Midgley-Smith et al., 2018).

Figure supplement 5. Comparison between the constant speed model and oscillatory model.

https://doi.org/10.7554/eLife.75884
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from Midgley-Smith et al., 2018. We observed clear oscillations for experiments in nutrient-rich LB 
medium, but not for experiments in M9 minimal medium, see Figure 3—figure supplement 4. This 
analysis further supports that this phenomenon is robust, at least in fast growth conditions.

To account for these observations, we introduce a more refined model in which the replisome 
speed oscillates along the genome:

	﻿‍ v(x) = v̄[1 + δ cos(ωx + ϕ)] ,‍� (13)

where δ represents the relative amplitude of oscillations; ω their angular frequency along the 
genome; and ‍ϕ‍ their initial phase. We also take into account random speed fluctuations in this 
case, ‍D ≥ 0‍. In this case, we predict the DNA abundance distribution using stochastic simulations, 
see Methods. By fitting the DNA abundance, we estimate the parameters ‍̄v‍, δ, ω, ‍ϕ‍, and ‍D‍, see 
Figure 3(f–j) and Table 1.

Our fitted speed oscillations are reminiscent of a previously observed wave-like pattern in the 
mutation rate along the genome of different bacterial species (Dillon et al., 2018; Niccum et al., 
2019). For a quantitative comparison, we analyze this pattern in a mutant E. coli strain lacking DNA 
mismatch repair (Niccum et al., 2019). We find that the oscillations in mutation rate and speed are 
highly correlated, see Figure 4a. The mutation rate appears approximately in phase with the speed, 
meaning that regions where replisomes proceed at higher speed are characterized by a higher muta-
tion rate. This observation leads to the hypothesis that the two phenomena have a common cause.

We consider two possible explanations for these oscillations. The first is that the oscillations orig-
inate from a systematic process related with the cell cycle (Niccum et al., 2019). The second expla-
nation is that the oscillations are caused by competition among replisomes for nucleotides or other 
molecules required for replication. Assuming approximately constant cell division times, we estimate 
the cell division time as ‍τ = (ln 2)/k‍. Since ‍k‍ is also equal to the fork firing rate per genome, the time 
between firing events in a cell is also approximately equal to τ, so that the two hypotheses lead to the 
same quantitative prediction. If the speed of replisomes was coupled to a factor oscillating with period 
τ, this would cause spatial oscillation of speed with angular frequency ‍ω = 2π/(v̄τ ) = 2πk/[(ln 2)v̄]‍. This 
prediction qualitatively agrees with our fitted values of ω, see Figure 4b.

If the wave-like pattern were caused by competition among replisomes, one would expect either 
a minimum of the speed every time a new fork is fired (‍ϕ = π‍) or the speed to start decreasing when 
a new fork is fired (‍ϕ = π/2‍). Our fitted values of the phase ‍ϕ‍ are also compatible with this range, see 
Figure 4c.

Our results show that the diffusion coefficient ‍D‍ is quite small. For about one third of our exper-
imental realizations at each temperature, our fitted value of ‍D‍ is not significant according to the 
Akaike information criterion (see Figure 4d and Figure 4—figure supplement 2). For comparison, we 
estimate the equilibrium diffusion constant of replisomes in the cytoplasm from the Stokes-Einstein 
relation as ‍DSE ≈ 6 kbp2s−1

‍ (see Appendix 5), of the same order of magnitude as our fitted values, see 
Table 1 and Figure 4. These results suggest that, despite their high average speed, the fluctuations 
of the replisome position are remarkably similar to the equilibrium case.

Table 1. Parameters of the oscillatory speed model.
Temperatures are expressed in ‍oC‍, ‍̄v‍ in ‍bp s−1

‍, ω in ‍rad Mbp−1
‍, ‍ϕ‍ in ‍rad‍, and ‍D‍ in ‍kbp2s−1

‍. Reported 
values are averages and standard deviations over experimental replicates. The oscillatory and 
constant speed models yield estimates of the parameter ‍̄v‍ that are consistent with each other, see 
Appendix 4—table 1.

T ‍̄v‍ δ ω ‍ϕ‍ ‍D‍

17 246±33 0.22±0.13 0.7±0.5 3.3±1.0 0.39±0.43

22 351±30 0.20±0.06 2.7±0.6 3.4±0.6 0.81±1.18

27 541±30 0.18±0.03 4.7±0.1 2.1±0.1 0.35±0.49

32 821±66 0.11±0.04 5.5±0.2 1.5±0.1 1.15±1.23

37 970±51 0.17±0.03 4.3±0.2 3.0±0.2 2.90±2.48

https://doi.org/10.7554/eLife.75884
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The diffusion coefficient determines the uncertainty about the genome site where the two repli-
somes meet. In the absence of diffusion (‍D = 0‍), replisomes would always meet at the midpoint on the 
circular genome. For ‍D > 0‍, we estimate the typical size ‍lD‍ of the region in which the two replisomes 
meet as follows. Since the fitted values of δ and ‍D‍ are both small, we approximate the replication 
time as ‍τC ≈ L/(2v̄)‍. In this time, the accumulated uncertainty due to diffusion is equal to ‍lD ≈ 2

√
2DτD ‍. 

From our estimated diffusion coefficients and average velocities, we obtain values of ‍lD‍ on the order 
of ‍100 − 200 kbp‍, depending on temperature.
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Figure 4. Results of the oscillatory speed model. (a) Solid lines: relative speeds ‍v(|y|)/v̄‍ along the genome (Red: T = 22°C, sky blue: T = 27°C, brown: T 
= 32°C, and orange: T = 37°C). We omitted the curve for T = 17°C as the oscillations are less evident in this case (see Figure 4—figure supplement 1). 
The wave-like pattern of the speed is quantitatively similar to the variations of the mutation rate along the genome (green triangles, from Niccum et al., 
2019; Pearson correlation coefficients between speed and mutation rate: ‍r22C = 0.42‍; ‍r27C = 0.84; r32C = 0.80‍ and ‍r37C = 0.69‍). The mutation rate is 
defined as the number of base pair substitutions per generation per kilo base pairs. The solid green line is a fit to the mutation rate data with the same 
function as in Equation 13. The fit parameters are ‍̄v = 2.4kbp−1gen−1

‍, ‍δ = 0.18‍, ‍ω = 4.9rad Mbp−1
‍ and ‍ϕ = 1.93rad‍. (b) Temperature dependence of 

angular frequency of oscillation ω (squares). (c) phase ‍ϕ‍ (squares). Green triangles in (b) and (c) represent the angular frequency and phase, respectively, 
from the fit to the mutation rate data with Equation 13. (d) Diffusion coefficient ‍D‍. Circles represent individual fitted values of diffusion coefficients. Blue 
circles represent cases in which the fitted value of ‍D‍ is either zero or not significant (see SI). This occurs in two out of nine cases for 37°C and three out 
of nine cases for each of the other temperatures.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Alternative version of Figure 4a.

Figure supplement 2. Oscillatory model with and without diffusion.

https://doi.org/10.7554/eLife.75884


 Research article﻿﻿﻿﻿﻿﻿ Physics of Living Systems

Bhat et al. eLife 2022;11:e75884. DOI: https://doi.org/10.7554/eLife.75884 � 10 of 26

We remark that our bacterial cultures are grown in LB medium. Although the growth curves appear 
exponential before saturating (see Methods), the nutrient composition can be such that the assump-
tion of steady growth made in our model is not valid. It is therefore important to scrutinize whether 
the oscillations can be a consequence of this issue. To this aim, we analyzed a version of the model 
in which the fork firing rate is not steady, but gradually declines with time, see Appendix 7. We find 
that the discrepancy between the DNA abundance distributions predicted by this model and by the 
steady-state model is very small compared to the oscillations we observe. This observation supports 
that a potential lack of steady-state in the LB medium is not a likely cause for the oscillations.

Discussion
In this paper, we infer the dynamics of replisomes from the DNA abundance distribution in a growing 
bacterial population. Our theory can be seen as a generalization of the classic Cooper-Helmstetter 
theory (Cooper and Helmstetter, 1968; Bremer and Churchward, 1977), that permits to estimate 
the duration of the replication period from the abundance of certain genomic locations in a growing 
population, see e.g. (Zheng et  al., 2016; Si et  al., 2017). While the Cooper-Helmstetter theory 
assumes constant replisome speed, our approach allows for varying speeds. We test our method by 
measuring the DNA abundance distribution of E. coli populations growing at different temperatures. 
We thereby accurately estimate the average speed of replisomes in vivo, and their speed variations 
along the genome.

We find that the dependence of the average replisome speed on the temperature is well described 
by an Arrhenius law, similar to that governing the population growth rate. This quantitative depen-
dence can be used to deduce other laws governing bacterial physiology at varying temperature. For 
example, we argue that precise DNA-protein homeostasis requires the cell size to mildly vary with 
temperature. This prediction is in qualitative agreement with previous observations (Shehata and 
Marr, 1975; Trueba et al., 1982) and calls for more systematic measurements of cell parameters at 
varying temperature, similar to what has been done in the case of varying nutrient composition (Si 
et al., 2017).

Our approach reveals a wave-like oscillation of the replisome speed along the E. coli genome. The 
relative amplitude of these oscillations ranges from 10% to 20% of the average replisome speed. A 
quantitatively similar pattern was observed in the bacterial mutation rate along the DNA of an E. coli 
mutant strain (Niccum et al., 2019) and of other bacterial species (Dillon et al., 2018). This similarity 
suggests that the two phenomena have a common dynamical origin. In particular, we hypothesize 
that this correlation could be a manifestation of the trade-off between accuracy and speed that char-
acterizes DNA polymerases (Sartori and Pigolotti, 2013; Banerjee et al., 2017; Fitzsimmons et al., 
2018). Because of this trade-off, any mechanism increasing the speed of a polymerase is expected to 
increase its error rate as well.

Our analysis of the frequency of these oscillations supports that this pattern may originate from a 
process synchronized with the cell cycle (Dillon et al., 2018), whose activity alters the replisome func-
tion. An alternative hypothesis is that the oscillations originate from competition among replisomes 
for shared resources, such as nucleotides. According to this idea, the firing of new forks can hinder the 
progression of existing replisomes. The frequency of oscillations is compatible with both explanations. 
The following additional evidence supports the latter hypothesis. We did not observe appreciable 
oscillations for our lowest temperature of 17°C, which according to our estimates falls outside the 
multi-fork replication regime. Further, we found that oscillations disappeared when analyzing previous 
data from a culture grown in a minimal medium (Midgley-Smith et al., 2018), where multi-fork repli-
cation is also not expected. Similarly, oscillations in the mutation rate are also less evident at lower 
temperature and disappear in minimal medium (Niccum et al., 2019). On one hand, these facts point 
to competition between multiple replisomes in the same cell as a likely source for the oscillations. 
On the other hand, given the difficulty of obtaining steady exponential growth in LB medium, further 
experiments will be important to assess an eventual effect of the growth medium on the DNA abun-
dance shape.

Beside these regular and repeatable variations, our analysis shows that random fluctuations of 
replisome speed are quite small, leading to an uncertainty of about ‍100 − 200 kbp‍ on the location of 
the replisome meeting point. In bacteria, the terminal region of replication is flanked by two groups of 
termination (Ter) sites having opposite orientations. Ter sites are the binding sites for the Tus protein 

https://doi.org/10.7554/eLife.75884


 Research article﻿﻿﻿﻿﻿﻿ Physics of Living Systems

Bhat et al. eLife 2022;11:e75884. DOI: https://doi.org/10.7554/eLife.75884 � 11 of 26

and permit passage of replication forks in one direction only (Elshenawy et al., 2015), so that the two 
groups effectively trap the two forks in the terminal region (Duggin et al., 2008). Out of the ten Ter 
sequences in E. coli, only two of them (TerB and TerC) are within ‍100 − 200 kbp‍ of the point diamet-
rically opposite to the origin. These two sequences have the same orientation. Our result therefore 
implies that most Ter sequences are usually not needed to localize the replisome meeting point. This 
prediction is consistent with previous observations that the phenotypes of Tus- E. coli mutants (Roeck-
lein et al., 1991) or mutants lacking Ter sequences (Duggin et al., 2008) do not appear distinct from 
that of the wild type.

Quantitative modeling of the DNA abundance distribution has the potential to shed light on aspects 
of replisome dynamics beyond those explored in this paper. For example, it was observed that the 
knockout of proteins involved in the completion of DNA replication leads to either over-expression 
or under-expression of DNA in the terminal region (Wendel et al., 2014; Wendel et al., 2018; Sinha 
et al., 2018). Incorporating the role of these proteins into our model will permit to validate possible 
explanations for these patterns. More in general, our approach is simple and general enough to be 
readily applied to other bacterial species, to unravel common principles and differences in their DNA 
replication dynamics.

Methods
Cultivation and DNA extraction
E. coli MG1655 was cultured in LB medium supplemented with 50  mM MOPS pH 7.2 and 0.2% 
glucose. Overnight cultures grown at 37 °C were diluted into fresh medium and grown until reaching 
an OD600 of about 1.0 at the target temperature. These cultures were used to inoculate 50 ml medium 
at the desired temperature in 500 ml Erlenmeyer flasks with baffles at a target OD of 0.01. Cultivation 
was performed with shaking at 250 rpm. OD was determined with a NanoDrop One in cuvette mode.

The growth curves of E. coli were highly repeatable (over three replicate experiments for each 
temperature), see Figure 5a and Figure 5b. We computed the growth rate at each temperature by 
fitting a logistic function to individual growth curves, see Figure 5c. When the time was rescaled by 
the average growth rate, OD of different temperatures collapsed along a single curve. The cultures 
(1.4 ml) were harvested by centrifugation at 21,000 g for 20 s after reaching an OD of around 0.5 (mid-
exponential phase, dashed lines in Figure 5a). Cells were kept growing for at least 45 doubling times 
(as measured in exponential phase) to reach stationary phase. Samples of 0.2 ml from the stationary 
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Figure 5. Growth curves at different temperatures. (a) Optical density (OD) as a function of time at different temperatures. Each curve is averaged over 
three different replicates at the same temperature. Error bars represent standard deviations. Dashed lines mark the OD window in which the cells are 
harvested. Solid lines represents the exponential growth curve for each temperature. We computed the growth rate ki for each sample ‍i = 1, 2, 3‍ at a 
given temperature by fitting the optical density to a logistic function ‍ai/[1 + bi exp(−kit)]‍, where ai and bi are sample-specific constants (Zwietering 
et al., 1990). The growth rate ‍k‍ for each temperature is the average of the kis. (b) Same data as in (a), but the time in the x-axis is scaled by the growth 
rate ‍k‍ at each temperature. As a result of this rescaling, the growth curves collapse on each other. (c) Average growth rate as a function of temperature. 
The solid purple line is an Arrhenius fit to the data (see Figure 2), resulting in ‍B = (6.0 ± 24.9) × 1012 hr−1

‍ and ‍∆C = (74 ± 10) kJmol−1
‍. We exclude 

the data point for ‍T = 17oC‍ from the fit.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Individual growth curves at different temperatures.

https://doi.org/10.7554/eLife.75884
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phase cultures grown at 17°C, 27°C, and 37°C were harvested for DNA extraction. The pellets were 
immediately frozen at –80 °C until DNA extraction. DNA was extracted in parallel using Genomic DNA 
Purification Kit from Thermo Fisher Scientific.

Sequencing
We sequenced three samples in the exponential phase from different experimental realizations for 
each temperature. In addition, we sequenced three stationary samples at three different temperatures. 
DNA samples were sheared by ultrasound using Covaris AFA technology. Libraries were prepared 
using the Illumina DNA PCR-Free Library Prep Kit. Sequencing was performed on a Novaseq6000 
using paired-end 150 bp reads.

Alignment and bias elimination
We aligned reads from each sample using Bowtie2 2.3.4.1 (Langmead and Salzberg, 2012), using the 
MG1655 genome as a reference. We calculated the frequency of reads as a function of the genome 
coordinate with bin size 10kbp. To attenuate bias, we divided the frequency at each genome coordi-
nate in a sample from the exponential phase by the frequency of the corresponding bin in a stationary 
sample (Wendel et al., 2014; Midgley-Smith et al., 2018). We alternatively used all of our three 
stationary samples to correct the bias of each sample in the exponential phase. Therefore, after bias 
elimination, we effectively have ‍3 × 3 = 9‍ different DNA abundance curves in the exponential phase 
at each temperature. See Figure  2—figure supplement 1, Figure  2—figure supplement 2 and 
Figure 2—figure supplement 3 for details.

Stationary distribution of replisome positions
In this section, we discuss how to compute the stationary distribution of incomplete replisome posi-
tions ‍pst(x1, x2; t)‍. We call ‍nS(x1, x2; t)‍ the number density of incomplete genomes at time ‍t‍ with repli-
some positions at x1 and x2. By definition ‍

´ L
0 dx1

´ L−x1
0 dx2nS(x1, x2; t) = NS(t)‍. It follows from Equation 

7 that this number density evolves according to

	﻿‍
∂
∂t nS(x1, x2; t) = −∇⃗ · [⃗vnS] + D∇2ns,‍� (14)

where ‍⃗∇ = (∂/∂x1 , ∂/∂x2 )‍ and ‍⃗v = (v(x1), v(x2))‍. We now introduce the normalized probability 

‍p(x1, x2; t) = nS(x1, x2; t)/NS(t)‍. By substituting this definition into Equation 14, we obtain

	﻿‍
∂
∂t p(x1, x2; t) = −∇⃗ · [⃗vp] + D∇2p − kp.‍� (15)

The stationary distribution ‍pst(x1, x2)‍ is a time-independent solution of Equation 15, see Equation 
8.

Because of replication completion, the line ‍x1 + x2 = L‍ is an absorbing state for the dynamics 
described by Equation 15. Equation 15 must be consistent with Equation 2, which describes the 
dynamics of incomplete genomes regardless of the coordinates of their replisomes. This implies that 
the rate β at which replication completes (see Equation 2) must equal to the probability flux through 
the absorbing boundary:

	﻿‍
β =
ˆ

x1+x2=L
J⃗ · n̂ dl,

‍�
(16)

where we introduce the probability current ‍⃗J(x1, x2) = v⃗p − D∇⃗p‍, the unit vector ‍̂n = (1/
√

2, 1/
√

2)‍, 
and the infinitesimal line increment ‍dl‍ along the absorbing boundary. Similarly, the probability flux 
entering the system at ‍(x1, x2) = (0, 0)‍ must match the rate of replication initiation as given by Equation 
2.

Given a hypothesis on the speed function ‍v(x)‍ and the diffusion coefficient ‍D‍, we solve Equation 
15 at stationarity using the experimentally measured growth rate ‍k‍. From the stationary solution 

‍pst(x1, x2)‍, we obtain β using Equation 16. Our approach does not permit to determine the cell divi-
sion rate α appearing in Equation 1-Equation 3. However, this rate is not necessary to compute the 
DNA abundance distribution, which is expressed by Equation 9 and Equation 10 in terms of ‍pst(x1, x2)‍ 
and β only.

https://doi.org/10.7554/eLife.75884
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Average genome length
To compute the average genome length, we first note that the integral of ‍P(y)‍ is equal to the average 
genome length ‍ℓ‍ in the population

	﻿‍
ℓ =
ˆ L/2

−L/2
P(y)dy.

‍�
(17)

Combining Equation 17, Equation 10, and the fact that ‍P(0) = 1‍, we obtain a simple relation 
between the DNA abundance distribution and the average genome length:

	﻿‍ ℓ = A(0)−1.‍� (18)

Average number of replisomes per complete genome
We estimate the average number of replisomes per complete genome ‍N ‍ in two alternative ways. On 
the one hand, using Equation 4-Equation 6 we find that

	﻿‍ N = 2NS
NP+NT

= 2k
β .‍� (19)

On the other hand, it can be seen in Figure 2d that the fraction of complete genome in the popu-
lation is equal to the ratio ‍A(L/2)/A(0)‍ between the DNA abundance at the terminal and at the origin. 
It follows that

	﻿‍ N = 2[A(0)−A(L/2)]
A(L/2) .‍� (20)

Constant speed
We focus on the scenario with constant speed and ‍D = 0‍. In this case, the steady solution of Equation 
15 is given by

	﻿‍
pst(x1, x2) = ke−

k
2̄v (x1+x2)

v̄
(

1−e−kL/(2̄v)
)δ(x1 − x2).

‍�
(21)

The rate at which replication completes is equal to

	﻿‍ β = ke−kL/(2̄v)

1−e−kL/(2̄v) .‍� (22)
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Figure 6. Replisome dynamics in the ‍(x1, x2)‍ plane. (a) Two different trajectories demonstrate two different types 
of resetting events in our simulations. Trajectories are reset to ‍x1 = 0, x2 = 0‍ when the two replisomes complete 
replication (green trajectory) at the absorbing boundary (solid red line). Additionally, trajectories can be reset from 
any position to the origin at a rate ‍k‍ (sky blue) to take care of the dilution term in Equation 15. (b) Replisome 
position distribution ‍pst(x1, x2)‍ in the steady state. In both panels, parameters are ‍̄v = 973bp s−1

‍, ‍δ = 0.19‍, 

‍ω = 4rad Mbp−1
‍, ‍ϕ = 3.1rad‍ and ‍D = 55kbp2s−1

‍. These parameters are on the order of those fitted from 
experiments (see Table 1), except for ‍D‍ which is chosen to be larger for illustration purposes.
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 Research article﻿﻿﻿﻿﻿﻿ Physics of Living Systems

Bhat et al. eLife 2022;11:e75884. DOI: https://doi.org/10.7554/eLife.75884 � 14 of 26

Substituting Equation 21 and Equation 22 into Equation 9, we obtain.

	﻿‍ P(y) = e−k|y|/̄v,‍� (23)

from which Equation 11 follows by normalizing, see Equation 10.

We exactly solved Equation 15 also in the case where the speed depends on the genome coordi-
nate, provided that the diffusion coefficient vanishes, see Appendix 6.

Stochastic simulations
In the case of oscillating speed and ‍D > 0‍, we compute the stationary solution of Equation 15 using 
numerical simulations. To this aim, we interpret Equation 15 as describing a stochastic process subject 
to stochastic resetting (Evans and Majumdar, 2011). Specifically, we perform stochastic simulations of 
Equation 7. In addition to the dynamics described by Equation 7, with a stochastic rate equal to the 
fork firing rate ‍k‍, trajectories are reset to the origin, ‍x1 = x2 = 0‍ (blue trajectory in Figure 6a). Since 
the boundary ‍x1 + x2 = L‍ is an absorbing state, trajectories that reach this boundary are also reset to 
the origin (green trajectory in Figure 6a). The probability distribution associated with this dynamics 
evolves according to Equation 15. We simulate this stochastic dynamics to estimate the stationary 
distribution ‍pst(x1, x2)‍ in a computationally efficient way, see Figure 6b. We estimate from the same 
simulations the parameter β as the empirical rate at which the absorbing boundary is reached, see 
Equation 16.
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Appendix 1
Age-dependent dynamics of genome types
In this Appendix, we generalize the model embodied in Equations 1–3 to the more realistic case in 
which genomes transition from one stage to another with an age-dependent rate. Specifically, we 
call τ the time since a genome fired its last fork and define the time-dependent fork firing rate ‍k(τ )‍. 
The time-dependent fork firing rate can be expressed in terms of the fork-firing time-distribution 
‍f(τ )‍ as ‍k(τ ) = f(τ )/[1 −

´ τ
0 f(τ ′)dτ ′]‍.

We also define the age ‍a‍ of genomes in synthesizing or post-replication stage, i.e. the time they 
spent in their stage. We define the age-dependent rate of completion ‍β(a)‍ and the age-dependent 
duration of post-replication stage ‍α(a)‍. These rates can be expressed in terms of the distribution 
of time to complete the synthesizing stage, ‍g(a)‍ and the distribution of time to complete the post-
replication stage, ‍h(a)‍. The relations are: ‍β(a) = g(a)/[1 −

´ a
0 g(a′)da′]‍ and ‍α(a) = h(a)/[1 −

´ a
0 h(a′)da′]‍.

We call ‍nT(τ ; t)‍ the number density of templates at time ‍t‍ that fired their last fork at time ‍t − τ ‍. 
We call ‍nS(a, τ ; t)‍, and ‍nP(a, τ ; t)‍ the number density of synthesizing and post-replication genomes 
(respectively) at time ‍t‍ that fired their last fork at time ‍t − τ ‍ and with age ‍a‍. These densities evolve 
according to the coupled equations:

	﻿‍
∂nT
∂t = −∂nT

∂τ − k(τ )nT + δ(τ )
´∞

0 dτ ′ k(τ ′)nT(τ ′; t) +
´∞

0 α(a)nP(a, τ ; t)da‍� (24)

	﻿‍
∂nS
∂t = −∂nS

∂a − ∂nS
∂τ − k(τ )nS + δ(τ )

´∞
0 dτ ′k(τ ′)

[
δ(a)n(τ ′; t) + nS(a, τ ′; t)

]
− β(a)nS‍� (25)

	﻿‍
∂nP
∂t = −∂nP

∂a − ∂nP
∂τ − k(τ )nP + δ(τ )

´∞
0 dτ ′ k(τ ′)nP(a, τ ′; t) + δ(a)

´∞
0 β(a′)nS(a′, τ ; t)da′ − α(a)nP,‍

� (26)

where ‍n(τ ; t) = nT(τ ; t) +
´∞

0 nS(a, τ ; t) da +
´∞

0 nP(a, τ ; t) da‍ is the total number density of genomes 
at time ‍t‍ that fired their last fork at time ‍t − τ ‍.

The total numbers of templates, synthesizing, and post-replication genomes are respectively 
given by ‍NT(t) =

´∞
0 nT(τ ; t)dτ ‍, ‍NS(t) =

˜∞
0 nS(a, τ ; t)dadτ ‍, and ‍NP(t) =

˜∞
0 nP(a, τ ; t)dadτ ‍. Integrating 

Equation 24 with respect to τ and Equations 25; 26 with respect to ‍a‍ and τ we obtain

	﻿‍
dNT
dt =

˜∞
0 α(a)nP(a, τ ; t)dadτ ‍� (27)

	﻿‍
dNS
dt =

´∞
0 dτ ′ k(τ ′)n(τ ′; t) −

˜∞
0 β(a)nS(a, τ ; t)dadτ ‍� (28)

	﻿‍
dNP
dt =

˜∞
0 β(a)nS(a, τ ; t)dadτ −

˜∞
0 α(a)nP(a, τ ; t)dadτ .‍� (29)

The total number of genomes, ‍N(t) = NT + NS + NP‍ grows with time as

	﻿‍
dN
dt =

´∞
0 dτ k(τ )n(τ ; t) .‍� (30)

If the fork firing rate is independent of τ, ‍k(τ ) = k‍, then the number of genomes grows as 

‍N = N(0)ekt
‍. A computation of the growth exponent for general case requires knowledge of ‍n(τ , t)‍. 

Using the definition of ‍n(τ , t)‍ in Equation 24-Equation 26 leads to

	﻿‍
∂
∂t n(τ ; t) = − ∂

∂τ n(τ ; t) − k(τ )n(τ ; t) + 2δ(τ )
´∞

0 dτ ′ k(τ ′)n(τ ′; t) .‍� (31)

We assume that the age dependent genome population scales with the total number of 
genomes, ‍n(t; τ ) = q(τ ; t)N(t)‍. This assumption for ‍n(t; τ )‍ yields an exponential growth for the number 

of genomes, ‍N = N(0)ek̂(t)t
‍, with a time-dependent exponent,

	﻿‍ k̂(t) =
´∞

0 k(τ )q(τ ; t)dτ .‍� (32)

Substituting this along with the relation ‍n(τ ; t) = q(τ ; t)N(t)‍ in Equation 31, we find

	﻿‍
∂
∂t q(τ ; t) + k̂(t)q(τ ; t) = − ∂

∂τ q(τ ; t) − k(τ )q(τ ; t) + 2δ(τ )
´∞

0 dτ ′ k(τ ′)q(τ ′; t) .‍� (33)

https://doi.org/10.7554/eLife.75884
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In the steady state, ‍qst(τ ) ≡ q(τ ; t → ∞)‍ is independent of time. In this limit, the growth rate in 
Equation 32 is also time-independent, ‍k̂ =

´∞
0 k(τ )qst(τ )dτ ‍. Using these conditions in Equation 33, 

we find

	﻿‍ qst(τ ) = 2k̂e−k̂τ [
1 −
´ τ

0 f(τ ′)dτ ′
]

,‍� (34)

where we used ‍e
−
´ τ

0 k(τ ′)dτ ′
= 1 −

´ τ
0 f(τ ′)dτ ′‍. The normalization condition, ‍

´∞
0 qst(τ )dτ = 1‍, yields 

the Euler-Lotka equation for the relation between ‍̂k‍ and fork firing time distribution ‍f(τ )‍,

	﻿‍ 2
´∞

0 e−k̂τ f(τ )dτ = 1 .‍� (35)

In the steady state, we assume that ‍nT(τ ; t) = NT(t)qT(τ )‍, ‍nS(a, τ ; t) = NS(t)qS(a, τ )‍ and 

‍nP(a, τ ; t) = NP(t)qP(a, τ )‍, see, e.g., (Jafarpour et al., 2018). Because of the definitions of ‍NT ‍, ‍NS‍ and 

‍NP‍, we have the normalization conditions

	﻿‍
´∞

0 qT(τ )dτ = 1 ,
˜∞

0 qS(a, τ )dadτ = 1 ,
˜∞

0 qP(a, τ )dadτ = 1 .‍� (36)

These conditions permit to express the dynamics of genome types as

	﻿‍
dNT
dt = α̂NP , dNS

dt = k̂N − β̂NS , dNP
dt = β̂NS − α̂NP .‍ � (37)

where ‍̂α =
˜∞

0 α(a)qP(a, τ )dadτ ‍ and ‍β̂ =
˜∞

0 β(a)qS(a, τ )dadτ ‍. From Equation 37, we obtain in 
the long time limit:

	﻿‍
NT
N = α̂β̂

(̂k+β̂)(̂k+α̂)
, NS

N = k̂
k̂+β̂

, NP
N = β̂k̂

(̂k+β̂)(̂k+α̂)
.
‍� (38)

These relations are equivalent to Equation 4-Equation 6 for age dependent rates.
To compute ‍̂β‍ and ‍̂α‍ more explicitly from Equation 25 and Equation 26, we solve for the 

marginals ‍̄qS(a) =
´∞

0 qS(a, τ )dτ ‍ and ‍̄qP(a) =
´∞

0 qP(a, τ )dτ ‍ respectively. We obtain

	﻿‍ q̄S(a) = (k̂ + β̂)e−k̂a−
´ a

0 β(a′)da′ , q̄P(a) = (k̂ + α̂)e−k̂a−
´ a

0 α(a′)da′ .‍� (39)

Using these marginals in the definition of ‍̂β‍ and ‍̂α‍, we find

	﻿‍
β̂ = k̂

´∞
0 e−k̂ag(a)da

1−
´∞

0 e−k̂ag(a)da
, α̂ = k̂

´∞
0 e−k̂ah(a)da

1−
´∞

0 e−k̂ah(a)da‍�
(40)

In deriving Equation 40, we also used the relations ‍e
−
´ a

0 β(a′)da′ = 1 −
´ a

0 g(a′)da′‍ and 

‍e
−
´ a

0 α(a′)da′ = 1 −
´ a

0 h(a′)da′‍. In the limiting case of age-independent rates α and β, then ‍g(a) = βe−βa
‍ 

and ‍h(a) = αe−αa
‍, and therefore ‍̂β = β‍ and ‍̂α = α‍ as expected.

https://doi.org/10.7554/eLife.75884
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Appendix 2
Parameter estimation based on maximum likelihood
In this section, we outline the maximum likelihood method to fit the parameters of the model. 
We make a histogram of our data with bin size ‍b = 10‍ kbp. We call ‍B‍ the total number of bins. We 
empirically estimate the DNA abundance in each bin ‍i‍ as

	﻿‍
Ei = Ne

i /Ns
i

b
∑B

i=1(Ne
i /Ns

i )
,
‍� (41)

where ‍N
e
i ‍ and ‍N

s
i ‍ are the numbers of reads in the ‍i‍ th bin from the exponential and stationary 

culture, respectively. We assume that the number of reads in each bin follows a Poisson distribution 
(Aird et al., 2011). In the limit of large ‍N

e
i ‍ and ‍N

s
i ‍, the distribution of the empirical DNA abundance 

‍Ei‍ is Gaussian with a standard deviation

	﻿‍
σi = Ei

√
1

Ne
i

+ 1
Ns

i
.
‍� (42)

The assumption of large number of reads is well satisfied for our sequencing depth: ‍N
e
i ‍ ranges from 

‍2.8 × 104‍ to ‍19.9 × 104‍ and ‍N
s
i ‍ from ‍4.6 × 104‍ to ‍9.0 × 104‍. We call ‍Ai ≡ A(ib)‍ the DNA abundance 

predicted by our model at bin ‍i‍ for a given set of parameters. The joint likelihood of the empirical 
DNA abundance in all the bins is given by

	﻿‍
L =

∏B
i=1

1√
2πσ2

i
e
− (Ei−Ai )2

2σ2
i .

‍�
(43)

We fit the model parameters by maximizing the logarithm of the likelihood ‍lnL‍.
In the constant speed case, we have a single fitting parameter ‍k/v̄‍. In the oscillatory model without 

and with diffusion we have four and five fitting parameters, respectively.

https://doi.org/10.7554/eLife.75884
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Appendix 3
Correspondence with the Cooper-Helmstetter Theory
In this section, we study our model in the case of constant speed, constant duration of the B and D 
stages, and slow growth condition, so that all stages B, C, and D of the cell cycle are present. Our 
goal is to prove that, under these additional assumptions, our model predicts the same total DNA 
abundance as the Cooper-Helmstetter model.

The expression for the total DNA abundance in the constant speed case reads

	﻿‍
C = N

NT

ˆ L/2

−L/2
P(x)dx = 2v̄

k
k + α

α
[ekL/(2v̄) − 1],

‍�
(44)

see Equation 12. The analogous expression for the Cooper-Helmstetter model is

	﻿‍
L

kτC
ekτD

[
ekτC − 1

]
,
‍� (45)

where ‍τC‍ is the time taken by replisomes to complete replication on the genome and ‍τD‍ is post-
replication period (Cooper and Helmstetter, 1968).

Since we assumed constant replisome speed, we have ‍τC = L/2v̄‍. Therefore, proving that Equation 
44 and Equation 45 are equivalent boils down to showing that ‍ekτD = (α + k)/α‍. We call ‍τB‍ the time 
spent by a bacterium in stage B. In the CH model the times ‍τB‍, ‍τC‍ are constant. The division time is 

‍τdiv = τB + τC + τD‍. The population growth rate is ‍k = ln 2/τdiv‍.
Since the division time is constant, the steady-state age distribution is expressed by

	﻿‍ p(τ ) = ke−kτ

1−e−kτdiv
= 2ke−kτ ,‍� (46)

see e.g. Powell, 1956
We now express the steady-state fractions ‍fB‍, ‍fC‍, ‍fD‍ of cells in stage B, C, D as

	﻿‍ fB =
´ τB

0 p(τ )dτ = 2(1 − e−kτB ) = 2 − ek(τC+τD)
‍� (47)

	﻿‍ fC =
´ τB+τC
τB

p(τ )dτ = 2e−kτB (1 − e−kτC ) = ek(τC+τD) − ekτD
‍� (48)

	﻿‍ fD =
´ τdiv
τB+τC

p(τ )dτ = 2e−k(τB+τC)(1 − e−kτD ) = ekτD − 1.‍� (49)

The ratio of the number of post replication genomes to the number of templates is equal to 
the fraction of cells in stage D. Therefore, equating the fraction ‍fD‍ with ‍NP/NT = k/α‍ obtained from 
Equation 4 and Equation 6, we obtain ‍ekτD = (α + k)/α‍ as expected.
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Appendix 3—figure 1. DNA content per cell as a function of the growth rate for the case of varying nutrients in 
(a) and of varying temperature in (b). In (a), the experimental data (orange circles) are from Si et al., 2017. The 
solid red line is from Equation 45, in which we used ‍τC = 38‍ min and ‍τD = 37.1‍ min (Si et al., 2017). The curve 
in (b) is from Equation 44. In this case, we substituted the speed of replisomes and the growth rate of cells at each 
temperature in Equation 44. In addition, we assumed a linear temperature dependence for the post replication 
duration (‍α−1‍), see (c). The parameters of the linear fit are determined from the data (red squares) reported 
in Stokke et al., 2012 for the LB medium. We used this linear fit to extrapolate the value of α for different 
temperatures in Equation 44.

https://doi.org/10.7554/eLife.75884
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Appendix 4

Appendix 4—table 1. Comparison between average (over the sample to sample variations) speed 
estimated in the constant and oscillatory speed models.
Temperature are expressed in Celsius and speeds in ‍bp s−1

‍. The last column shows the average 
growth rate (expressed in ‍hr−1‍) at different temperatures.

Temperature ‍̄v‍(constant speed) ‍̄v‍(oscillatory speed) ‍k‍(growth rate)

17 221±17 243±36 0.20±0.02

22 373±29 350±28 0.47±0.04

27 528±31 542±30 0.92±0.05

32 812±64 823±65 1.60±0.12

37 961±51 972±51 1.98±0.10

https://doi.org/10.7554/eLife.75884
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Appendix 5
Estimate of the diffusion coefficient from the Stokes-Einstein relation
The Stokes-Einstein relation expresses the diffusion coefficient of a spherical particle immersed in a 
fluid (Hynes, 1977). If ‍r‍ is the radius of the particle, η and ‍T ‍ are viscosity and the temperature of the 
fluid respectively, then according to the Stokes-Einstein relation, the diffusion coefficient is

	﻿‍ DSE = kBT
6πηr‍� (50)

where ‍kB‍ is the Boltzmann constant. The radius of an E. coli replisome is ‍r ≈ 50 nm‍(Reyes-
Lamothe et al., 2010) and the viscosity of water is ‍η = 0.7mPa s‍ at room temperature ‍T = 310K‍. 
Using that ‍kB = 1.38 × 10−23JK−1‍, we estimate a diffusion coefficient of replisomes in water equal 
to ‍DSE,W = 6µm2s−1

‍. The typical base pair distance is ‍3.4Ao‍. Therefore in terms of base-pair (bp), 

‍DSE,W ≈ 56kbp2s−1
‍. The diffusion constant of large macromolecules in the cytoplasm is found to be 

about 10 times smaller than in water (Verkman, 2002). This results in an estimate of the diffusion 
constant of replisomes in the cytoplasm of ‍DSE,C ≈ 6kbp2s−1

‍, as reported in the Results.

https://doi.org/10.7554/eLife.75884
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Appendix 6
Exact solution of the oscillatory speed case for ‍D = 0‍
In this section, we exactly solve the oscillatory speed model in the absence of diffusion (‍D = 0‍). For 
an arbitrary choice of the function ‍v(x)‍ and ‍D = 0‍, the steady state solution of Equation 15 reads

	﻿‍ pst(x1, x2) = δ(x2 − x1) A
v(x1) e−

´ x1
0 dx′k/v(x′)

‍� (51)

where ‍A‍ is a normalization constant that ensures ‍
´ L

0 dx1
´ x1

0 dx2pst(x1, x2) = 1‍. The rate at which 

replication completes is ‍β = Ae−
´ L/2

0 dx′k/v(x′)
‍. From Equation 9, we obtain

	﻿‍ P(y) = A
k+β e−

´ |y|
0 dy′k/v(y′).‍� (52)

For the specific form of ‍v(x)‍ given in Equation 13, the integral in Equation 52 is equal to

	﻿‍

´ |y|
0 dy′k/v(y′) = 2k

v̄ω
√

1−δ2

{
arctan

[√
1−δ
1+δ tan

(
ω|y|+ϕ

2

)]
− arctan

[√
1−δ
1+δ tan

(
ϕ
2

)]

+π
⌊
ω|y|+ϕ+π

2π

⌋
− π

⌊
ϕ+π
2π

⌋}
.

‍�

(53)

where ‍⌊·⌋‍ is the floor function. We use the expression of this integral in Equation 52 and 
substitute the result in Equation 10 to obtain the DNA abundance distribution. We computed the 
normalization factor of the DNA abundance distribution (i.e., the denominator of Equation 10) by 
numerical integration.

https://doi.org/10.7554/eLife.75884
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Appendix 7
Replisome dynamics with time-dependent fork firing rate
To verify the robustness of our results, we generalize our model to the case in which the fork firing 
rate ‍k‍ depends on time. For simplicity, we assume that replisomes move with constant speed and 
without diffusion (‍D = 0‍).

We assume that the total number of genomes grows with time as

	﻿‍ N(t) = θ(t)N0e
´ t

0 k̂(t′)dt′ = θ(t) a
1+b exp(−kt)‍� (54)

where ‍N0 = a/(1 + b)‍ is the initial number of genomes and we introduced the time-varying fork 
firing rate

	﻿‍ k̂(t) = θ(t) bk exp(−kt)
1+b exp(−kt) .‍� (55)

The step function ‍θ(t)‍ in Equation 54 serves to impose that replication occurs for ‍t ≥ 0‍ only.
The corresponding dynamics of synthesizing genomes reads

	﻿‍
∂
∂t nS(x1; t) = δ(x1)k̂(t)N(t) − v∂nS

∂x1
,‍� (56)

where the delta function ensures that the replication initiates at ‍x1 = 0‍. As we have set ‍D = 0‍, the 
coordinate x2 of the second replisome obeys the same dynamics expressed in Equation 56 and the 
DNA abundance is symmetric around the replication origin.

The general solution to Equation 56 is of the form ‍ns(x1; t) = f(x1 − vt)‍. Because of the boundary 
term at ‍x1 = 0‍, i.e. ‍ns(0; t) = k̂(t)N(t)/v‍, the general solution is

	﻿‍ ns(x1; t) = k̂
(

t− x1
v
)

N
(

t− x1
v
)

v .‍� (57)

The probability that a randomly chosen genome (either complete or incomplete) includes the 
genome location ‍y‍ at time ‍t‍ is given by

	﻿‍ P(y; t) =
NP(t)+NT(t)+

´ L/2
|y| nS(x1,t)dx1

N(t) .‍� (58)

where ‍
´ L/2

|y| nS(x1, t)dx1‍ is the number of incomplete genomes which include the genome location ‍y‍ 
and ‍NP(t) + NT(t)‍ is the total number of complete genomes. From Equations 54; 55, and (Equation 
56) , we obtain

	﻿‍
´ L/2

|y| nS(x1; t)dx1 = N
(

t − |y|
v

)
− N

(
t − L

2v

)
− N0θ

(
t − |y|

v

)
θ
(

L
2v − t

)
.
‍� (59)

Therefore, the total number of incomplete genomes is 

‍
Ns(t) =

´ L/2
0 nS(x1; t)dx1 = N(t) − N

(
t − L

2v

)
− N0θ(t)θ

(
L
2v − t

)
‍
. Further, because of the conservation of 

the total number of genomes, the number of complete genomes at time ‍t‍ is

	﻿‍
NT + NP = N(t) − Ns(t) = N

(
t − L

2v

)
+ N0θ(t)θ

(
L
2v − t

)
.
‍� (60)

Substituting Equation 54, Equation 59 and Equation 60 in Equation 58, and using Equation 10, 
we compute the DNA abundance distribution for ‍t > L/(2v)‍ as

	﻿‍
A(y) = k/(2v)

log
[
b exp(−kt)+1

]
−log

[
b exp(−kt)+exp

(
− kL

2v
)] 1

1+b exp
[
−k

(
t− |y|

v

)] .
‍�

(61)

We now use this result to test robustness of the steady-state assumption. To this aim, we assume 
that the number of genomes follows a similar dynamics as the optical density. We accordingly 
consider, for each sample at each temperature, the parameters ai, bi, ki obtained from the OD fits 
(see Figure 5—figure supplement 1), and the average speed ‍̄v‍ estimated from the constant speed 
model (see Table 1). We substitute these in Equation 61 and compute the DNA abundance at time 

https://doi.org/10.7554/eLife.75884


 Research article﻿﻿﻿﻿﻿﻿ Physics of Living Systems

Bhat et al. eLife 2022;11:e75884. DOI: https://doi.org/10.7554/eLife.75884 � 26 of 26

‍t = 4/k‍. This value is chosen as, in our experiments, cells were extracted after approximately four 
generations, see Figure 5.

We then attempt to fit these DNA abundance distribution with the one predicted the constant 
speed model, Equation 11, by least-square minimization and thus estimating the speed again. The 
newly estimated speeds at different temperatures are comparable to those inputted in the time-
varying fork firing rate model, see Appendix 7—table 1. Finally, we plotted the discrepancy ratio 
in each of the cases, see Appendix 7—figure 1. At all temperatures, the discrepancy ratio is much 
smaller than the oscillations we observed in the data. This result supports that the potential non-
stationary nature of the fork firing rate is not likely to be the cause of the oscillations.
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Appendix 7—figure 1. Discrepancy ratio (blue line) between DNA abundance computed from the varying 
fork firing rate model and the constant speed model exhibits significantly smaller variations compared to the 
discrepancy ratio between experimental DNA abundance and the constant speed model (pink for 17°C , red for 
22°C, skyblue for 27°C, brown for 32°C and orange for 37°C). Black line is the prediction of the oscillatory speed 
model. All plots in this figure are from Sample 1. The effect of relaxing the steady-state assumption is similarly 
small for the other samples.

We remark that, in the estimate presented in this section, we assumed that cells were not growing 
before the initial time ‍t = 0‍. In our culture, we expect the effect of saturation to be even milder since 
cells were inoculated from an already exponentially growing culture.

Appendix 7—table 1. The speed inputted to the time varying fork firing rate model to generate the 
DNA abundance distribution is comparable with the re-estimated speed by fitting the resulting DNA 
abundance distribution to the constant speed model.
Reported uncertainties in the re-estimated speed represent standard deviations over the replicates.

Temperature (°C)
Speed inputted to the varying
fork firing rate model (bps-1)

Re-estimated speed
(bps-1)

17 221 233±8

22 373 393±23

27 528 558±25

32 812 846±37

37 961 1009±48

https://doi.org/10.7554/eLife.75884
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