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Received 21 December 2018; Revised 2 April 2019; Accepted 12 May 2019; Published 11 June 2019

Academic Editor: Jingfeng Jiang
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Visibility is a very important topic in computer graphics and especially in calculations of global illumination. Visibility de-
termination, the process of deciding which surface can be seen from a certain point, has also problematic applications in
biomedical engineering. )e problem of visibility computation with mathematical tools can be presented as a visibility network.
Instead of utilizing a 2D visibility network or graphs whose construction is well known, in this paper, a new method for the
construction of 3D visibility graphs will be proposed. Drawing graphs as nodes connected by links in a 3D space is visually
compelling but computationally difficult. )us, the construction of 3D visibility graphs is highly complex and requires pro-
fessional computers or supercomputers. A new method for optimizing the algorithm visibility network in a 3D space and a new
method for quantifying the complexity of a network in DNA pattern recognition in biomedical engineering have been developed.
Statistical methods have been used to calculate the topological properties of a visibility graph in pattern recognition. A new n-
hyper hybrid method is also used for combining an intelligent neural network system for DNA pattern recognition with the
topological properties of visibility networks of a 3D space and for evaluating its prospective use in the prediction of cancer.

1. Introduction

Manufacturing the visibility network (graph) [1] is a fun-
damental geometric structure which has useful applications
in several fields including illumination and rendering,
motion planning, pattern recognition, and sensor networks.
A graph G is called a visibility graph when there is a polygon
P such that the vertices of P are the vertices of G and two
vertices are adjacent in G if they are visible in P. A visibility
graph can be used in spatial analysis of urban and building
spaces and applied to landscapes, as well. It is formed by
taking a set of points across the space and forming graph
edges between those points, if they are mutually visible.
Visibility graphs have been widely used for 2D applications
so far, but in this paper, an application to complex 3D
visibility problems is advanced.

Visibility calculations are central to any computer
graphics application. )e relevance of statistics [2] has been
much more recognized in the biomedical engineering field.
Statistics can provide technicians of laboratories with im-
portant instruments for a scientific analysis of biomedical
phenomena, allowing to understand the observed phe-
nomena more correctly and to obtain more reliable results.

Biomedical engineering [3] being one of the fastest
growing engineering disciplines aims at applying engi-
neering expertise and advances to the field of medical needs
and bioscience for the enhancement of healthcare.

Deoxyribonucleic acid (DNA) pattern recognition
constitutes one of the most important works in biomedical
engineering. Pattern recognition [4] is a branch of machine
learning that focuses on the recognition of patterns and
regularities in data, although it is in considered to be in some
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cases nearly synonymous with machine learning. In pattern
recognition, labels are assigned to objects and all objects are
described by features, also called attributes. A classic ex-
ample is the recognition of handwritten digits for the
purpose of automatic mail sorting. Pattern recognition
methods based on machine learning techniques [5] have
been shown to be a promising approach to the analysis of
network data. Intelligent computing has attracted many
scientists and researchers working on intelligent techniques
for solving complex real-world problems.

)e graphical representations of the DNA as a method
for DNA pattern recognition have been introduced to fa-
cilitate comparison of DNA sequences and to observe dif-
ferences in their structure [6–10]. A novel method is thus
explored in this study to generate and characterize complex
networks by means of analysis of their miRNA sequences.

A new hybrid method [11] that combines three types of
intelligent neural network systems [12] has been used. )is
paper explores the use of an intelligent system [13] with a
new hybrid method that improves the existing ones. It is
based on the n-hyper hybrid method.)e aim of this work is
to outline possibilities for applying an n-hyper hybrid system
method formiRNA pattern recognition [14] with topological
properties of visibility graphs in a 3D space and to evaluate
its prospective use in biomedical engineering.

)e proposed method can be utilized to approach more
systematically problems of visibility ofmiRNA sequences, in
the comparison of DNA sequences and in the analysis of
complex networks such as miRNA networks in the bio-
medical field. )e method is based on an algorithm which is
built for optimizing the visibility in a 3D space and an n-
hyper hybrid system for miRNA cancer pattern recognition
which allows to register more precisely the risk of various
types of cancer.

In particular, the proposed method can be used to analyze
the transformation of 1D miRNA sequences into 3D miRNA
sequences for predicting cancer. More specifically, a new type
of intelligent system, the n-hyper hybrid system, has been
developed to describe miRNA sequences and the difference
between cancer and noncancer miRNA. )anks to this
method, some more information on a complex network
derived from the visibility network in a 3D space, compared to
the visibility graph, can be obtained in the application of
miRNA pattern recognition. )e utility of applying 3D visi-
bility graphs in biomedical engineering for a more precise
prediction of cancer will be thus discussed in this paper.

Finally, this new method permits to obtain a physical
visualization of the three-dimensional miRNA sequences.
)rough additively manufactured (3D printing) techniques,
which are much used in the biomedical field for building and
analysis of implantable devices [15–18], it is possible indeed
to have a reconstruction of the 3D space network as a lattice
structure as well as a view of the relationships between
miRNA sequences.

)is paper is organized as follows: Section 2 is devoted to
a description of the methods and the materials used. In
Section 3, the results and discussions are illustrated. Final
considerations and conclusions are drawn in Section 4.

2. Materials and Methods

2.1. ANewMethod for Statistical miRNAPattern Recognition.
DNA [19–23] is composed of an extremely long array of
nucleotides. MicroRNAs [23–27] constitute a recently dis-
covered class of noncoding RNAs playing some key roles in
the regulation of gene expression. In this article, we have
developed a new method to describe the transformation of
1D miRNA sequences into 3D miRNA sequences. )is
means that we have transformed the miRNA sequences into
a 3D coordinate system.

For better presentation, four colours are used to denote the
nucleotides adenine (A), cytosine (C), guanine (G), and thy-
mine (T). We have replaced each nucleotide by different col-
ours, namely, A by white, C by light purple, G by gray, and T by
black. Initially, we have transformed each nucleotide of the
DNA sequences into a 2D array by using a spiral curve. Figure 1
presents the coloured miRNA sequences (miR-612 gene) and
transformation of each nucleotide of themiRNA sequences into
a 2D array by using a spiral curve. We have also denoted the
miRNA sequences by two coordinates (x, y).

Furthermore, we have denoted each nucleotide of the
miRNA sequences with a number. An example of anmiRNA
sequence is . . . TGCCAATCGTTGT . . .. )is sequence of
letters can be converted with the function f. We have
denoted {A, C, G, T} ∈M and {1, 2, 3, 4} ∈N. Also, f :
M⟶N. We have denoted with nA, nC, nG, and nT the
number of all nucleotides A, C, G, and T in some sequences.
We have determined linear arrangement {nA, nC, nG, nT}
from the largest to the smallest value. For example, if
nA> nC> nG> nT, then we have function f, f :A⟶ 4, f :
C⟶ 3, f :G⟶ 2, and f :T⟶1 or f(A)� 4, f(C)� 3, f(G)�

2, and f(T)� 1. When using function f, we can write f(. . .

TGCCAATCGTTGT . . .)� . . . 1233441231121 . . .. Also, the
function f denotes the third coordinate of the miRNA nu-
cleotides in a 3D space, (x, y, z). In the third step, we have
used a new method for optimizing the algorithm visibility
graph in a 3D space (Figure 2).

For each visibility graph of the miRNA sequences, we have
calculated the statistical property chi-square of triads [28].

If ] independent variables xi are each normally dis-
tributed with mean µi and variance σ2i , then the quantity
known as chi-square (χ2) is denoted by

χ2 �
 xi − μi( 

2

σ2i
. (1)

2.2. A New Method for Optimizing the Algorithm Visibility
Graph in 3D Space. We have developed a new algorithm for
the construction of visibility graphs in a 3D space [29]. Two
arbitrary data values (xa, ya) and (xb, yb) will have visibility
and will consequently become two connected nodes of the
associated graph if any other data (xc, yc) placed between
them fulfil the following relation [30]:

yc <yb +
ya −yb(  xb − xc( 

xb − xa

. (2)
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We wanted to know how to connect the nodes in Fig-
ure 3. Nodes vi,j and vk,l of the 3D graph, where i< k and j< l,
are connected by a link if and only if they are visible.

)is means that the path from vi,j to vk,l has no points on
the graph. An example is presented in Figure 3, in which the
nodnes connected by the blue line are visible to each other
and those connected by the red line are an example of
unrelated nodes (the straight line that connects the two
nodes pierces the graph, which is contrary to the definition
of the visibility graph). )e following section describes how
to construct a 3D visibility graph. )e open problem of
visibility graphs in a 2D space has thus been presented
(Figure 4). Also, we have transformed all 3D points by
perpendicular projection on the xy plane.

As a first step, we have the 3D points which are
transformed into a 2D plane. A graphical solution on a 5× 5
grid is given because it provides a better visual represen-
tation. Figure 5 presents the nodes of the graph.

In the second step, we have connected neighbouring
nodes. Also, node Ti,j(xi, yj) is connected with nodes T(xi−1,
yj), T(xi+1, yj), T(xi, yj+1), and T(xi, yj−1) if node Ti,j(xi, yj) is
not located on the edge of a complex network. If node Ti,j(xi,
yj) is on the edge of a complex network, then it is connected
with two or three nodes only, as presented in Figure 6.

In the third step, nodes Ti,j(xi, yj), T(xi+1, yj), T(xi+1, yj+1),
and T(xi, yj+1, zi,j+1) present quadrilaterals, and it is possible
to see many quadrilaterals in Figure 7. In all quadrilaterals,
nodes from a higher z coordinate are connected with other
nodes by diagonal lines.

In the fourth step (Figure 8), we have broken the set of all
nodes (xi, yi, zi,j) into two sets. )e first set presents all nodes
(xi, 0, zi,j), and the second set presents all nodes (0, yi, zi,j).
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Figure 1: ColouredmiRNA sequences (miR-612 gene) and transformation of each nucleotide of theDNA sequences into a 2D array by using
a spiral curve.

Figure 2: Visibility graph of miRNA sequences (miR-612 gene).

Figure 3: Visibility nodes (blue line) and unrelated nodes (red
line).
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We have presented those nodes that are visible in the first set
and those that are visible in the second set. In the first set,
two nodes Ti,j(xi, yj, zi,j) and Tk,l(xk, yl, zk,l) are visible and will
consequently become connected nodes on the associated

graph if any other node T(xm, 0, zm,0) placed between them
fulfils the following relation:

zm,0 < zk,l +
zi,j − zk,l  xk −xm( 

xk − xi( 
. (3)

In the second set, two nodes Ti,j(xi, yj, zi,j) and Tk,l(xk, yl,
zk,l) are visible and will consequently become two connected
nodes on the associated graph if any other node T0,n(0, yn,
z0,n) placed between them fulfils the following relation:

zm,0 < zk,l +
zi,j − zk,l  yk −ym( 

yk −yi( 
. (4)

In the fifth step, we have connected all other visible
nodes. Two nodes Ti,j(xi, yj, zi,j) and Tk,l(xk, yl, zk,l) will be
visible if no nodes exist on the line between Ti,j(xi, yj, zi,j) and
Tk,l(xk, yl, zk,l). Figure 9 presents the solution of the 3D
visibility graph on a 5× 5 grid.

2.3. Optimizing the Algorithm Visibility Network in 3D Space

(i) All 3D points transform into 2D points {(x, y,
z)⟶ (x, y)}

(ii) Node Ti,j(xi, yj) is connected with nodes T(xi−1, yj),
T(xi+1, yj), T(xi, yj+1), and T(xi, yj−1), if node Ti,j(xi,
yj) is not located on the edge of a complex network

(iii) If node Ti,j(xi, yj) is on the edge of a complex
network, then it is connected with two or three
nodes only

(iv) Nodes from a higher z coordinate of all nodes Ti,j(xi,
yj), T(xi+1, yj), T(xi+1, yj+1), and T(xi, yj+1, zi,j+1) in
quadrilaterals are connected with other nodes by
diagonal lines

(v) Two nodes Ti,j(xi, yj, zi,j) and Tk,l (xk, yl, zk,l) are
connected, if any other node T(xm, 0, zm,0) placed
between them fulfils zm,0< zk,l+ (zi,j− zk,l)(xk− xm)/
(xk− xi)

(vi) Two nodes Ti,j(xi, yj, zi,j) and Tk,l(xk, yl, zk,l) are
connected, if any other node T0,n(0, yn, z0,n) placed
between them fulfils zm,0< zk,l+ (zi,j− zk,l)(yk− ym)/
(yk− yi)

(vii) Two nodes Ti,j(xi, yj, zi,j) and Tk,l(xk, yl, zk,l) are
connected, if no nodes exist on the line between
Ti,j(xi, yj, zi,j) and Tk,l(xk, yl, zk,l)

Figure 4: Solution of the 3D visibility graph presented as a 3D
graph in a 3D space and in a 2D space.

Figure 5: 3D nodes which are transformed into a 2D plane.

Figure 6: Neighbouring nodes.

Figure 7: Nodes connected with other nodes by diagonal lines.

Figure 8: Fourth step of visibility graph creation.
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2.4. A New n-Hyper Hybrid Method. Hybrid evolutionary
computation is a generic, flexible, robust, and versatile
method for solving complex global optimization problems
and can also be used in practical applications. Only three
methods are adopted using intelligent systems, namely, the
neural networks NN1 (present prediction with 33%; also, we
use 67% of the data for the learning set and 33% for the test
set), NN2 (present prediction with 50%; also, we use 50% of
the data for the learning set and 50% for the test set), and
NN3 (present leave-one-out cross-validation method). We
have used a four-layer network with a learning rate of 0.7,
moment of learning of 0.6, tolerance of test set of 0.02, and
tolerance of learning set of 0.2. Hybrid 1 presents the se-
quence hybrid method. In this hybrid, methods are con-
nected in series in the direction of the entrance to the
method n. All methods work independently of the other
methods. )e results of input method 1 are transferred to
input method 2, and the results of input method 2 are
transferred to input method 3. Hybrid 2 presents the cyclic
hybrid method. In Hybrid 2, methods are connected in series
in the direction of the entrance to the method n. All methods
work independently of the other methods.

)e results of input method 1 are transferred to input
method 2, the results of input method 2 are transferred to
input method 3, and the results of input method 3 are
transferred to input method 1. In Hybrid 3, all methods work
independently of the other methods. )e results of input
method 1 are transferred to input method 2, the results of
input method 2 are transferred to input method 3, the results
of input method 3 are transferred to input method 2, and the
results of input method 2 are transferred to input method 1.
1-hyper hybrid methods are similar to hybridmethods. Also,
we have repeated the process up to n, where n ∈N. In the
end, we have n-hyper hybrid methods. Figure 10 presents all
the processes of building n-hyper hybrids.

3. Results and Discussion

)e visibility graph problem itself has long been studied in
computational geometry and has been applied to a variety of
areas. We present a new method for describing the trans-
formation of 1D miRNA sequences into 3D miRNA se-
quences. We combine this method with a new method for
optimizing the algorithm visibility graph in a 3D space.

Based on the variation network, several topological prop-
erties, such as different types of triads, are calculated for
natural miRNA sequences. Also, the correlations between
types of triads over the variation network are obtained.

It is well known that there is an individual cancer
susceptibility despite equivalent environmental exposure,
likely due to polymorphisms in genes involved in carci-
nogenesis. Table 1 presents a list of miRNA gene poly-
morphisms associated with cancer. We use the miR-146a,
hsa-mir-149, hsa-mir-196a-2, hsa-mir-608, and hsa-miR-
612 genes from the miRNA base. MiR-146a is a family of
microRNA precursors found in mammals, including
humans. MiR-146a is primarily involved in the regulation of
inflammation and other processes that function in the innate
immune system. Loss of functional miR-146a (and mir-145)
could predispose an individual to suffer from chromosome
5q deletion syndrome. MiR-146 has also been reported to be
highly upregulated in the osteoarthritis cartilage and could
be involved in its pathogenesis. An increasing body of ev-
idence points to a possible role of microRNAs (miRNAs) in
hereditary cancer syndromes [31, 32].

Recently, variations of the miR-146a gene have drawn
increasing attention in cancer etiologies, and altered ex-
pression levels have been observed in inflammatory diseases
as well as in cancers [33, 34]. MicroRNA hsa-mir-149 is
located on chromosome 2. It is an intronic miRNA and is
located in sense orientation relative to its protein-coding
host gene glypican 1 (GPC1). Our integrated review of
miRNA-SNPs revealed that polymorphisms of hsa-mir-149
have previously been associated with increased or decreased
risk of seven cancer types: renal cell carcinoma and breast,
colorectal, gastric, hepatocellular, papillary, and thyroid
cancers. miR149 rs71428439 predisposes its carriers to
CCRCC, and miR149 rs71428439 may be a new biomarker
for predicting the risk of CCRCC [35]. miR-196 appears to
be a vertebrate-specific microRNA and has now been pre-
dicted or experimentally confirmed in a wide range of
vertebrate species (MIPF0000031). )e hairpin precursors
are predicted based on base pairing and cross-species
conservation—their extents are not known. Many studies
demonstrated that the hsa-miR-196a2 rs11614913 SNP was
significantly associated with the susceptibility of breast
cancer [36–38]. MicroRNA hsa-mir-608 is located on
chromosome 10. It is an intronic miRNA, located in sense
orientation relative to its host gene semaphorin 4G
(SEMA4G) and in antisense orientation to the mitochondrial
ribosomal protein L43M (RPL43) gene. Several studies
[39–46] examined the impact of miR-608 rs4919510C>G on
the risk of various cancers, but the results were inconsistent.

Additionally, it has also been associated with increased
risk of breast, nasopharyngeal, and papillary thyroid car-
cinomas. MicroRNA hsa-mir-612 is located on chromosome
11. It is an exonic miRNA, located in sense orientation
relative to its host gene, nuclear paraspeckle assembly
transcript 1 (NEAT1). Polymorphism with pre-miRNA re-
gions has been associated with B-cell acute lymphoblastic
leukemia [47–49].

Also, we have used a new method for optimizing the
algorithm visibility graph in a 3D space and a new method

Figure 9: Solution of the 3D visibility graph on a 5× 5 grid.
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formiRNA cancer pattern recognition. We have determined
the topological properties of the triad patterns, in miRNA
networks [50]. )e analysis of triads and the prevalence of
different types of triads in populations has been a staple of
most network analyses. )e input data of neural networks
are the topological properties, namely, the triads of miRNA
patterns and function f of sequences of miRNA. )e output
data (Y) of the neural data decide whether the miRNA is

associated with cancer: if the miRNA is not associated with
cancer, then 1 is output, else 0 is output.

Table 2 presents the topological properties of the visi-
bility graphs in a 3D space of DNA patterns. D1–D5 present
the mark of DNA. C1–C5 present cancer D1–D5 DNA.
TP1–TP10 [51] present the types of topological properties of
triads: TP1 presents type 1-102, TP2 presents type 1-003,
TP3 presents type 2-012, TP4 presents type 6-021C, TP5

Method 1

Method 1

Method 2 Method 3

Method 2 Method 3

Method 1

Hybrid 1

Hybrid 1

Hybrid 2

Hybrid 2

Hybrid 3

Hybrid 3

Hybrid 1 Hybrid 2 Hybrid 3

Hybrid 1 Hybrid 2 Hybrid 3

Method 2 Method 3

(n – 1)-Hyper hybrid 1 (n – 1)-Hyper hybrid 2 (n – 1)-Hyper hybrid 3 n-Hyper hybrid 1

1-Hyper hybrid 1

1-Hyper hybrid 2

1-Hyper hybrid 3

n-Hyper hybrid 2

n-Hyper hybrid 3

(n – 1)-Hyper hybrid 1 (n – 1)-Hyper hybrid 2 (n – 1)-Hyper hybrid 3

(n – 1)-Hyper hybrid 1 (n – 1)-Hyper hybrid 2 (n – 1)-Hyper hybrid 3

Figure 10: n-Hyper hybrid method.

Table 1: List of miRNA gene polymorphisms associated with cancer.

miRNA name Mark rs number Nucleotide change Cancer type
hsa-mir-146a D1 2910164 A>G Increased risk for gastric cancer

hsa-mir-149 D2 71428439 A>G Increased risk for chronic lymphocytic
leukemia

hsa-mir-196a-2 D3 11614913 C>T Breast cancer
hsa-mir-608 D4 4919510 C>G Increased risk for breast cancer
hsa-mir-612 D5 12803915 G>A B-cell acute lymphoblastic leukemia
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presents type 7-111D, and TP6 presents type 8-111U. For
each constructed variation miRNA network, the related
topological properties are shown in Table 2. We can see that
triad TP1 type 1-102 increases for cancer miRNA (rows
C1–C5). In the third column, we can see that triad TP3 type
2-012 decreases for cancer miRNA (rows C1–C5). In the
fourth column, we can see that triad TP4 type 6-021C de-
creases for cancermiRNA (rows C1–C5). In the fifth column,
we can see that triad TP6 type 8-111U decreases for cancer
miRNA (rows C1–C5). Also, these three types of triads
present a significant correlation betweenmiRNA and cancer
miRNA.

Table 3 presents the statistical properties of the graph of
miRNA patterns. X presents the modification of the nu-
cleotide position. S1 presents the place number of changed
nucleotides inmiRNA. S2 presents the number of all edges in
the graph. S3 presents the chi-square of triads. In hsa-mir-
146a, nucleotide A changes into G on the 50th place, which is
described in column S1. )e chi-square of the triads in-
creases on hsa-mir-149, hsa-mir-196a-2, and hsa-mir-608 in
another decrease.

Table 4 presents the experimental and predicted cancers
of miRNA patterns. Column C presents the decision of
cancer miRNA with different methods. In Table 4, rows
NN1, NN2, and NN3 present the data predicted with the
neural network, rows H1, H2, and H3 present the data
predicted with the hybrid system, 1-H1, 1-H2, and 1-H3
present the data predicted with the 1-hyper hybrid system, 2-
H1, 2-H2, and 2-H3 present the data predicted with the 2-
hyper hybrid system, and 10-H1, 10-H2, and 10-H3 present
the data predicted with the 10-hyper hybrid system.

)e first row is equal to column Y in Table 2, which
determines whether the miRNA is cancer or noncancer
miRNA. Modeling with NN1 presents a 30% precision from
the set of measured data, modeling with NN2 presents a 60%
precision from the set of measured data, modeling with NN3
presents a 70% precision from the set of measured data,
modeling with H1 presents a 30% precision from the set of
measured data, modeling with H2 presents a 30% precision
from the set of measured data, modeling with H3 presents a
30% precision from the set of measured data, modeling with
1-HH1 presents a 30% precision from the set of measured
data, modeling with 1-HH2 presents a 50% precision from
the set of measured data, modeling with 1-HH3 presents a
60% precision from the set of measured data, modeling with
2-HH1 presents a 30% precision from the set of measured

data, modeling with 2-HH2 presents a 50% precision from
the set of measured data, modeling with 2-HH3 presents a
70% precision from the set of measured data, modeling with
10-HH1 presents a 50% precision from the set of measured
data, modeling with 10-HH2 presents a 70% precision from
the set of measured data, and modeling with 10-HH3
presents a 90% precision from the set of measured data.
)erefore, we can see that 10-HH3 presents the best
prediction.

4. Conclusions

In this paper, a novel concept entitled “optimizing the al-
gorithm visibility graph in a 3D space network” is in-
troduced to analyze the relationships between miRNA
sequences and the type of cancer miRNA. We have de-
veloped a new method for describing the transformation of
1D miRNA sequences into 3D miRNA sequences. Using the
topological properties of different types of triads, we have
determined miRNA sequences and the difference between
cancer and noncancermiRNA. From the results obtained, we
are able to conclude that the variation network is a complex
network and that it has some dynamic information for
further researches. )e visibility network in a 3D space,
which contains more information than the visibility graph,
has been used for the application of miRNA pattern

Table 2: Topological properties of the graph of miRNA patterns.

N TP1 TP2 TP3 TP4 TP5 TP6 Y
D1 15359 126096 17484 489 505 522 0
C1 15372 126020 17446 486 509 525 1
D2 15511 126406 17240 497 514 469 0
C2 15611 126482 17082 490 509 470 1
D3 18875 167586 20947 424 530 522 0
C3 18886 167784 20753 421 524 525 1
D4 15601 125597 18093 402 488 480 0
C4 15603 125596 18085 401 487 481 1
D5 15611 126952 16657 454 493 469 0
C5 15639 126953 16655 453 492 473 1

Table 3: Statistical properties of the graph of miRNA patterns.

N X S1 S2 S3
D1 A 50 395 251228
C1 G 50 396 249883
D2 A 83 392 265112
C2 G 83 390 269117
D3 C 78 425 365987
C3 T 78 423 368945
D4 C 37 399 265911
C4 G 37 399 266532
D5 G 51 386 273025
C5 A 51 386 272976

Table 4: Experimental and predicted cancers of miRNA patterns.

N D1 C1 D2 C2 D3 C3 C4 D4 C5 D5
E 0 1 0 1 0 1 0 1 0 1
NN1 1 0 0 0 0 1 1 0 1 0
NN2 1 1 1 1 0 0 0 1 1 1
NN3 0 1 0 1 0 0 0 1 1 1
H1 0 0 1 0 1 1 1 0 1 0
H2 1 1 1 1 1 1 0 1 1 0
H3 0 1 0 0 0 0 1 1 1 1
1-HH1 1 0 1 0 1 1 1 0 0 0
1-HH2 0 1 1 0 0 0 0 1 1 0
1-HH3 1 1 0 1 0 0 0 0 0 1
2-HH1 1 0 0 0 1 1 1 1 1 0
2-HH2 1 1 1 1 1 1 1 0 0 1
2-HH3 0 1 0 0 0 0 0 1 0 1
10-HH1 1 0 0 1 1 1 1 1 1 1
10-HH2 1 0 0 1 0 0 0 1 0 1
10-HH3 1 1 0 1 0 1 0 1 0 1

Journal of Healthcare Engineering 7



recognition in biomedical engineering. )is new method
permits to obtain also a physical visualization of the tri-
dimensional miRNA sequences through additively manu-
factured techniques.

Finally, we have built a new type of intelligent system, the
n-hyper hybrid system, that can be used for cancer miRNA
prediction.
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Énergétique, vol. 57, no. 1, pp. 100–109, 2012.

[15] E. M. Zanetti, A. Aldieri, M. Terzini, M. Cal̀ı, G. Franceschini,
and C. Bignardi, “Additively manufactured custom load-
bearing implantable devices: grounds for caution,” Austral-
asian Medical Journal, vol. 10, no. 8, pp. 694–700, 2017.

[16] D. Speranza, D. Citro, F. Padula et al., “Additive
manufacturing techniques for the reconstruction of 3D fetal
faces,” Applied Bionics and Biomechanics, vol. 2017, Article ID
9701762, 10 pages, 2017.

[17] J. De Krijger, C. Rans, B. Van Hooreweder, K. Lietaert,
B. Pouran, and A. A. Zadpoor, “Effects of applied stress ratio
on the fatigue behavior of additively manufactured porous
biomaterials under compressive loading,” Journal of the
Mechanical Behavior of Biomedical Materials, vol. 70, pp. 7–
16, 2017.
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