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INTRODUCTION 
 

Based on cancer statistics, about 30% of newly 

diagnosed cancers in the US are breast cancers [1]. 

According to Immunohistochemical staining results, 

breast cancer is categorized into different subtypes 

according to estrogen receptor (ER), progesterone 

receptor (PR), and human epidermal growth factor 

receptor (HER)-2. Up to 80% of breast cancer cases are 

classified as ER-positive (ER+), which highlights the 

significance of estrogen-related signaling in breast 

cancer [2, 3]. Currently, first-line salvage therapy for 

tamoxifen-resistant breast cancer patients includes 

fulvestrant (a selective ER down-regulator) [4, 5], 

cyclin-dependent kinase 4/6 (CDK4/6) inhibitors [6], 

aromatase inhibitors, everolimus (a mammalian target 

of rapamycin inhibitor) [7], and histone deacetylase 

(HDAC) inhibitors [8]. However, resistance to these 

salvage therapies ultimately develops, and patients die 

from their cancer [9, 10]. Therefore, it is important to 

explore new effective therapeutics for ER+ breast cancer 

patients. Coiled-coil domain (CCD) constituents are 

alpha-helix motifs expressed in different types of 

proteins. Owing to structural flexibility, they can 

function in various biological processes, including cell 

proliferation, migration, and signal transduction [11, 

12]. In recent publications, CCD-containing (CCDC) 

proteins were aberrantly activated in multiple types of 

tumors, including CCDC178 in liver cancer, CCDC88A 

in pancreatic cancer, and CCDC8 in lung cancer [13–

18]. In addition, CCDC106 promotes the proliferation 

of lung cancer cell lines, and CCDC34 contributes to 

colorectal cancer development by inhibiting apoptosis 

signaling and promoting invasion [19]. Inhibition of 

CCDC69 increases platinum-induced apoptosis in 

A2780 ovarian cancer cells [20]. Knockdown of 

CCDC106 enhances apoptosis and suppresses growth of 

MCF7 breast cancer by stabilizing p53 [21]. However, 

there is yet little knowledge of the role of CCDC167 in 

breast cancer development. 
 

Differential gene expression analyses in high-throughput 

techniques, such as RNA-sequencing (RNA-Seq), are 

performed by comparing gene expression profiles 

between two different conditions. The results define a 

set of genes with high expressions in cancer and low 

expressions in normal tissue through statistical tests 

[22–26]. However, in some particular circumstances, 

non-differentially expressed genes can contribute to 

disease dysfunction through clusters of co-expressed 

genes. These genes may manifest their functions 

through interaction networks with other differentially 

expressed genes. Therefore, expression signatures of 

these co-expressed genes might be crucial factors 

indirectly affecting the disease condition [27–31]. In the 

present study, we used a meta-analysis approach 

combined with a literature review to explore potential 

therapeutic targets in breast cancer. We systematically 

investigated messenger (m)RNA expression of 

CCDC167 and the survival probability of ER+ breast 

cancer patients using a public high-throughput database. 

Meanwhile, we also investigated the effects of 

CCDC167 on the progression of breast cancer with an 

experimental approach. 

 

RESULTS 
 

Increased expression of CCDC167 in breast cancer 

patients 
 

Transcription expression levels of CCDC167 in 20 
types of cancer were screened in the Oncomine 

database. The CCDC167 gene was upregulated in  

breast cancer compared to normal tissues in 12 studies 
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(Figure 1A). Furthermore, the GEPIA database was used 

to compare the CCDC167 gene in normal and cancerous 

tissues from 33 TCGA RNA-Seq datasets. We found that 

CCDC167 expression was upregulated in 18 of 33 

datasets, including an invasive breast carcinoma (BRCA) 

dataset (Figure 1B). In the Richardson dataset, the 

CCDC167 gene and its co-expressed genes, such as 

SAC3D1, SPC24, CENPM and DEPDC1B, were 

substantially upregulated in breast ductal carcinoma 

compared to the normal group (Figure 1C). A similar 

expression profile of CCDC167 was also found in  

the METABRIC dataset for invasive ductal carcinoma 

versus normal breast tissues (Figure 1D) and other 

subtypes (Supplementary Figure 1). Moreover, there 

 

 
 

Figure 1. Gene expression profiles of coiled-coil domain-containing protein 167 (CCDC167) in normal breast tissues and 
breast cancer. (A) Expression levels of CCDC167 in different types of cancers compared to normal tissues. The CCDC167 gene was found to 

have upregulated expression in various tissue types, and the color gradient represents a lower gene rank percentile. (B) CCDC167 expression 
level from 33 cancer datasets with transcripts per million (TPM) levels using the GEPIA database. Significant CCDC167 overexpression in 
cancers is highlighted in red, including the BRCA dataset, whereas downregulation is labeled in green. (C) Co-expression patterns of CCDC167 
in the Oncomine database. CCDC167 is also called C6orf129. (D) CCDC167 expression was higher relative to normal breast tissues in the 
METABRIC database. (E) Correlations between CCDC167 and histological differentiation of breast cancer, with increasing expression levels of 
CCDC167 as tumors progressed from low to high grade. 
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was a correlation between CCDC167 and histological 

differentiation of breast cancer, with increasing 

expression levels of CCDC167 as tumors progressed 

from nuclear grade I to III (Figure 1E). The 

bioinformatics analysis of breast cancer patient samples 

collectively provided clues to a potential role of 

CCDC167 during breast cancer development. 

 

CCDC167 regulates cancer development via cell 

cycle-related pathways 

 

The role of CCDC167 in breast cancer has been less 

well studied, therefore, in the present study, we used co-

expression analyses to reveal biological functions and 

information of possible mechanisms. Co-expression 

profiles of CCDC167 from breast cancers were 

identified in the METABRIC and TCGA databases. 

MetaCore analysis of GO enrichment was performed to 

predict gene functions and regulatory patterns (Figure 

2). We merged results from METABRIC and TCGA to 

obtain common co-expressed genes, which were then 

imported into the MetaCore platform. Results of 

pathway maps indicated that cell cycle-related signaling 

plays an essential role in breast cancer according to both 

databases (Supplementary Table 1). We discovered that 

genes co-expressed with CCDC167 also affected 

immune- and ubiquinone-related pathways, including 

“immune response antigen presentation by MHC class 

I”, “immune response interferon (IFN)-alpha/beta 

signaling via phosphatidylinositol 3-kinase (PI3K) and 

nuclear factor (NF)-κB pathways”, and “ubiquinone 

metabolism” in breast cancer. 

 

In addition, from both TCGA and METABRIC 

databases, we found that “cell cycle role of the 

anaphase-promoting complex (APC) in cell cycle 

regulation” was the most significantly regulated 

pathway by CCDC167 co-expression in breast cancer 

(Figure 3). We also identified several miRNAs through 

the miRWalk and IPA databases, including hsa-mir-

760, hsa-mir-1193, hsa-mir-3960, hsa-miR-214-3p, hsa-

miR-204-5p, hsa-miR-370-3p, hsa-miR-423-5p, and

 

 
 

Figure 2. Networks from coiled-coil domain-containing protein 167 (CCDC167)-co-expressed genes in breast cancer. The Venn 
diagram circles represent co-expressed genes of CCDC167 from each database; the blue circle represents co-expressed genes in TCGA 
database, and the orange circle represents co-expressed genes in the METABRIC database. The MetaCore signaling pathway analysis 
demonstrated that the “cell cycle role of anaphase-promoting complex (APC) in cell cycle regulation” and cell cycle-related signaling (red 
rectangles) were significantly correlated with CCDC167 gene expression. Immune-response signaling is marked with blue rectangles, and 
ubiquinone metabolism is scored with red arrowheads. 
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hsa-miR-744-5p, which may interact with CCDC167 

(Figure 4). 

 

Downregulation of CCDC167 inhibits the growth of 

MCF-7 cells 

 

We further investigated the effect of increased 

expression of CCDC167 on carcinogenesis-related 

processes, such as proliferation, migration, and 

anchorage-independent growth. M10 (non-

tumorigenic), MCF-7 (ER+ subtype), MDA-MB-231 

(triple-negative subtype), and MDA-MB-468 (highly 

invasive) cell lines are widely used for breast  

cancer research, and they represent different subtypes 

[32, 33]. Therefore, we chose these four cell lines for 

further study. Endogenous levels of CCDC167 differed

 

 
 

Figure 3. MetaCore pathway analysis of coiled-coil domain-containing protein 167 (CCDC167)-co-expressed genes in breast 
cancer patient databases. CCDC167-co-expressed genes in breast cancer from TCGA and METABRIC databases were acquired and 

identified by the Venn diagram analysis in Figure 2. These 945 genes were further exported to the MetaCore pathway analysis tool to identify 
gene networks and signaling pathways. The “cell cycle role of anaphase-promoting complex (APC) in cell cycle regulation” was the most 
significantly associated pathway. APC forms a complex with cell division cycle 20 (CDC20) or cadherin-1 (CDH1) to regulate the cell cycle. 
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in a variety of breast cancer cell lines. We used a qPCR 

to detect CCDC167 mRNA levels, and results showed 

the highest expression of CCDC167 in MCF-7 cells 

compared to other breast cancer cell lines (Figure 5A). 

Plasmids of CCDC167-shRNA and the vector control 

from RNAi Core were transfected into the MCF-7 cell 

line. The knockdown efficiency of shRNA on 

exogenous CCDC167 was examined by a qPCR. A 

significant reduction in CCDC167 mRNA expression 

was observed upon transfection with the shCCDC167 

plasmid (Figure 5B). 

 

In order to investigate the anti-proliferative effect of 

CCDC167 shRNA on human breast MCF-7 cancer 

cells, we first measured its cell proliferation ability. The 

MTT assay detected differences in short-term cell 

proliferation between CCDC167-knockdown and 

control MCF-7 cells (Figure 5C).  The long-term ability 

of cell proliferation was examined by a colony-

formation assay. Long-term cell growth was suppressed 

in CCDC167-shRNA cells (Figure 5D), and the 

difference compared to control cells was significant 

(Figure 5E). Meanwhile, the ability to form colonies 

was higher in CCDC167-overexpressing MCF-7 cells, 

and the results confirmed that overexpression of 

CCDC167 promoted cell proliferation (Supplementary 

Figure 2A). Knockdown of CCDC167 significantly 

altered cell cycle-related and apoptosis-related genes 

(Supplementary Figure 2B).  Percentages of both early 

and late apoptosis increased after CCDC167-

knockdown (Supplementary Figure 3). Meanwhile, in 

order to investigate gene expressions of other CCDC 

family members in the METABRIC database, we also 

compared mRNA expression levels between different

 

 
 

Figure 4. Interacting networks between coiled-coil domain-containing protein 167 (CCDC167) and micro (mi)RNA. The 

miRWalk database analyzed CCDC167-interacting miRNAs, and then the related networks were analyzed by an Ingenuity Pathway Analysis 
(IPA). These miRNAs and CCDC167-co-expressed genes are critical to the progression of breast cancer. 
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subtypes of breast cancer including claudin-low, basal, 

Her2, luminal A, and luminal B relative to normal 

breast tissues (Supplementary Figures 4–10). Several 

CCDC members were significantly overexpressed in 

breast cancer subtypes, which might imply the high 

impact of CCDC family genes on tumor development. 

 

The survival status and clinical application of 

CCDC167 

 

Fluorouracil (5-FU), carboplatin, paclitaxel, and 

doxorubicin are currently first- or second-line cytotoxic 

agents of adjuvant chemotherapy for breast cancer 

patients. Treatments with these compounds resulted in 

decreased cellular growth of MCF-7 cells (Figure 6A). 

Based on the qPCR results, we also found that treatment 

with these compounds also significantly decreased 

CCDC167 mRNA expression, which suggested that 

these drugs may downregulate CCDC167 signaling in 

breast cancer progression (Figure 6B). 

 

We further analyzed CCDC167 overexpression in breast 

cancer patients (Figure 6C). Data on recurrence-free 

survival (RFS) and overall survival (OS) of breast cancer 

 

 
 

Figure 5. Coiled-coil domain-containing protein 167 (CCDC167)-knockdown by shRNA significantly attenuated the 
proliferation of MCF-7 breast cancer cells. (A) The mRNA expression of CCDC167 was determined in a variety of breast cancer cell lines. 

(B) A qPCR analyzed CCDC167 mRNA expression in shCCDC167-knockdown cells. (C) Evaluation of the growth of shCCDC167-knockdown and 
vector control MCF-7 cells according to MTT assays. (D) A colony-formation assay determined proliferation rates of the MCF-7 vector control 
and stable shCCDC167-knockdown MCF-7 cells. (E) Statistical data of the colony-formation assay. Values are the average of assays performed 
in triplicate. The standard deviation is displayed using error bars (n=3). * p<0.05. 
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patients were collected from the Kaplan-Meier Plotter 

database. High expression of CCDC167 was correlated 

with worse RFS and OS. High expression of CCDC167 

was also correlated with RFS in the GSE25307 datasets 

[34] and disease-specific survival in the GSE3494 

datasets [35, 36]. All of these results demonstrated  

that high expression of CCDC167 predicted poor 

prognoses. 

 

DISCUSSION 
 

Integrated analyses from this study showed that the 

CCDC167 expression level was higher in breast cancer. 

TCGA and METABRIC databases were used to analyze 

potentially CCDC167-co-expressed genes in breast 

cancer. We also used the MCF-7 breast cancer cell line 

and performed short-term and long-term cell 

proliferation assays to validate our bioinformatics pre-

dictions. CCDC167 expression has the potential to 

predict the survival of breast cancer patients and 

provide targets for further therapy. To the best of our 

knowledge, the present study is the first to provide 

comprehensive evidence of a novel association between 

CCDC167 and the prognosis of breast cancer patients. 

 

The differential co-expression concept is related to gene-

gene comparisons between two conditions, such as cancer 

and normal tissues. It implies that any alterations detected 

by conventional methods for differentially expressed 

genes might do not be beneficial if some genes not pass 

the differential threshold. However, insignificant changes 

in these genes could indirectly affect the regulatory 

system due to their co-expressed genes [37–39]. These 

differentially co-expressions could contribute to the 

disease without changing their expression levels. These 

differentially co-expressed genes and their 

 

 
 

Figure 6. Drug testing for breast cancer cell lines and the survival of breast cancer patients. (A) Fluorouracil (5-Fu), carboplatin, 
paclitaxel, and doxorubicin treatments resulted in decreased cellular growths in MTT assays of MCF-7 cells. (B) Coiled-coil domain-containing 
protein 167 (CCDC167) mRNA alterations when treated with 5-Fu, carboplatin, paclitaxel, and doxorubicin for 2 days. (* p<0.05 was 
considered significant). (C) Correlation of CCDC167 recurrence-free survival and overall survival in Kaplan-Meier Plotter, using the GSE25307 
dataset for recurrence-free survival and the GSE3494-GPL97 dataset for disease-specific survival in breast cancer patients. The red lines 
indicate high transcriptional expression levels of CCDC167, whereas the black lines indicate low expression levels. The plots also display 
hazard ratios (HRs), with 95% confidence intervals (CIs) and log-rank p values. High expression levels of CCDC167 predicted poor prognoses. 
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associated disease can be revealed using gene-gene 

correlations between cancer and normal tissues. This 

information could potentially be useful in combination 

with conventional analyses of differential expression 

patterns. In addition, it could help identify underlying 

mechanisms in a biological system under different 

conditions. Detailed mechanisms of the CCDC167 gene 

in breast cancer were explored by examining its co-

expressed genes from TCGA and METABRIC databases. 

Afterward, GeneGo and MetaCore annotations for 

enriched biological processes indicated that CCDC167-

co-expressed genes were involved in cell cycle-related 

molecular processes. Next, in order to validate our 

bioinformatics predictions, we measured the ability of 

cells to proliferate with both a short-term MTT assay and 

a long-term colony-formation assay. MCF-7 shCCDC167 

cells exhibited a significantly lower ability of cell 

proliferation compared to vector control cells. 

 

Furthermore, we found that CCDC167-co-expressed 

genes were also involved in cell cycle and 

ubiquitination pathways, highlighting their essential 

roles in breast cancer. Cell division progression, 

ubiquinone metabolism, initiation of mitosis, spindle 

assembly, and chromosome separation were all top-

ranked pathways of CCDC167-co-expressed genes. 

These results were found in the METABRIC and 

TCGA-BRCA datasets, and the findings were consistent 

across different populations. CCDC167-co-expressed 

genes were involved in the cell cycle, immune response, 

and ubiquitination-related pathways. CCDC167 also 

cooperated with several miRNA and oncogenic 

signaling pathways. The high expression of CCDC167 

in breast cancer patients was also correlated with worse 

survival in these public databases. All of these data 

implicated the significance of CCDC167 in the 

progression of breast cancer. 5-FU, carboplatin, 

paclitaxel, and doxorubicin have the ability to inhibit 

breast cancer cell growth. These US FDA-approved 

compounds are currently first- or second-line regimens 

for postoperative adjuvant chemotherapy of breast 

cancer patients. We also found that treatment with 

fluorouracil, carboplatin, paclitaxel, and doxorubicin 

resulted in decreased expression of CCDC167 and 

suppressed growth of MCF-7 cells; these data suggested 

that CCDC167 signaling might be a critical target for 

these cytotoxic drugs. Other compounds that act against 

CCDC167 could be new therapeutic agents for treating 

breast cancer patients. 

 

In conclusion, the present study demonstrated the crucial 

roles played by CCDC167 and its downstream signaling 

in breast cancer patients. These CCDC167-related 
pathways could potentially be targeted for treating and 

preventing breast cancer. The current study focused on 

CCDC167 pathways and cell cycle-related signatures, 

and these findings suggest that CCDC167 could have 

high potency as targeted therapy for breast cancer. 

 

MATERIALS AND METHODS 
 

Cell culture, and 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) and colony-

formation assays 

 

MCF-7 cells were grown in 10% fetal bovine serum 

(FBS) supplemented with Dulbecco’s modified Eagle’s 

medium (DMEM). The ability for short-term cell 

proliferation was examined by an MTT assay. A colony-

formation assay was utilized to evaluate the ability of 

long-term cell proliferation. MCF-7 cells were trypsinized 

and seeded in six-well plates at a low density of 500 

cells/well and grown in the presence of US Food and 

Drug Administration (FDA)-approved drugs predicted 

from a bioinformatics analysis [40–45]. After 2 weeks, the 

medium was aspirated from the six-well plates, and MCF-

7 cells were fixed with methanol. Then, 0.1% crystal 

violet in distilled water was added to each well for 10 

min to stain the colonies. After the crystal violet solution 

was removed, the plates were washed with distilled water 

five times and air-dried. Colonies in each well were 

enumerated under low-magnification light microscopy. 

 

Determination of mRNA expression using a reverse-

transcription quantitative polymerase chain reaction 

(RT-qPCR) 

 

We used TRIzol reagent (Invitrogen, Carlsbad, CA, 

USA) for total RNA extraction from MCF-7 cells 

following a datasheet. Next, a cDNA Reverse 

Transcription Kit (Applied Biosystems, Carlsbad, CA, 

USA) was used for reverse transcription of total RNA 

(1 µg) to complementary (c)DNA. A real-time PCR 

with the FastStart Universal SYBR Green Master 

(Roche, Basel, Switzerland) kit was conducted with 5% 

of each cDNA as the template with the ABI Step One 

Plus system (Applied Biosystems). Each experiment 

was repeated three times, and all results were 

normalized to GAPDH [46–51]. For small hairpin 

(sh)RNA-mediated signaling, shRNAs targeting 

CCDC167 and vector control were purchased from the 

National RNAi Core Facility (Academia Sinica, Taipei, 

Taiwan; http://rnai.genmed.sinica.edu.tw) according to 

accession no. TCRN0000140864 with target sequence 

5’ -CCG GCC TAG TGT TCA AGC ATG GCT TCT 

CGA GAA GCC ATG CTT GAA CAC TAG GTT TTT 

TG-3’; no. TCRN0000142200 with target sequence 5’ -

CCG GGA AGT TTC TTC GGC AAG AGA ACT 

CGA GTT CTC TTG CCG AAG AAA CTT CTT TTT 

TG-3’; and TCRN0000122824  with target sequence 5’ 

-CCG GGC CTA ATG AAC AAA GCC TCC ACT 

CGA GTG GAG GCT TTG TTC ATT AGG CTT TTT 

http://rnai.genmed.sinica.edu.tw/


 

www.aging-us.com 4166 AGING 

TG-3’. A control construct (pLKO.1 containing 

luciferase non-silenced shRNA) was also purchased 

from the National RNAi Core Facility as an expression 

control. The following human primers for the qPCR 

were used in this study: human CCDC167 forward 5’ -

AGA CCT GGA GGC CGT GAA CT-3’  and reverse 

5’ -AGA CCT GGA GGC CGT GAA CT-3’; GAPDH 

forward 5’-GAT TCC ACC CAT GGC AAA TTC-3’ 

and reverse 5’-AGC ATC GCC CCA CTT GAT T-3’; 

RIPK1 forward 5’-GCA CCG CTA AGA AGA ATG G 

-3’ and reverse 5’-GCC ACA CAA TCA AGT TGA 

AGA G-3’; Fas forward 5’-GAC CCA GAA TAC CAA 

GTG CAG-3’ and reverse 5’-GTT CTG CTG TGT CTT 

GGA CAT TGT C-3’; caspase-3 forward 5’-TGG CAT 

ACT CCA CAG CAC CTG GTT A-3’ and reverse 5’-

CAT GGC ACA CAA AGC GAC TGG ATG AA-3’; 

cytochrome-c forward 5’-TTT GGA TCC AAT GGG 

TGA TGT TGA G-3’ and reverse 5’-TTT GAA TTC 

CTC ATT AGT AGC TTT TTT GAG-3’; Bax forward 

5’-TGC TTC AGG GTT TCA TCC AG-3’ and reverse 

5’-GGC GGC AAT CAT CCT CTG-3’; and tumor 

necrosis factor (TNF)-α forward 5’-TGC TTC AGG 

GTT TCA TCC AG-3’ and reverse 5’-GGC GGC AAT 

CAT CCT CTG-3’. 

 

Cell cycle assessment of CCDC167-knockdown in 

MCF-7 cells by flow cytometry 

 

For the cell cycle assay, CCDC167 knockdown MCF-7 

cells and the parental cells were grown in 10 cm dish, 

then we used trypsin to isolate cell. Next, the cells were 

centrifuged for 5 min at 1000×g, fixed with 70 % 

alcohol as well as ice-cold PBS, and incubated at 40° C 

for a minimum of 30 min. RNase (Takara, Shiga, Japan) 

was added to the samples within 30 min at room 

temperature. The propidium iodide (PI) solution and 

Annexin V-FITC Apoptosis Kit (AAT Bioquest, Inc. 

CA, USA) and was used for cell cycle experiments. All 

samples were analyzed using flow cytometry (FACS 

Calibur; BD Biosciences, San Jose, CA, USA) with a 

counting threshold of 106 cells. 

 

Analyses of CCDC167 gene expression in multiple 

types of cancers in the Oncomine and gene expression 

profiling interactive analysis (GEPIA) 

 

Transcriptomics expression levels of CCDC167 in 

multiple types and subtypes of cancers were screened in 

the Oncomine database with public high-throughput 

datasets using differential analysis options for cancer 

versus normal samples in the primary filters [52]. The 

method was clearly described in our previous studies 

[53–57].  Briefly, the thresholds for p values, multiples of 

change, and gene rank percentiles were set to 0.001, 1.5, 

and the top 10%, respectively. For the co-expression 

analysis, we selected breast cancer-related datasets which 

satisfied the thresholds mentioned above. The dataset 

with the highest correlation score was selected for 

analysis of genes co-expressed with CCDC167. In 

addition to the Oncomine database, we also used the 

GEPIA to analyze mRNA expression levels of CCDC167 

in 33 datasets available in The Cancer Genome Atlas 

(TCGA) database [58]. CCDC167 expression levels were 

compared between tumor and normal groups, and these 

comparisons are illustrated in a dot plot with a log2 scale 

of transcripts per million (TPM) [59]. 

 

Bioinformatics, functional enrichment analysis, and 

micro (mi)RNA-regulated networks 

 

The RNA-Seq dataset from TCGA [60] and Molecular 

Taxonomy of Breast Cancer International Consortium 

(METABRIC) [61] were retrieved from the cBioPortal 

[62]. Normalized expression data were used to obtain 

the top 10% co-expressed genes based on CCDC167 

expression, and a Venn diagram was plotted to 

determine genes highly correlated with CCDC167. 

Finally, these co-expressed genes were further analyzed 

using networks and pathways. The molecular functions 

and disease pathways of Gene Ontology (GO) terms in 

MetaCore (GeneGo, St. Joseph, MN, USA) were used 

to screen and analyze signaling networks in these breast 

cancer patients [63–66]. A p value of <0.05 represented 

statistical significance. To search for CCDC167-

associated miRNAs, we used miRWalk 2.0 to predict 

potentially regulated miRNAs. Based on the miRmap 

score, which was calculated as the repressive strength of 

miRNA binding to its target mRNA, we chose a cutoff 

of the miRmap score of >99 for inclusion in our study 

and analyzed regulated pathways and networks with an 

Ingenuity Pathway Analysis (IPA). 

 

mRNA expressions of CCDC family members in 

different subtypes of breast cancer 

 

Expression data from CCDC family genes were 

collected from the METABRIC database and plotted 

with a violin plot for comparisons among different 

molecular subtypes, including basal, claudin-low, HER-

2, luminal A, luminal B, and normal-like breast cancers. 

Plots were conducted with R studio vers. 1.2.1335 under 

R vers. 4.0.3 using the ggpubr package vers. 0.4.0 [67]. 

 

Analysis of survival probability 

 

Correlations of mRNA expression levels of CCDC167 and 

breast cancer patient survival were analyzed using the 

Kaplan Meier-plot database [68]. In brief, distant 

metastasis-free survival (DMFS) was selected for 

CCDC167 with all default settings of the Kaplan Meier-

Plot database to obtain the survival curve. In addition, 

survival data of the GSE25307 and GSE3494-GPL97 
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datasets were downloaded from the NCBI GEO and 

PrognoScan databases, and the survival risk was calculated 

using the Kaplan-Meier method with the log-rank test. 

 

Statistical analysis 

 

All results are reported as the mean ± standard deviation 

(SD) with three or more replicates. Student’s t-test was 

used to calculate differences between groups with 

p<0.05 accepted as significant. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 
 

 

 

 

 

 
 

Supplementary Figure 1. Coiled-coil domain-containing protein 167 (CCDC167) expression in the METABRIC database (A) CCDC167 

expression in estrogen receptor-positive (ER+) breast cancer patients, (B) CCDC167 expression in progesterone receptor-positive (PR+) breast 
cancer patients, (C) CCDC167 expression in ERBB2+ (human epidermal growth factor receptor (HER)-2-enriched) breast cancer patients, and 
(D) CCDC167 expression in triple-negative breast cancer (TNBC) patients. 
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Supplementary Figure 2. Knockdown of coiled-coil domain-containing protein 167 (CCDC167) attenuates cellular growth by regulating cell 

cycle-related genes (A) Proliferation rates of the MCF-7 control cell line and shCCDC167-knockdown and CCDC167-overexpressing cells were 
determined by a colony-formation assay. (B) Knockdown of CCDC167 in MCF-7 cells increased apoptosis and necrosis-related gene 
expressions according to a qPCR. 

 

 
 

Supplementary Figure 3. Flow cytometric analysis of the cell cycle distribution and apoptosis. (A) The increment in the 

proportion of cells arrested in the G0/G1 phase after knockdown of coiled-coil domain-containing protein 167 (CCDC167) in MCF7 cells.  
(B) Statistical data of the cell cycle distribution from flow cytometry. (C) Knockdown of CCDC167 initiated early and late apoptotic states and 
necrotic states compared to the control group. (D) Statistical data of the apoptosis status from flow cytometry. 
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Supplementary Figure 4. Coiled-coil domain-containing protein (CCDC) family gene expressions in the METABRIC database. 
Comparison of members of the CCDC family in different subtypes of breast cancer (part-1). 
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Supplementary Figure 5. The CCDC family gene expression in METABRIC database. Comparison of members of CCDC family in 

different subtypes of breast cancer (part-2). 
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Supplementary Figure 6. The CCDC family gene expression in METABRIC database. Comparison of members of CCDC family in 
different subtypes of breast cancer (part-3). 
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Supplementary Figure 7. The CCDC family gene expression in METABRIC database. Comparison of members of CCDC family in 
different subtypes of breast cancer (part-4). 
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Supplementary Figure 8. The CCDC family gene expression in METABRIC database. Comparison of members of CCDC family in 
different subtypes of breast cancer (part-5). 
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Supplementary Figure 9. The CCDC family gene expression in METABRIC database. Comparison of members of CCDC family in 
different subtypes of breast cancer (part-6). 
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Supplementary Figure 10. The CCDC family gene expression in METABRIC database. Comparison of members of CCDC family 
in different subtypes of breast cancer (part-7). 
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Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Pathway analysis of 945 common coiled-coil domain-containing protein 167 (CCDC167)-co-
expressed genes from TCGA and METABRIC databases using the MetaCore database (with p<0.01 set as the cutoff 
value). 


