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Establishment of a prognostic signature for lung 
adenocarcinoma by integration of 7 pyroptosis-
related genes and cross-validation between the 
TCGA and GEO cohorts
A comprehensive bioinformatics analysis
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Abstract 
Pyroptosis-related genes (PRGs) have been reported to be associated with prognosis of lung adenocarcinoma (LUAD). Until now, 
the relationship of PRGs to the prognosis of LUAD patients and its underlying mechanisms have been poorly elucidated. Using 
The Cancer Genome Atlas (TCGA) LUAD cohort, a prior bioinformatics analysis constructed a prognostic signature incorporating 
5 PRGs (NLRP7, NLRP1, NLRP2, NOD1, and CASP6) for predicting prognosis of LUAD patients. However, it has not been 
validated by the Gene Expression Omnibus (GEO) LUAD cohort yet. We implemented a modified bioinformatics analysis to, 
respectively, construct one prognostic signature with the TCGA cohort and with the GEO cohort and attempted to perform 
cross-validations by the GEO cohort and the TCGA cohort alternately in turn. Univariate and multivariate Cox regression analysis 
screened PRGs and constructed 2 prognostic signatures with the TCGA and GEO cohorts. All LUAD samples were classified 
into high- and low-risk groups according to the median risk score that was generated by regression formula. Kaplan-Meier 
survival analysis compared the overall survival rate between the 2 risk groups, and receiver operating characteristic curve analysis 
evaluated predictive performance of the 2 signatures. Additionally, risk score, combined with clinicopathological features, was 
subjected to multivariate Cox regression analysis, to evaluate independent prognostic value of the 2 signatures. Finally, the 2 
signatures received cross-validations by the GEO and TCGA cohorts, alternately. The TCGA cohort yielded a 3-gene signature 
(PYCARD, NLRP1, and NLRC4), whereas the GEO cohort built a 7-gene signature (SCAF11, NOD1, NLRP2, NLRP1, GPX4, 
CASP8, and AIM2) for predicting the prognosis of LUAD patients. Multivariate analysis proved independent prognostic value of 
risk score in the TCGA cohort (hazard ratio, = 1.939,; P = 8.43 × 10−4) and the GEO cohort (hazard ratio, = 2.291,; P = 4.34 × 10−9). 
Cross-validations confirmed prognostic value for the 7-gene signature from the GEO cohort by the TCGA cohort but not for the 
3-gene signature from the TCGA cohort by the GEO cohort. We develop and validate a 7-gene prognostic signature (SCAF11, 
NOD1, NLRP2, NLRP1, GPX4, CASP8, and AIM2) with independent prognostic value for patients with LUAD.
Abbreviations: AIM2 = absent in melanoma 2, AUC = area under the curve, CASP = cysteine-aspartic acid protease, CI 
= confidence interval, DEG = differentially expressed gene, GEO = Gene Expression Omnibus, GO = gene ontology, GPX4 
= glutathione peroxidase 4, GTEx = Genotype-Tissue Expression Project, HR = hazard ratio, IL = interleukin, KEGG = Kyoto 
Encyclopedia of Genes and Genomes, LUAD = lung adenocarcinoma, M = metastasis, N = lymphoid node, NLRC4 = NLR family 
CARD domain containing 4, NLRP = NLR family pyrin domain containing, NOD = nucleotide binding oligomerization domain, 
OS = overall survival, PCA = principal component analysis, PPI = protein-protein interaction, PRG = pyroptosis-related gene, 
ROC = receiver operating characteristic, ssGSEA = single-sample gene set enrichment analysis, T = tumor, TCGA = The Cancer 
Genome Atlas.
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1. Introduction
Lung cancer is a fatal malignancy worldwide and is one of the 
leading etiologies of death caused by malignant tumors, with a 
poor 5-year survival rate of around 15%.[1] About 60% of lung 
cancer cases are diagnosed with histological adenocarcinoma.[2] 
Reliable novel therapeutic targets and prognostic signatures are 
urgently needed to make targeted therapies more feasible and 
to achieve a better prognosis for lung cancer, especially for lung 
adenocarcinoma (LUAD).

Pyroptosis, also known as cellular inflammatory necrosis,[3] is 
a novel form of programmed cell death.[4] It is characterized by 
cellular swelling with balloon-like bubbling,[5] release of inflam-
matory cell cytokines,[6] and leakage of lactate dehydrogenase 
in the plasma membrane.[7] When pyroptosis occurs, a variety 
of danger-associated signaling molecules and cytokines are 
activated and released, accompanied by a strong inflammatory 
response and activation of the immune system.[8] Until now, the 
relationship of pyroptosis-related genes (PRGs) to the progno-
sis of LUAD patients and its underlying mechanisms have been 
poorly elucidated.

Recently, Lin et al[9] published a systematic bioinformat-
ics analysis, identifying a prognostic signature that contained 
5 PRGs (NLR family pyrin domain containing [NLRP] 7, 
NLRP1, NLRP2, nucleotide binding oligomerization domain 
[NOD] 1, and cysteine-aspartic acid protease [CASP] 6) for 
predicting the prognosis of patients with LUAD. However, they 
confessed a limitation that all their analyses were conducted 
using The Cancer Genome Atlas (TCGA) LUAD cohort but 
were not validated using the Gene Expression Omnibus (GEO) 
LUAD cohort. Besides, there existed a relative lack and imbal-
ance of the data for normal lung tissues from the TCGA cohort, 
compared to that for tumor tissues (normal, 59; tumor, 526), 
which was likely to introduce some bias to their results concern-
ing the identification of differentially expressed genes (DEGs) 
and hub genes.

Therefore, we implemented a modified bioinformatics analy-
sis to, respectively, construct one prognostic signature with the 
TCGA cohort and the GEO cohort and attempted to perform 
cross-validations by the GEO cohort and the TCGA cohort 
alternately in turn.

2. Materials and Methods

2.1. Ethical approval

This study was approved by the Ethics Committee of Wuhan 
Jinyintan Hospital (No. KY-2021-06.01).

2.2. Identification of DEGs

In order to identify the DEGs between normal lung and tumor 
tissues, we downloaded the RNA sequencing data and the cor-
responding clinicopathological information of 585 samples 
(normal, 59; tumor, 526) that were deposited in the LUAD 
cohort of the TCGA database on June 21, 2021 (https:// por-
tal.gdc.cancer.gov/repository). Due to a deficiency of data from 
normal lung tissues in the TCGA cohort, we also extracted 
data of 288 normal lung samples from the Genotype-Tissue 
Expression Project (GTEx) database (https://xenabrowser.net/ 
datapages/). Accordingly, the expression and clinicopatholog-
ical data from a total of 873 samples (normal, 347; tumor, 
526) were obtained. The expression data were normalized to 
fragments per kilobase million values before comparison. The 
“limma” R package was used to screen and identify DEGs. We 
referred 33 genes from prior reviews,[6,10–12] which have been 
well acknowledged as PRGs and are listed in Table  1. Since 
there were 3 of the 33 genes, NLRP2, NLRP6, and NLRP7, 
whose expression data were not available in the TCGA data-
base, we had to use the expression levels of the remaining 30 

for comparison and identification. To examine the intercom-
munication of these PRGs, we undertook a protein-protein 
interaction (PPI) analysis. A PPI network for these differen-
tially expressed PRGs was constituted with Search Tool for the 
Retrieval of Interacting Genes, version 11.0 (https://string-db.
org/).

2.3. Tumor classification by consensus clustering analysis

We made a consensus clustering analysis of all the 526 LUAD 
samples from the TCGA cohort by the “ConsensusClusterPlus” 
R package to figure out the connections between the expression 
of the 29 differentially expressed PRGs and LUAD subtypes, 
referring to Ye et al’s[13] and Wang et al’s[14] methodology.

2.4. Functional enrichment analysis

To unveil the differences in the enrichment activity of gene func-
tions and pathways between normal lung and tumor tissues, we 
carried out gene ontology (GO) enrichment analysis and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway analysis 
based on the 29 differentially expressed PRGs by applying the 
“clusterProfiler,” “org.Hs.eg.db,” “enrichplot,” and “ggplot2” R 
packages.[9,13,14]

2.5. Development of prognostic signature

A total of 513 samples in the TCGA cohort and 443 in the 
GEO cohort were, respectively, matched with corresponding 
patients who had complete survival information. A univariate 
Cox regression analysis was fulfilled for preliminary screening 

Table 1

Thirty-three pyroptosis-related genes.

Genes Full names 

AIM2 Absent in melanoma 2
CASP1 Cysteine-aspartic acid protease-1
CASP3 Cysteine-aspartic acid protease-3
CASP4 Cysteine-aspartic acid protease-4
CASP5 Cysteine-aspartic acid protease-5
CASP6 Cysteine-aspartic acid protease-6
CASP8 Cysteine-aspartic acid protease-8
CASP9 Cysteine-aspartic acid protease-9
ELANE Elastase, neutrophil expressed
GPX4 Glutathione peroxidase 4
GSDMA Gasdermin A
GSDMB Gasdermin B
GSDMC Gasdermin C
GSDMD Gasdermin D
GSDME Gasdermin E
IL18 Interleukin 18
IL1B Interleukin 1 beta
IL6 Interleukin 6
NLRC4 NLR family CARD domain containing 4
NLRP1 NLR family pyrin domain containing 1
NLRP2 NLR family pyrin domain containing 2
NLRP3 NLR family pyrin domain containing 3
NLRP6 NLR family pyrin domain containing 6
NLRP7 NLR family pyrin domain containing 7
NOD1 Nucleotide binding oligomerization domain containing 1
NOD2 Nucleotide binding oligomerization domain containing 2
PJVK Pejvakin/deafness, autosomal recessive 59
PLCG1 Phospholipase C gamma 1
PRKACA Protein kinase cAMP-activated catalytic subunit alpha
PYCARD PYD and CARD domain containing
SCAF11 SR-related CTD associated factor 11
TIRAP TIR domain containing adaptor protein
TNF Tumor necrosis factor

https:// portal.gdc.cancer.gov/repository
https:// portal.gdc.cancer.gov/repository
https://xenabrowser.net/ datapages/
https://xenabrowser.net/ datapages/
https://string-db.org/
https://string-db.org/
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of the survival-related genes in the TCGA and GEO cohorts. To 
avoid omissions, we set 0.2 as the threshold P value.[13,15] The 
least absolute shrinkage and selection operator regression anal-
ysis by the “glmnet” R package was utilized to narrow down 
the number of candidate genes for multivariate Cox regression 
analysis. Then, the multivariate Cox regression analysis in the 
TCGA and GEO cohorts was undertaken to construct prognos-
tic signature and to determine regression coefficient for each 
gene that was incorporated in the prognostic signatures. Also, 
a risk score of overall mortality for each LUAD patient was 
generated according to the multivariate Cox regression formula 
in the TCGA and GEO cohorts. Hence, all the samples in the 
TCGA and GEO cohorts were, respectively, allocated into high- 
and low-risk groups according to median values of risk scores. 
The principal component analysis (PCA) based on the prog-
nostic signatures was performed by the “prcomp” function in 
the “stats” R package. The overall survival (OS) time and OS 
rate of LUAD patients was compared between high- and low-
risk groups by the Kaplan-Meier survival analysis and 2-sided 
log-rank test in the TCGA and GEO cohorts. In order to eval-
uate the prediction performance of the prognostic signatures, 
a 3-year receiver operating characteristic (ROC) curve analysis 
in the TCGA and GEO cohorts was, respectively, done using 
the “survival,” “survminer,” and “timeROC” R packages.[9,13,14]

2.6. Evaluation of prognostic value of risk score

We retrieved the clinicopathological information including age, 
gender, tumor stage (stage), the size and extent of the main tumor 
(T), regional lymph node (N) and metastasis (M), and grade for 
tumor differentiation (grade) of patients in the TCGA and GEO 
cohorts. These variables were analyzed in conjunction with 
the risk scores that were yielded by our prognostic signatures. 

Univariate and multivariable Cox regression analyses were con-
ducted to testify whether the risk scores were independent prog-
nostic indicators for predicting risk of overall mortality among 
LUAD patients in the TCGA and GEO cohorts.[9,13,14]

2.7. Cross-validations of prognostic signatures

In order to appraise the robustness of the 2 prognostic signa-
tures that were, respectively, constructed with the TCGA and 
GEO cohorts, we in turn attempted validation of the 2 prog-
nostic signatures by the GEO and TCGA cohorts alternately. 
By utilizing the median risk scores, the patients in the GEO 
and TCGA cohorts were also categorized into low- or high-risk 
groups. The Kaplan-Meier survival analysis and time-dependent 
ROC curve analysis were also undertaken to compare the OS 
rate and time between the 2 risk groups and to, respectively, 
evaluate the prognostic value of the 2 signatures in the GEO 
and TCGA cohorts.

2.8. Comparison of immune activity between 2 risk groups

We compared the enrichment scores of 16 types of immune cells 
and the activity of 13 immune-related pathways between low- 
and high-risk groups in both the TCGA and GEO cohorts by 
single-sample gene set enrichment analysis (ssGSEA), applying 
the “GSVA,” “GSEABase,” “ggplot2,” “ggpubr,” and “reshape2” 
R packages.[9,13,14]

2.9. Statistical analysis

All statistical analyses were accomplished using the R Software, 
version 4.0.5. Continuous variables were expressed as median 

Table 2

Expression levels of 30 pyroptosis-related genes between normal lung and tumor tissues in the The Cancer Genome Atlas cohort.

Gene Normal mean Tumor mean LogFC P value FDR 

TNF 1.128 1.137 0.009 .515 0.520
GPX4 7.108 7.202 0.094 .004 0.005
PYCARD 4.158 3.861 −0.297 2.59 × 10−5 2.93 × 10−5

IL1B 2.286 1.847 −0.439 2.39 × 10−6 2.76 × 10−6

IL18 3.711 3.362 −0.350 1.72 × 10−8 2.06 × 10−8

GSDMB 2.962 2.621 −0.341 3.87 × 10−10 4.74 × 10−10

NLRC4 1.633 1.259 −0.374 8.78 × 10−12 1.10 × 10−11

CASP9 2.666 2.482 −0.184 1.29 × 10−12 1.65 × 10−12

GSDME 1.826 1.483 −0.343 6.76 × 10−18 9.27 × 10−18

CASP8 3.508 3.113 −0.395 1.40 × 10−23 2.07 × 10−23

NOD2 1.712 1.338 −0.374 1.36 × 10−25 2.06 × 10−25

TIRAP 1.560 1.929 0.369 1.46 × 10−33 2.43 × 10−33

CASP5 0.781 0.450 −0.332 3.17 × 10−35 5.39 × 10−35

GSDMA 0.338 0.757 0.419 2.14 × 10−35 3.63 × 10−35

PJVK 1.130 0.767 −0.363 9.90 × 10−37 1.72 × 10−36

NLRP3 1.895 1.196 −0.699 1.27 × 10−41 2.37 × 10−41

SCAF11 3.838 3.503 −0.334 7.32 × 10−43 1.38 × 10−42

IL6 3.855 2.013 −1.842 1.20 × 10−47 2.42 × 10−47

AIM2 0.873 2.213 1.340 3.71 × 10−55 8.28 × 10−55

NOD1 3.277 2.454 −0.823 9.44 × 10−71 2.80 × 10−70

GSDMD 5.413 4.402 −1.011 1.76 × 10−72 5.43 × 10−72

GSDMC 0.422 1.657 1.234 2.17 × 10−75 7.12 × 10−75

PRKACA 4.477 3.926 −0.551 3.59 × 10−88 1.70 × 10−87

CASP4 5.219 3.918 −1.301 1.96 × 10−89 9.62 × 10−89

PLCG1 5.132 3.398 −1.734 1.58 × 10−89 7.82 × 10−89

ELANE 2.020 0.431 −1.590 1.86 × 10−90 9.45 × 10−90

CASP1 4.571 3.148 −1.423 6.57 × 10−100 5.05 × 10−99

NLRP1 4.014 1.940 −2.074 1.05 × 10−112 1.65 × 10−111

CASP6 2.553 4.111 1.558 3.26 × 10−126 2.21 × 10−124

CASP3 2.786 4.196 1.410 2.01 × 10−127 1.60 × 10−125

Normal mean: mean value of gene expression level in normal lung tissues; tumor mean: mean value of gene expression level in tumor tissues.
FDR = false discovery rate; logFC = logarithmic fold change of gene expression level.
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(interquartile range) and compared using the Mann-Whitney 
U test, while categorical variables are expressed as frequencies 
(n [%]) and compared using the χ2 or Fisher exact test, when 
appropriate. All analyses were 2 tailed, and a P value of <.05 
was considered statistically significant.

3. Results

3.1. DEGs and hub genes

After comparing expression levels of 30 PRGs between normal 
lung and tumor tissues in the TCGA cohort, we singled out 29 
DEGs (all P < 0.05; Table 2). Among them, 22 genes (NLRP1, 
interleukin [IL]-6, PLCG1, ELANE, CASP1, CASP4, GSDMD, 
NOD1, NLRP3, PRKACA, IL1B, CASP8, NLRC4, NOD2, 
PJVK, IL18, GSDME, GSDMB, SCAF11, CASP5, PYCARD, 
and CASP9) were downregulated while the other seven (glutathi-
one peroxidase 4 [GPX4], TIRAP, GSDMA, GSDMC, absent in 
melanoma 2 [AIM2], CASP3, and CASP6) were upregulated. The 
expression levels of these 29 DEGs are displayed as a heat map 
in Figure 1A. The PPI across the DEGs is visualized in Figure 1B. 
The top 10 hub genes, CASP8, IL18, PYCARD, CASP1, IL1B, 
IL6, NLRP1, NLRC4, NLRP3, and CASP4, were determined by 

intersection of 12 topological algorithms of CytoHubba plugin 
in the Cytoscape software. The correlation network depicting all 
the 29 pyroptosis-related DEGs is presented in Figure 1C.

3.2. Tumor classification

By escalating the clustering parameter (k) from 2 to 10 in con-
sensus clustering analysis, we discerned that when k = 2, the 
intragroup correlations were the highest and the intergroup cor-
relations were the lowest, denoting that the 526 LUAD samples 
could be well separated into 2 clusters according to the 29 pyro-
ptosis-related DEGs (Fig. 2A–2C). The gene expression profile and 
the clinicopathological attributes including cluster (cluster 1 or 2), 
gender (female or male), age (≤65 or >65 years), survival status 
(alive or dead), N (N0 or N1–3), T (T1–2 or T3–4), M (M0 or 
M1), and stage (stage I–II or stage III–IV) are exhibited in a heat 
map (Fig. 2D). The OS rate was compared between the 2 clusters, 
but no apparent diversity was detected (P = 0.902; Fig. 2E).

3.3. Functional enrichment

The GO enrichment analysis and KEGG pathway analysis were 
then conducted based on these DEGs. The GO enrichment 

Figure 1. Expression profile of and interactions across 29 pyroptosis-related DEGs. (A) Heat map for expression levels of 29 pyroptosis-related DEGs (red: 
higher gene expression; green: lower gene expression). (B) Protein-protein interaction network showing interactions across 29 pyroptosis-related DEGs (min-
imum interaction score, 0.9). (C) Correlation network for 29 pyroptosis-related DEGs (red line: positive correlation; blue line: negative correlation. Color depth 
reflects strength of relevance). DEG = differentially expressed gene.
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analyses manifested that DEGs in terms of biological pro-
cesses were mainly enriched in the production and regulation 
of cytokines (IL-1 and IL-1B) and pyroptosis; that of cellular 
components were mostly enriched in the inflammasome com-
plex; that of molecular function were primarily enriched in the 
endopeptidase activity, cysteine-type peptidase activity, and 
cytokine receptor binding (Fig. 3A and 3B). The KEGG path-
way analyses demonstrated that DEGs were involved in dysreg-
ulated pathway of NOD-like receptor signaling, cytosolic DNA 
sensing, tumor necrosis factor signaling, necroptosis, neutrophil 
extracellular trap formation, Toll-like receptor signaling, apop-
tosis, p53 signaling, and nuclear factor (NF)-kappa B signaling 
(Fig. 3C and 3D).

3.4. Development of prognostic signature with the TCGA 
cohort

After univariate Cox regression analysis, there were 11 genes 
(PYCARD, GSDMC, CASP6, NLRP3, CASP1, TIRAP, 
NLRC4, PLCG1, CASP9, NOD1, and NLRP1) that met the 
criteria of P < .2[13,15] (Fig.  4A) and were preserved for least 
absolute shrinkage and selection operator regression analysis, 
which narrowed down the number of candidate genes for mul-
tivariate Cox regression analysis to six (PYCARD, PLCG1, 
NOD1, NLRP1, NLRC4, and CASP9; Fig. 4B and 4C). After 
multivariate Cox regression analysis was undertaken, 3 genes 
(PYCARD, NLRP1, and NLRC4), together with their regres-
sion coefficients, were accepted for establishing a prognostic 
signature (Table  3). The risk scores for overall mortality of 
LUAD patients in the TCGA cohort were calculated by using 

the following formula: risk score = (0.648 × PYCARD exp.) + 
(−0.770 × NLRP1 exp.) + (−0.383 × NLRC4 exp.). Then, the 
513 samples were classified into high- and low-risk groups 
according to the median value of risk scores (Fig. 4D). The PCA 
uncovered that patients with different risks were clearly sep-
arated into 2 clusters (Fig.  4E). The patients in the high-risk 
group had more deaths and a shorter survival time than those in 
the low-risk group (Fig. 4F). The Kaplan-Meier survival analysis 
and log-rank test indicated a notably longer OS time (5.96 vs 
3.37 years; P < 0.0001) and a higher lower 5-year OS rate (29% 
vs 24%; P < 0.001) in the low-risk group than in the high-risk 
group (Fig.  4G). Time-dependent ROC curve analysis for the 
3-gene prognostic signature demonstrates that the area under 
the curve (AUC) value was 0.663 for 1-year, 0.624 for 2-year, 
and 0.603 for 3-year survival (Fig. 4H).

3.5. Development of prognostic signature with the GEO 
cohort

Likewise, a 7-gene signature merging SCAF11, NOD1, 
NLRP2, NLRP1, GPX4, CASP8, and AIM2 was formulated 
with the GEO cohort by multivariate Cox regression analy-
sis (Table 3). The risk scores were computed as follows: risk 
score = (−0.280 × SCAF11 exp.) + (−0.261 × NOD1 exp.) + 
(−0.076 × NLRP2 exp.) + (−0.141 × NLRP1 exp.) + (−0.301 
× GPX4 exp.) + (0.293 × CASP8 exp.) + (0.131 × AIM2 exp.). 
Based on the median value of risk scores, 222 patients in the 
GEO cohort were sorted into the low-risk group, while the 
other 221 were sorted into the high-risk group (Fig. 5A). The 
PCA indicated satisfactory separation between the 2 groups 

Figure 2. Tumor classification by CCA based on 29 pyroptosis-related DEGs. (A–C) CCA of 29 pyroptosis-related DEGs, inferring optimal number of clusters, 
the lowest proportion of ambiguous clustering and best CDF value by taking the k value of 2. According to the consensus clustering matrix (k = 2), 526 lung 
adenocarcinoma samples were grouped into 2 clusters. (D) Heat map and clinicopathologic characters of the 2 clusters classified by CCA (Fustat: survival 
status; T: stage for tumor; N: stage for regional lymph node; M: stage for metastasis). (E) Kaplan-Meier curves for comparison of overall survival rate between 
the 2 clusters classified by CCA. CCA = consensus clustering analysis, CDF = cumulative distribution function, DEG = differentially expressed gene.
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(Fig.  5B). The patients in the low-risk group were found to 
have longer OS times and lower death rates than those in the 
high-risk group (Fig. 5C). Parallelly, the Kaplan-Meier analy-
sis confirmed the prognostic ability of our 7-gene risk signa-
ture by indicating an appreciably higher 5-year survival rate 
(65.7% vs 44.0%; P < 0.0001) and a longer OS time (6.74 vs 
3.75 years; P < 0.0001) in the low-risk group than in the high-
risk group (Fig.  5D). The ROC curve analysis for the GEO 
cohort also showed moderate predictive performance (AUC, 
0.628 for 1-year, 0.677 for 2-year, and 0.665 for 3-year sur-
vival; Fig. 5E).

3.6. Independent prognostic value of risk score

The risk scores together with clinicopathological features 
(age, gender, grade, stage, M, N, and T) in the TCGA and 
GEO cohorts were submitted to univariate and multivariate 
Cox regression analysis. Univariate Cox regression analysis 
demonstrated that the risk score was associated with overall 
mortality of LUAD patients in both the TCGA cohort (haz-
ard ratio [HR], 2.315; 95% confidence interval [CI], 1.653–
3.241; P = 1.02 × 10−6) and the GEO cohort (HR, 2.313; 95% 
CI, 1.774–3.017; P = 6.11 × 10−10; Table 4; Fig. 6A and 6D). 
Multivariate analysis also displayed that the risk score was 
an independent risk of overall mortality for LUAD patients 
in the TCGA cohort (HR, 1.939; 95% CI, 1.314–2.859; P 
= 8.43 × 10−4) and the GEO cohort (HR, 2.291; 95% CI, 

1.737–3.0201; P = 4.34 × 10−9; Fig. 6B and 6E) after adjust-
ing for other confounding factors. In addition, we produced 
a heat map incorporating gene expression and clinicopath-
ological traits for the TCGA and GEO cohorts individually 
(Table 4; Fig. 6C and 6F).

3.7. Cross-validation of prognostic signature

3.7.1. Validation by the GEO cohort. For validation of 
the 3-gene signature by the GEO cohort, the data for gene 
expression and clinicopathological information of 443 samples 
in GSE68454 series were used. Unexpectedly, NLRC4, a 
constituent gene within the 3-gene prognostic signature, is not 
available in the GSE68454 series. Consequently, the validation 
of the 3-gene signature by the GEO cohort could not be carried 
out.

3.7.2. Validation by the TCGA cohort. Based on the median 
value of risk scores that were generated by the 7-gene signature 
from the GEO cohort, 257 samples from the TCGA cohort 
were arranged into the low-risk group, while the other 256 
patients were cataloged into the high-risk group (Fig.  7A). 
The PCA demonstrated suitable segregation between the 2 risk 
groups (Fig. 7B). As Fig. 7C manifests, the patients in the high-
risk group suffer more deaths and have a shorter survival time 
than those in the low-risk group. As the Kaplan-Meier plots 
in Fig. 7D indicate, the patients in the high-risk group have a 

Figure 3. GO enrichment analysis and KEGG pathway analysis based on pyroptosis-related DEGs with pooled Genotype-Tissue Expression Project and The 
Cancer Genome Atlas cohort. (A) Bubble chart for GO enrichment of pyroptosis-related DEGs. Size of bubble indicates the number of significant genes in the 
given enriched term. Color denotes adjusted P value. The closer the color is to red, the more significant the enrichment is. (B) Barplot chart for GO enrichment 
of pyroptosis-related DEGs. Length of the bar indicates the number of significant genes in the given enriched term. Color signifies adjusted P value. The closer 
the color is to red, the more significant the enrichment is. (C) Bubble chart for KEGG pathway of pyroptosis-related DEGs. (D) Barplot chart for KEGG pathways 
of pyroptosis-related DEGs. COVID-19 = coronavirus disease 2019, DEG = differentially expressed gene, GO = gene ontology, KEGG = Kyoto Encyclopedia of 
Genes and Genomes, IL = interleukin, NOD = nucleotide binding oligomerization domain, TNF = tumor necrosis factor.



7

Zhang et al. • Medicine (2022) 101:29 www.md-journal.com

Figure 4. Construction of prognostic signature with the TCGA cohort. (A) Univariate Cox regression analysis of OS for 32 pyroptosis-related genes. (B) LASSO 
regression analysis of 11 candidate prognosis-related genes for multivariate Cox regression analysis. (C) Cross-validation for tuning the parameter selection in 
the LASSO regression analysis. (D) Distribution of the number of patients in low- and high-risk groups based on median value of risk scores. (E) Principal com-
ponent analysis plot based on risk scores, separating LUAD patients into 2 clusters. (F) Survival status for each patient in the TCGA cohort (low-risk group: on 
the left side of the dotted line; high-risk population: on the right side of the dotted line; orange: higher risk score; blue: lower risk score). (G) Kaplan-Meier survival 
curves for OS of LUAD patients in the high- and low-risk groups, presenting a lower OS rate in the high-risk group than in the low-risk group. (H) Receiver oper-
ating characteristic curves of predictive performance of prognostic signature for LUAD patients. AUC = area under the curve, LASSO = least absolute shrinkage 
and selection operator, LUAD = lung adenocarcinoma, OS = overall survival, PC = principal component, TCGA = The Cancer Genome Atlas.
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lower 5-year survival rate than patients in the low-risk group. 
The ROC curve analysis exhibits that the risk score yielded by 
the GEO cohort has a moderate predictive efficacy in TCGA 
(AUC, 0.625 for 1-year, 0.631 for 2-year, and 0.623 for 3-year 
survival; Fig. 7E). This validation by the TCGA cohort verified 
the prognostic value of the 7-gene signature originated from 
the GEO cohort for predicting LUAD outcome. The whole 
procedures for the development and validation of prognostic 
signatures are illustrated in a flowchart (Fig. 8).

3.8. Correlation of immune activity to mortality risk

In the TCGA and GEO cohorts, consistent findings concern-
ing ssGSEA were achieved that the high-risk group had pro-
nouncedly lower levels of infiltration of such immune-related 
cells as activated dendritic cells (aDCs), B cells, immature den-
dritic cells (iDCs), mast cells, and neutrophils (all P < 0.05; 
Fig. 9A and 9C). Correspondingly, in the 2 cohorts, analogous 
results were noticed that high-risk group had considerably 
lower activity in immune-related pathway of type II interferon 
(IFN) response and human leukocyte antigen (HLA) (Fig.  9B 
and 9D). However, the 2 cohorts did not coincide well in regard 
to infiltration levels of the other 11 immune cells and activity of 
the other 11 immune-related pathways.

4. Discussion

4.1. Main findings

In the present study, we estimated the roles of 30 PRGs play-
ing in the occurrence and prognosis of LUAD using integrative 
bioinformatic analyses. Our findings revealed that most of the 
30 genes were differentially expressed between normal lung 
and tumor tissues. Subsequently, we established a prognos-
tic signature by combing 3 PRGs with the TCGA cohort and 
another signature by integrating 7 genes with the GEO cohort. 
Afterward, we testified the prognostic value of the 2 signatures 
via cross-validation of the TCGA and GEO cohorts by each 
other and finally certificated the only one valid and robust 
signature consisting of 7 PRGs (SCAF11, NOD1, NLRP2, 
NLRP1, GPX4, CASP8, and AIM2) for predicting the progno-
sis of LUAD patients.

Also, we performed GO and KEGG analyses and speculated 
that PRGs might play their roles in the occurrence of LUAD 
via dysregulated cytokines (IL-1 and IL-1B), inflammasome 
complex, and endopeptidase activity, and disordered path-
way of NOD-like receptor signaling, cytosolic DNA sensing, 
and tumor necrosis factor signaling. Additionally, our ssGSEA 
uncovered that the LUAD patients with higher mortality risk 
that was defined by median risk score had substantially lower 
levels of infiltration of immune cells such as aDCs, B cells, iDCs, 

mast cells, and neutrophils and lower activity in the pathway 
of type II IFN response and HLA. These findings implied that 
poor prognosis of LUAD patients could be involved in impaired 
activity of immune cells and pathways.

4.2. Association of PRGs with prognosis of LUAD

4.2.1. Absent in melanoma 2. AIM2, as a representative of 
the NOD-like receptor family inflammasomes,[16–18] activates 
a network of caspases including caspase-1 and caspase-8 
and promotes both pyroptotic and apoptotic cell death.[19] 
Kong et al[20] documented that the AIM2 inflammasome was 
overexpressed in non–small cell lung cancer. Consistently, we 
noted that AIMs was among the 29 DEGs between normal lung 
and tumor tissues and that AIM2 expression was upregulated in 
our pooled GTEx and TCGA data, supporting a correlation of 
high AIM2 expression to the occurrence of LUAD. Moreover, 
Colarusso et al[16] declared that higher expression of AIM2 in 
LUAD patients was correlated to a higher HR of poor survival. 
In agreement with Colarusso et al’s findings, our multivariate 
regression results admitted independent association of higher 
AIM2 expression with higher overall mortality in LUAD 
patients.

4.2.2. Cysteine-aspartic acid protease-8. As described by 
Sagulenko et al[19] in their work, caspase-1 drives rapid lysis of 
cells by pyroptosis and maturation of IL-1β and IL-18, while 
CASP8 represents the molecular switch that controls apoptosis, 
necroptosis, and pyroptosis.[21] In cells where rapid pyroptosis is 
blocked, delayed inflammasome-dependent cell death still occurs 
due to both caspase-1–dependent and caspase-8–dependent 
apoptosis.[19] However, there has been a lack of knowledge in 
existing studies dwelling on the mechanism responsible for 
the correlation of CASP8 to the development and prognosis of 
LUAD. Our finding showed that CASP8 was downregulated in 
tumor tissues and suggested its negative association with the 
occurrence of LUAD. Our finding is not in conformity with that 
in a study undertaken by Kutilin et al,[22] who found that the 
proportion of gene copy numbers for CASP8 was not significantly 
different between tumor cells and normal lung cells. In this study, 
we identified CASP8 as an independent risk factor for overall 
mortality in LUAD patients, which is in concordance with Liu et 
al’s conclusion.[2]

4.2.3. Glutathione peroxidase 4. GPX4 functions as an 
antioxidant enzyme and key enzyme that protects cells from 
lipid peroxidation by way of metabolizing reactive oxygen 
species and reactive carbonyl species.[23] Romanowska et al[24] 
documented in their work that GPX4 was upregulated in 
LUAD cell lines. In line with their evidence, our results from 
pooled GTEx and TCGA cohort indicated upregulated GPX4 

Table 3

Multivariate Cox regression analysis of candidate genes for construction of prognostic signature.

Cohort Gene Coef. HR 

95% CI

P value LL UL 

TCGA PYCARD 0.648 1.911 1.203 3.037 .006
NLRP1 −0.770 0.463 0.299 0.717 <.001
NLRC4 −0.383 0.682 0.428 1.085 .106

GEO SCAF11 −0.280 0.756 0.557 1.025 .071
NOD1 −0.261 0.770 0.565 1.049 .098
NLRP2 −0.076 0.927 0.854 1.006 .070
NLRP1 −0.141 0.868 0.729 1.035 .115
GPX4 −0.301 0.740 0.557 0.982 .037
CASP8 0.293 1.341 1.029 1.747 .030
AIM2 0.131 1.141 1.010 1.289 .035

CI = confidence interval, Coef. = coefficient, GEO = Gene Expression Omnibus, HR = hazard ratio, LL = lower limit, TCGA = The Cancer Genome Atlas, UL = upper limit.
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expression in LUAD tissues relative to normal lung tissues. 
Another analysis of public databases by Lei et al[25] disclosed 
that in patients undergoing chemotherapy, those with higher 
expression of GPX4 had a lower probability of survival. 
Lei et al’s result is not in conformity with ours that GPX4 is 
significantly reversely associated with the overall mortality of 
LUAD patients by multivariate Cox regression analysis. The 
mechanism where there exists a relationship between GPEx 

expression and prognosis in LUAD patients has not been fully 
addressed yet.

4.2.4. NLRP1 and NLRP3. NLR family, NLRP1 and NLRP3, 
are the 2 best-characterized inflammasome members.[26] 
NLRP1, the first NLR protein, serves as an inflammasome 
sensor to induce cytokine maturation and pyroptosis by 
mediating the activation of caspase-1.[27,28] In response to 

Figure 5. Construction of prognostic signature with the GEO cohort. (A) Distribution of the number of patients in low- and high-risk groups based on the median 
value of risk scores. (B) Principal component analysis plot based on risk scores, separating LUAD patients into 2 clusters. (C) Survival status for each patient in 
the GEO cohort (low-risk group: on the left side of the dotted line; high-risk population: on the right side of the dotted line; orange: higher risk score; blue: lower 
risk score). (D) Kaplan-Meier survival curves for OS of LUAD patients in high- and low-risk groups, indicating a lower OS rate in the high-risk group than in the 
low-risk group. (E) Receiver operating characteristic curves of predictive performance of prognostic signature for LUAD patients. AUC = area under the curve, 
GEO = Gene Expression Omnibus, LUAD = lung adenocarcinoma, OS = overall survival.
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Table 4

Univariate and multivariate Cox analysis of risk score in conjunction with clinicopathological features.

Cohort 

Univariate Cox regression Multivariate Cox regression

Variable HR 

95% CI

P value Variable HR 

95% CI

P value LL UL LL UL 

TCGA Gender 1.044 0.782 1.395 .769 Gender - - - -
Age 1.007 0.992 1.022 .352 Age - - - -
M 2.150 1.256 3.680 .005 M 0.833 0.303 2.293 0.724
N 1.700 1.434 2.014 9.02 × 10−10 N 1.272 0.895 1.810 0.180
T 1.534 1.275 1.846 5.78 × 10−6 T 1.245 0.987 1.570 0.065
Stage 1.676 1.461 1.923 1.84 × 10−13 Stage 1.363 0.906 2.051 0.138
Risk score 2.315 1.653 3.241 1.02 × 10−6 Risk score 1.939 1.314 2.859 0.000843

GEO Gender 1.366 1.050 1.776 .020 Gender 1.166 0.893 1.523 0.259
Age 1.031 1.017 1.045 1.26 × 10−5 Age 1.037 1.023 1.052 2.77 × 10−7

N 1.992 1.692 2.346 1.38 × 10−16 N 1.957 1.660 2.307 1.25 × 10−15

T 1.680 1.400 2.016 2.47 × 10−8 T 1.428 1.180 1.728 0.000249
Grade 1.160 0.953 1.413 .138 Grade - - - -
Risk score 2.313 1.774 3.017 6.11 × 10−10 Risk score 2.291 1.737 3.021 4.34 × 10−9

CI = confidence interval, Coef. = coefficient, GEO = Gene Expression Omnibus, HR = hazard ratio, LL = lower limit, M = metastasis, N = lymphoid node, T = tumor, TCGA = The Cancer Genome Atlas, UL 
= upper limit.

Figure 6. Univariate and multivariate Cox regression analyses for risk score. (A) Univariate Cox regression analysis and (B) multivariate Cox regression analysis 
verifying independent prognostic value of risk score for overall mortality in the TCGA cohort. (C) Heat map (blue: low expression; red: high expression) depicting 
correlation of gene and clinicopathologic features to mortality risk in the TCGA cohort. (D) Univariate Cox regression analysis and (E) multivariate Cox regression 
analysis confirming independent prognostic value of risk score for overall mortality in the GEO cohort. (F) Heat map (blue: low expression; red: high expression) 
for the association of gene and clinicopathologic features with mortality risk in the GEO cohort. G = grade for degree of tumor differentiation, GEO = Gene 
Expression Omnibus, M = stage for metastasis, N = stage for regional lymph node, T = stage for tumor, TCGA = The Cancer Genome Atlas.
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activation by many different stimuli, increased NLRP3 
protein expression and inflammasome assembly lead to 
caspase-1–mediated maturation and release of IL-1β, 
which triggers inflammation and pyroptosis.[29] Shen et 

al[30] performed a bioinformatics analysis of LUAD data 
that were downloaded from TCGA and GEO and noticed 
that NLRP1 expression in LUAD tissues was considerably 
lower than that in normal lung tissues. Homogeneously, our 

Figure 7. Validation of 7-gene prognostic signature by the TCGA cohort. (A) Distribution of the number of patients in low- and high-risk groups based on median 
value of risk scores. (B) Principal component analysis plot based on risk scores, separating LUAD patients into 2 clusters. (C) Survival status for each patient in 
the TCGA cohort (low-risk group: on the left side of the dotted line; high-risk population: on the right side of the dotted line; orange: higher risk score; blue: lower 
risk score). (D) Kaplan-Meier survival curves for OS of LUAD patients in high- and low-risk groups, indicating a lower OS rate in the high-risk group than in the 
low-risk group. (E) Receiver operating characteristic curves of predictive performance of prognostic signature for LUAD patients. LUAD = lung adenocarcinoma, 
OS = overall survival, TCGA = The Cancer Genome Atlas.
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findings evidenced that NLRP1 and NLRP3 were significantly 
downregulated in tumor compared to normal lung tissues. 
Furthermore, they affirmed that reduced NLRP1 expression 
level was an independent prognostic factor of LUAD patients 
by multivariate Cox regression analysis.[30] In symphony with 
Shen et al’s findings, ours revealed that lower gene expression 
of NLRP1 is independently associated with poor prognosis in 
patients in the TCGA LUAD cohort.

4.2.5. NLRP2, NOD1, and SCAF11. NLRP2, NOD1, and 
SCAF11 were all DEGs and components in our prognostic 
signatures with the GEO cohort. However, less has been 
known with respect to the mechanism by which the 3 
genes play their roles in the development and prognosis 
of LUAD.

4.3. Qualified prognostic signature

In this study, we screened candidate genes within 30 PRGs 
and identified and validated a prognostic PRG signature inte-
grating 7 genes for predicting the probability of mortality in 
LUAD patients. Constituents in our 7-gene signature (SCAF11, 
NOD1, NLRP2, NLRP1, GPX4, CASP8, and AIM2) are con-
siderably different from Lin et al’s (NLRP7, NLRP1, NLRP2, 
NOD1, and CASP6)[9] in terms of composition, which is likely 
to be attributed to the difference in data source.

4.4. Clinical implications

In this study, we preliminarily investigated prognostic 
value of PRGs and provided theoretical support for future 

Figure 8. Flowchart delineating procedures for development of prognostic signatures and evaluation of independent prognostic value of risk scores in predict-
ing overall mortality among LUAD patients. Three-gene prognostic signature denotes one consisting of PYCARD, NLRP1, and NLRC4. Seven-gene prognostic 
signature signifies another composed of SCAF11, NOD1, NLRP2, NLRP1, GPX4, CASP8, and AIM2. Risk score 1 is determined with regression coefficients 
and gene expression levels in the TCGA cohort using a MV Cox regression formula. Risk score 2 is calculated with regression coefficients and gene expression 
levels in the GEO cohort using another MV Cox regression formula. GEO = Gene Expression Omnibus, K-M = Kaplan-Meier, LASSO = least absolute shrinkage 
and selection operator, MV Cox = multivariate Cox regression, PRG = pyroptosis-related gene, ROC = receiver operating characteristic, TCGA = The Cancer 
Genome Atlas.
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research. Moreover, our prognostic signature is expected 
to be applied to clinical practice, which means that, first, 
it may be a promising indicator for prognosis of LUAD 
patients; second, it helps clinicians identify LUAD patients 
at high risk of mortality; and third and more importantly, 
it provides a potential therapeutic strategy for LUAD in the 
future.

4.5. Superiority

Above all, we conducted cross-validation of our 2 prognos-
tic signatures by using the GEO and TCGA cohorts alter-
nately, which strengthened the robustness of our conclusion 
in terms of prognostic value of our 7-gene prognostic sig-
nature. What’s more, we used data from pooled GTEx and 
TCGA cohorts for comparisons of gene expression levels 
and for the identification of the hub gene, which facilitated 
minimizing the bias that is attributed to a relatively lack and 
imbalance of data from normal lung tissues in the TCGA 
cohort.

4.6. Limitations

We confess there exist 2 inherent limitations in our study. First 
and foremost, our study is merely a bioinformatics analysis with-
out laboratory validation of differential expression and clinical 
verification of prognostic performance for our 7-gene signature 
in our own data sets of patients. Secondarily, we fail to use the 
GEO LUAD cohort to validate prognostic signature that is con-
structed by the TCGA LUAD cohort, since the data for NLRC3 
mRNA expression and corresponding survival status are not 
available in the GEO LUAD cohort. Pooling ≥2 data series from 
GEO archives might be hopeful to offset the limitation.

5. Conclusion
Taken together, we have constructed and cross-validated a 
prognostic signature incorporating 7 PRGs (SCAF11, NOD1, 
NLRP2, NLRP1, GPX4, CASP8, and AIM2) with the GEO 
and TCGA cohorts for predicting prognosis for LUAD patients. 
Furthermore, our study confirms that the risk score generated 

Figure 9. Box plots for comparing single-sample gene set enrichment analysis scores for 16 types of immune cells and 13 immune pathways between the 
low- and high-risk groups in the The Cancer Genome Atlas (A and B) and Gene Expression Omnibus cohorts (C and D). Considerably lower levels of infiltration 
of aDCs, B cells, iDCs, mast cells, and neutrophils, together with lower activity of type II IFN response and HLA, are observed in the high-risk group than in the 
low-risk group. P values were shown as ns for P > 0.05, * for P < 0.05, ** for P < 0.01, and *** for P < 0.001. ns = nonsignificant. aDC = activated dendritic 
cell, APC = antigen presenting cell, CCR = cytokine cytokine receptor, DC = dendritic cell, HLA = human leukocyte antigen, iDC = immature dendritic cell, 
IFN = interferon, MHC = major histocompatibility complex, NK = natural killer, pDC = plasmacytoid dendritic cell, Tfh = T follicular helper, Th = T helper, TIL = 
tumour-infiltrating lymphocyte, Treg = regulatory T cell.
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from the 7-gene prognostic signature is an independent risk fac-
tor for poor prognosis of LUAD patients.
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