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Abstract: We present the results of the theoretical modeling of the elastic shear properties of
a magnetic gel, consisting of soft matrix and embedded, fine magnetizable particles, which are
united in linear chain-like structures. We suppose that the composite is placed in a magnetic field,
perpendicular to the direction of the sample shear. Our results show that the field can significantly
enhance the mechanical rigidity of the soft composite. Theoretical results are in quantitative
agreement with the experiments.
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1. Introduction

Magnetic gels are composites of nano- and micron-sized magnetic particles in soft polymer
matrixes. The combination of a rich set of physical properties of the polymer and magnetic materials
is very valuable for many progressive industrial, bioengineering, and biomedical applications [1-7].
In part, for address drug delivery, for industrial and biological sensors [8-14], for the construction of
soft actuators and artificial muscles [2,15], and for regenerative medicine and tissue engineering [16-41].
An overview of the works on magnetic gel synthesis and their biomedical applications can be found
in [23].

One of the remarkable properties of magnetic gels is their ability to change, under the action of an
external magnetic field, their microstructure, magnetic, mechanical, and other microscopic properties,
size, and shape. This provides the opportunity to control, with the help of the field, mechanic behavior,
transport, and electrical processes in these systems, and this possibility presents a significant advantage
for biosensoric, tissue engineering, and other biological applications [8,9,20,23,39,41].

During the magnetic gels’ synthesis, the particles are usually embedded in the liquid polymer,
and their spatial distribution is fixed after the composite gelation. If the host polymer is cured without
an external magnetic field, the particles, as a rule, are distributed more or less homogeneously and
isotropically. If the composite is polymerized under the field (field of polymerization), the particles
form various anisotropic structures, elongated in the field direction. The appearance of these internal
structures significantly changes the sensitivity of the gels to mechanic, electrical, magnetic, and other
external impacts, and changes the kinetics of the internal transport phenomena and chemical reactions,
the rate of cell proliferation, and other phenomena in these systems. This opens perspectives of
the tunable synthesis of the magnetically controlled sensors, and scaffolds for the growth of cell
tissues with willing structure and properties, artificial muscles, and other materials for biological and
industrial applications.
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The simplest kind of the internal structures that are formed by the magnetic particles in liquid
media are liner chains, where particles are bounded as “head to tails” by the forces of magnetic
attraction. These structures appear in the systems with a low and moderate volume concentrations
of magnetic particles (usually in the range of 10-15%). Some photos of these chains can be found,
for example in [42,43]. In the case of the higher concentrations, the particles can form topologically
more complicated branched, net-like, bulk and other structures (see, for example, [44-50]).

The effect of the magnetic field on the elastic shear modulus of the gels with a homogeneous
and isotropic (gas-like) spatial distribution of magnetic particles has been theoretically studied in
refs. [51,52]. It was shown that a magnetic field that is applied perpendicular to the macroscopic shear
of the composite, enhances the composite elastic modulus. At the same time, the experiments [53] show
that the rigidity of the composites with the chains aligned perpendicularly to the shear, is significantly
more than that of the systems with a chaotic distribution of the particles. Since the micromechanic
(on the level of the particles and their aggregates) situation in the composites with the heterogeneous
aggregates is significantly different from that in the homogeneous systems, the microscopic analysis
of macroscopic properties of the composites with internal heterogeneous structures requires the
development of a special theoretical approach.

The aim of this work is to theoretically study the effect of an external magnetic field on the shear
elastic modulus of magnetic gels with internal chain-like structures, that are formed by magnetizable
non-Brownian spherical particles. Physically, this means that the size of the particles are supposed to
range from several tens of nanometers to microns. The particles of this size are very often used for the
preparation of magnetic gels for bio-medical applications.

We take into account that the chains appear at the stage of the matrix polymerization under the
action of an external magnetic field. That is why all chains are parallel to this field. We suppose that
the actual magnetic field H has the same direction as the field of polimerization, i.e., that the field
H is parallel to the chains. We consider the situation when the macroscopic shear of the sample is
perpendicular, whereas the gradient of the shear is parallel to the chains. The length of the chains is
supposed to be much less than the size of the sample.

2. Physical and Mathematical Model

For maximal simplification of the mathematical part of the problem, we will suppose that the
particles are identical. Like in [54,55], we will neglect fluctuations of the chain’s shape and will consider
them as ideally straight aggregates, aligned along the applied magnetic field H. This model of the
chain is illustrated in Figure 1.

The typical size of the cell of the polymer matrix in ferrogels is several nanometers, and the size
of the particles vary from several tens of nanometers to microns. Thus, the particles are much larger
than the gel cell. That is why we will consider the host polymer as a continuous medium with respect
to the particles.

We will restrict ourselves by the analysis of small deformations of the composites and will suppose
the linear relations between the mechanic stress and deformations in the matrix.

We will also neglect any interactions between the chains. This approximation is based on the
results of ref. [56], which shows that the effects inside the chains play a dominant role in the formation
of macroscopic properties of the composites, compared with the effects of the interchain interaction.

For mathematical definiteness, we will suppose that the chain consists of an odd number of
particles. This assumption is not of principle for the physical analysis.
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Figure 1. An illustration of the chain model and the used Cartesian coordinate system; # is the number
of particles at the extremity of the chain, starting from the central one, which is number 0.

Let us denote the mean vector of a material point displacement in the composite as u. In the
coordinate system, shown in Figure 2, the vector u is the mean displacement in the composite
(i.e., the displacement at the infinitive distance from the chain). The vector u can be presented
as: Uy = yx where v is the mean shear of the system. We will consider small shear deformations of the
composite, which means that the strong inequality ¢ < 1 is held.

Figure 2. Illustration of the shearing of the chain.

Let the total number of the particles N in a chain be N = 2n + 1, where 7 is an integer. In the
framework of the used approximations, the equations of the stationary displacement of the particles in
the chain can be presented in the following form [54]:

31tGod(yid — u;) +fl-(m) =0, 0<i<n, -n<i<0,
upg = 0.

)
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(m)

Here, Gy is the shear modulus of the matrix, d is the diameter of the particles, f; " is the force
of the magnetic interaction of the i-th particle with the neighboring particles of the chain, and for the
central particle i = 0. The equality u; = —u_; for 0 < i < n follows from the symmetry of the problem.

For convenience, we introduce the dimensionless magnetic force f}m) and dimensionless
displacement u;:

i T aGe® T

By using these notations, one can rewrite Equation (1) as:

(1) .
Fom fi qo= 0<i<n. )

3(71 - ilvl) +ﬁ(m) =0, ﬁi = 17[71‘, 0<i<m, (3)
iy = 0.

Under the assumption that y < 1, the inequality #; < 1 is held.

The magnetic force fi(m) of the interparticle interaction can be estimated in the framework of the

simplest dipole-dipole approximation. In order to calculate f}m), we need to determine the magnetic
moments of the particles in the chain. Strictly speaking, the value of a particle moment depends on the
number i of the particle position in the chain. However, analysis [55] shows that approximation, where
magnetic moments of all of the particles in the chain are supposed identical, leads to not significant
deviations from the strict approach. That is why we will use the simplest approximation of identity of
the particle moments in the chain.

When the composite experiences the macroscopic shear deformation, the axis of the chain deviates
from the z-axis, as is illustrated in Figure 2. Because of the mutual magnetization of particles, the vector
of the particle magnetic moment will also be deviated from this axis. Therefore, both components M,
and M, of the vector M of the particle magnetization will take place in the deformed composite.

We estimate the magnetic force fi(m) by using the nearest-neighbor approximation, taking into
account the magnetic dipole-dipole interaction only between the neighbor particles in the chain.
By using the well-known relation for the force of the dipole-dipole interaction (see, for example, [57]),
after simple but cumbersome transformations, in the linear approximation with respect to the
displacements ii;, one can get:

m) _ F(m) =(m) _ BM. M, M2ii M, M, M2 (il — i
R R _/5121_{ﬁ e + B 2)}
_ BME(i—2i)
= [V

7(m) _ 7(m) Fm) _ BM M, | BMZ(il;_y—i;) BM:M, | PMZ(il;—iij 1)
fi =l tfiih =t 17 — |2 T o @)
G2 (0 o ,
o :F:\Az(ul-f—llzzuﬂruf—l), 1<i< n, 2
m m MM, M2 (i, _1— iy 7 My T M, _ pHoMg
ﬂl):f}q,n)—lzﬁ%i +ﬂ (M121 u)’ ¥ = i Mz_m, ,3—‘”%0.

Here, fl(zﬁi)l is the force of the magnetic interaction between the i-th particle in the chain with the
neighbor particle, M; is the saturated magnetization of the particle’s material, B is the parameter which
defines the ratio of the energy of magnetic interaction between two magnetically saturated particles to
the energy of elastic deformation of the matrix, and y is the vacuum magnetic permeability.

The main problem now is to estimate the dimensionless components M, and M,. The strict
solution of a problem of determination of magnetic moments of two closely situated magnetizable
particles has not been obtained in literature because of not overcoming mathematical complexity. Here,
we use the approach [58], where each particle is considered to be situated in a uniform magnetic

field H®), consisting of the external, with respect to the particle’s field H (i.e., the mean field in the
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sample), and the field created by the other particle in the center of the first one. It is supposed that the
magnetization of the particle obeys to the nonlinear Frolich-Kennelly relation [59]:

= (i)
= XxpHy _ ~(i>_\/ S8 i)y
M= P k=ve HO =D (5)

Here, x, is the initial magnetic susceptibility of the particle material, and H (i) is the magnetic
field inside the particle. For the spherical particle the last field, this can be found from the general
relation [60]: N

0 - M _ gl
Hk + ? = Hk 7
Taking into account the magnetic interaction between the neighbor particles in the chain, in the

dipole-dipole approximations we get:

k=x,z. (6)

_ v g _ SO I 1
Ijj(f) = MLt A = B @)
0 n . 1 _ _ n+i
y = ¥l g — 2, il auily),  a= L k.
i=1 j=n+1-i’

Combining Equations (5)-(7) and Notations (4), after some transformations we come to the
following system of nonlinear algebraic equations with respect to the dimensionless components My
and M} of the particle magnetization:

M ~ ~
X _ A —
e G~ AV =0
i - - ~
7 — —A — H=
o ) + C, M, M, 0, (8)

(0) (0) (1)
c=3(1-%) G-i(i+¥) a-%

This system can be solved analytically only under condition My < M,. The last is true when the
sample deformation is small (i.e., when v < 1). By using the linear approximation with respect to My,
one gets from (8):

M _ D;—v/ D%_4CZH M _ Mz(anf]ﬁn—lJrﬂnﬁn)
z 2C, ’ X = 2NE ’

N _ . )
Dz:)%p"_Cz“r‘H, DX:XL;;—*—CX"FH/ E= Dy —CM;.

Parameter a, can be found from the definition of 4; in Equation (7). Let us remind that the result
(9) is obtained in the approximation [55] of the identity of magnetic moments and therefore, of is the
identity of magnetization M of all of the particles in the chain.

Combining the relations (3), (4), and (9), we come to the system of the linear algebraic equations
with respect to the dimensionless displacement ;:

2(18 + 51\713) il — BM2ii, = 367,
—BM2Ti_; + 2(18 + ﬁzﬁg)ﬁi — BMPHiiq = 36vi,  1<i<n, (10)
—BM2(a,_1 + 4NE)ii,_1 + [4NE (36 + /31\23) - /3]\713114 i, = 144ynNE.

This system can be solved either analytically, or numerically.
The total shear stress ¢ in the composite that is placed in magnetic field can be presented as:

o= 4gm, (11)
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Here, (¥ and ¢(") are the nonmagnetic and magnetic parts of the stress that are produced by
the aggregates. The nonmagnetic part of the stress appears because of the local inhomogeneous
deformations of the elastic matrix, caused by the presence of the chains.

Nowadays, there is no a strict theoretical description of the elastic interaction of the chain with
the environment. That is why we estimate ¢(*) by using the approach [61], modeling the N-particles
chain as a prolate ellipsoid of revolution with the minor and major axes equal to the particle diameter
d and Nd, respectively. It is of fundamental importance that the volume of this ellipsoid is equal to the
total volume of all of the particles in the chain. Therefore, the volume concentration of these ellipsoids
is equal to the volume concentration of the particles in the ferrogels.

By using the results of the mechanics of suspensions of ellipsoidal particles [62], in the linear
approximation with respect to the shear, we get:

(N +BN(1+AN)
2

o0 = Goy + Goopy Z aN + Fn. (12)
N

Here, ¢ is the volume concentration of the particles; ay, BN, AN, and {n are some coefficients,
which depend on the length of the chain. The explicit forms of these coefficients are given in
the Appendix A; Fy is a function of distribution over the number N of the particles in the chains,
normalized so that ) Fy = 1. This function depends on many factors and features of the composite
synthesis (size and concentration of the particles, viscosity and kinetics of the host polymer curing,
the strength of the field of polymerization, etc.). The determination of the function Fy presents
a separate problem. Theoretical study of evolution over time of this function in the magnetic
suspensions with a permanent viscosity of the currier liquid has been done in [63]. This model
is based on the analysis of a system of the Smoluchowski equations, which describes the kinetic of the
aggregation of the chains with a various number of particles.

In the case of cured magnetic gel, this evolution must be studied by taking into account change
and time of the rheological properties of the host polymer. Depending on the molecular structure of
the polymer, the concentration, and the chemical properties of the curing agent, these properties of
evolution can obey to different laws, which can hardly be presented in a general form. That is why here,
we suppose that the function Fy is known from either independent experiments or theoretical analysis.

By using the results [64,65] for the macroscopic stress in a system of chain-like polymer
macromolecules, we get the following estimate for the magnetic stress o("):

2 1|& (m
P N i=1

(Y

Here, v, is the volume of the particle.
By definition, the shear modulus of the composite G:

o
G=-—. (14)
Y
Let us introduce the dimensionless stresses:
F=g 0=, Fm=gl  F-50450,
(15)

. n n Y Y A2(.
7 = 1297 [glfilj”)l} Fv=-129T% & |5 + LGB |

_ M2~ n(a,_1iy_1+aniy)
—4’,3%#[”71_‘" INE Fn,
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and the dimensionless shear modulus of the composite G:

~ G 7
G=—=". 16
G 7 (16)

The shear modulus G(?) of the composite without a magnetic field can be found from Equation (12):

~ 0
G(o):%zlﬂpz aN_'_GN“‘ﬁNZ(l-i-AN) Fy. (17)
N

The magnetically induced part AG of the shear modulus can be calculated as (14):

R e -
AG =G — 0_ 7" _ 9P ZIANE — I | = R 1
G=G-G ; iF %‘4 NE [(ANE — nay)x, — na,_1x,_1)Fn, X o (18)

For the chain with each number N of the particles, the dimensionless displacements x; are
determined from the system of Equation (10), which can be presented in the form:

2(18+ pMZ ) x, — BMZx, = 36,
—BM2x;_q + 2(18 1 ﬁﬁg)xi — BM2xiq =36, 1<i<n, (19)
—BM2(a,_1 + ANE)x,_1 + {4NE (36 + [—;Mﬁ) - /31\713%} x, = 144nNE.

Substituting the solution of Equations (19) into (18), we determine the dimensionless modulus AG.

3. Results

In this part, we compare the results of our calculations with the experiments of [44]. It should
be noted that the distribution function Fy over number N of particles in the chains has not been
determined in [44]. That is why we used the simplest approximation that all chains consist of an
identical number N of particles. This number has been determined from the condition of the best
agreement between the calculated and the measured [44] values of the “no field” modulus G, Some
of the results of this comparison and the estimated magnitudes of N are given in Table 1.

Table 1. Comparison between the experimental [44] and our theoretical results for shear modulus GO
(no field is applied).

Experimental [45] Shear
Modulus of the Composite
without a Magnetic Field

Theoretical Shear Modulus Estimated Number
of the Composite without of Particles N in the

Volume
Concentration of

the Particles (MP2) a Magnetic Field (MPa) Chain
10% (V/V) iron 0.26 0.27 9
20% (V/V) iron 0.74 0.81 13

With respect to the real systems, the estimated N can be considered as a characteristic number of
the particles per chain.

A comparison of our calculations of the magnetically induced part AG of the shear modulus G
with the experiments of [44] are shown in Figure 3.
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Figure 3. The magnetically induced part AG of the shear modulus vs. the flux density B in the
composite. Lines—theory, dots—experiment [44]. The shear modulus of the matrix Gy = 60 kPa;
the initial magnetic susceptibility of the particle material x, = 100; the saturated magnetization of the
particle material Ms = 1670 kA /m; the volume concentration of the particles ¢ = 0.1 (a) and ¢ = 0.2 (b).

For the systems with the relatively low volume concentration of the particles (Figure 3a),
our results are in good agreement with experiments. Note that any unjustly fit parameters have
not been used in our calculation of the modulus AG. For the higher concentrations (Figure 3b),
the agreement is worse and rather, is only in the frame of the order of magnitude. The physical reason
of the worsening of the agreement between the theory and the experiment lies in the fact that besides
the linear chains, more topologically complicated branched, net-like, and bulk structures appear in
magnetic suspensions with a high concentration of particles [48-54]. The spatial disposition of the
particles is fixed with the host polymer gelation and determines the experimental results for the
cured composite. The analysis of morphology of these structures and their effect on the macroscopic
properties of the magnetic gels requires a special study. Note that, as a rule, the volume concentration
of the particles in ferrogels prepared for biological applications is in the frame of several per cent,
or even less than one per cent [9,39,41,66,67]. Figure 3a demonstrates that the present model leads to
appropriate results for the low concentrated systems with the internal chains.

Our analysis shows that the elastic modulus of the composite significantly depends on the
characteristic number N of the particles in the chains. The calculated dependencies of G on N are
shown in Figure 4 for the gels, with two different magnitudes of the elastic modulus Gy of the
polymer matrix.

These results demonstrate that by varying the number N of particles in the chains, one can vary
in a wide range of magnitudes, the mechanic modulus of the ferrogel. The relative increase of the
modulus under the field action is high in soft gels and is less pronounced in the rigid ones. Biological
ferrogels, which are used in various applications, are usually soft, with the modulus less than 10 kPa.
Therefore, their mechanical properties and behavior can be effectively controlled with the help of an
applied magnetic field.

The characteristic length of the chains is determined by the condition of the gel polymerization,
which is in part determined by the ratio between the kinetics of the particle’s aggregation and the rate
of the host polymer’s curing. Thus, by changing the condition of the system gelation, one can tune in
a wide range of the magnitudes of the macroscopic properties of the composite material.
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Figure 4. Shear modulus G vs. the total number of particles N. Squares—magnetic field is zero;
triangles—magnetic flux B = 0.7 T. Parameters of the system: the initial magnetic susceptibility of
the material of the particle material x, = 100; the saturated magnetization of the particle material
M; = 1670 kA /m; the volume concentration of the particles ¢ = 0.10. Shear modulus of the elastic
matrix Gy = 60 kPa (a) and 10 kPa (b).

4. Discussion

We present the results of the theoretical modeling of magnetorheological effects in magnetic gels
with chain-like aggregates. Unlike the previous theoretical models suggested in [44], this model does
not contain any unjustly fit parameters. In the frames of applicability of the hypothesis that only linear
chains appear at the stage of the composite synthesis (i.e., that only materials with low or moderate
concentrations of particles are considered), the model is in good agreement with the experiments
of [44] (see Figure 3a). This agreement indicates that the proposed model leads to adequate results for
the composite with the concentration of particles, at least in the frames of ten per cent. For the higher
concentrations, the appearance of topologically complicated structures is quite probable, and that is
why these concentrations are out of the scope of this model.

Note that the volume concentration of the particles in the magnetic gels that are synthesized
for biomedical applications, as a rule, is low and in the frames of several per cent (see,
for example [9,39,41,66,67] and the references therein). The systems with higher concentrations are
usually synthesized for various mechanical systems (dampers, actuators, etc.).

The obtained results can be considered as a theoretical background for the development of
technologies of magnetically controllable biosensors, scaffolds with tunable properties, and for
engineering and the regeneration of biological tissues.

In real magnetic gels, the distribution over chain size can be quite broad. At the same time,
the assumption of the identity of the chains in the composite, which was used in part 2 of this work,
is not necessary for the present model. Indeed, the relation 17 and relation 18 can be used to estimate
the elastic modulus if the distribution function Fp is known.

Unfortunately, the law of the size of distribution has not been studied in [44]. That is why,
and only because of that, that we have used the model of identical chains to compare our results with
the experiments [44]. The determined number N can be considered as an estimate of the characteristic
size of the chains in the real composites.

In principle, our approach allows the studying of the large shear deformations, including the
rupture of the chains, and Equations (1)—(3) can be solved numerically in nonlinear approximation
with respect to the particles’ displacement u;. This can be a natural continuation of the present work.
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Appendix

The coefficients used in relation to (9) for the symmetric stress 0 read:

1 4 2 2(N?—1) N2 -1
"N = Nagr N T NN+ DBy Nagt’ PN T NN 8oy N T NZ T
0 0 0 0 0
Here,
o = % , N=1,
2_q_ 7_
w= -t |2 ”W;;§WU]N>L
Po=3 N=1,
2_ /NZ_
Po = N21—1 [N_ = 2\1/;:122]\111\] 1)}’ N>1,
ay=% N=1,
In(2N?—1-2Nv/N2-1
oy = 4(1\1211)2[N(2N2_5) RELL Nzx/NZill - )}’ N>1,
Fy=3 N=1,
2 3In(2N?-14+2NVNZ -1
,56 = (Nzl_l)z {NI\;FZ - ( 2\/;\;2,1 )]' N>1.
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