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Abstract
Deep learning (DL) strategies applied to magnetic resonance (MR) images in positron emission tomography (PET)/MR can 
provide synthetic attenuation correction (AC) maps, and consequently PET images, more accurate than segmentation or atlas-
registration strategies. As first objective, we aim to investigate the best MR image to be used and the best point of the AC pipeline 
to insert the synthetic map in. Sixteen patients underwent a 18F-fluorodeoxyglucose (FDG) PET/computed tomography (CT) 
and a PET/MR brain study in the same day. PET/CT images were reconstructed with attenuation maps obtained: (1) from CT 
(reference), (2) from MR with an atlas-based and a segmentation-based method and (3) with a 2D UNet trained on MR image/
attenuation map pairs. As for MR, T1-weighted and Zero Time Echo (ZTE) images were considered; as for attenuation maps, 
CTs and 511 keV low-resolution attenuation maps were assessed. As second objective, we assessed the ability of DL strategies 
to provide proper AC maps in presence of cranial anatomy alterations due to surgery. Three 11C-methionine (METH) PET/MR 
studies were considered. PET images were reconstructed with attenuation maps obtained: (1) from diagnostic coregistered CT 
(reference), (2) from MR with an atlas-based and a segmentation-based method and (3) with 2D UNets trained on the sixteen 
FDG anatomically normal patients. Only UNets taking ZTE images in input were considered. FDG and METH PET images 
were quantitatively evaluated. As for anatomically normal FDG patients, UNet AC models generally provide an uptake estimate 
with lower bias than atlas-based or segmentation-based methods. The intersubject average bias on images corrected with UNet 
AC maps is always smaller than 1.5%, except for AC maps generated on too coarse grids. The intersubject bias variability is the 
lowest (always lower than 2%) for UNet AC maps coming from ZTE images, larger for other methods. UNet models working 
on MR ZTE images and generating synthetic CT or 511 keV low-resolution attenuation maps therefore provide the best results 
in terms of both accuracy and variability. As for METH anatomically altered patients, DL properly reconstructs anatomical 
alterations. Quantitative results on PET images confirm those found on anatomically normal FDG patients.
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Introduction

Several investigators have shown that synthetic computed 
tomography (CT) images can be obtained with deep learning 
(DL) strategies applied to magnetic resonance (MR) images 

[1–7]. This approach currently appears to be the most prom-
ising both in attenuation correction (AC) of positron emis-
sion tomography (PET) images in hybrid PET/MR scanners 
and in MR-based radiotherapy treatment planning [8, 9]. In 
this work, we focused on the AC of brain PET/MR stud-
ies, where the challenge is to estimate 511 keV gamma ray 
attenuation maps to correctly reconstruct the uptake of an 
injected radiotracer in brain areas.

The AC pipeline implemented in PET/MR scanners 
directly derives from PET/CT scanner AC pipelines and 
schematically consists of the following steps: (1) genera-
tion of a synthetic CT image corresponding to a high resolu-
tion map of tissue attenuation coefficients at ~80–120 keV; 
(2) conversion from ~80 to 120 keV attenuation coefficients 
to 511 keV attenuation coefficients by means of bilinear 
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or trilinear functions; (3) smoothing with Gaussian kernel 
to match PET low spatial resolution; (4) resampling on a 
coarser grid (for some vendors). The obtained 511 keV low-
resolution attenuation map (LRAM) is then used inside the 
PET image reconstruction process. Tools currently imple-
mented on PET/MR scanners generate synthetic CT images 
following atlas-based or segmentation-based methods. In 
atlas-based approaches, single or multiple pairs of MR/CT 
templates are registered to patient MR images; in segmen-
tation-based approaches, MR images are segmented in three 
or four tissue classes, and proper attenuation coefficients are 
then assigned to voxels in each class [10]. In brain studies, 
Ultrashort Echo Time (UTE) or Zero Echo Time (ZTE) MR 
sequences are generally used, thanks to their ability to col-
lect MR signal from bones [11].

Most of the DL approaches presented so far in literature 
for AC correction in PET/MR brain studies aim to construct 
synthetic CT images starting from diagnostic [12, 13] or non-
diagnostic [4, 14, 15] MR images. These methods outperform 
conventional synthetic CT construction methods, reducing 
the average bias in PET quantification from about 5% to 
about 2% [8, 9]. The rationale at the base of this work is that 
synthetic CTs, which are not used for diagnostic purpose, are 
not needed for AC in PET/MR studies if synthetic LRAM 
images can be directly generated. LRAMs contain informa-
tion at lower resolution and contrast than CTs, and therefore, 
simpler and leaner DL networks than those required to gen-
erate CTs may be sufficient. An approach of this kind has 
been followed by Spuhler et al. [3] who used a Convolutional 
Neural Network (CNN) to directly estimate LRAMs, starting 
from MR T1-weighted (T1) images. T1 images may however 
be suboptimal for X-ray attenuation estimation, since they 
do not collect any signal from air and cortical bone, which 
both appear comparably dark. ZTE images are expected to 
perform better than conventional sequences in this task, 
thanks to their ability to discriminate air and bone and to 
the inversely proportional relationship between ZTE signal 
intensity and attenuation coefficients in bones [16].

The aim of this work is therefore to generate LRAMs 
for AC in brain PET/MR from ZTE images and to compare 
their AC performance against T1-based LRAMs and T1- 
or ZTE-based synthetic CTs. A unique standard 2D UNet 
architecture [17] was used throughout the study. Synthetic 
images to be used at different points of the AC pipeline 
were generated, namely synthetic CTs, synthetic LRAMs 
before resampling and synthetic LRAMs after resampling. 
T1-weighted images or ZTE images were considered as 
inputs. AC-corrected reconstructed PET images were 
compared, taking as reference the ones obtained with 
patient-specific true CT images. The proposed methodolo-
gies were assessed both on normal and surgically altered 
cranial anatomies. Atlas-based and segmentation-based 
methods were also considered for comparison.

Material and Methods

Brief Literature Review

MR-based DL approaches presented so far in literature for 
AC correction in brain PET/MR are described in Table 1.

Patient Information

Two datasets were considered in this study. The first one 
(indicated as FDG dataset in the following) contains 
images of sixteen patients (9 men, 7 women, 68 ± 9 years 
old) who underwent a 18F-FDG PET/CT study (Dis-
covery-STE scanner, General Electric Medical Systems, 
GEMS, Waukeska, WI, USA) for a neurological evalu-
ation of cognitive impairment and accepted to perform 
a second scan on a PET/MR system (PET/MR SIGNA, 
GEMS, Waukeska, WI, USA). The double-study protocol 
was approved by the IRCCS San Raffaele Hospital local 
ethical committee and patients signed a written informed 
consent form. The second dataset (indicated as METH 
dataset in the following) contains images of three women 
who underwent a 11C-methionine-PET/MR study for 
oncological evaluation after radiotherapy. These patients 
were selected to test the proposed techniques as they pre-
sent cranial anatomy variations due to surgery. They all 
signed the informed consent allowing using images for 
research and educational purpose.

FDG PET/CT Data Acquisition

A standard 18F-FDG PET imaging procedure was per-
formed [18]. Patient preparation required at least 4 h of fast-
ing, an i.v. injection with 125–250 MBq (average 150 MBq) 
of 18F-FDG followed by an uptake time of 45 min to achieve 
an optimal cerebral uptake. Patients were then positioned 
on the PET/CT scanner bed with the head in a head holder 
(HH) to reduce head movements. The PET/CT acquisition 
protocol consisted of a low dose CT scan (120kVp, 30 mA) 
followed by a 3D PET study (15 min).

FDG PET/MR Data Acquisition

The PET/MR acquisition started at about 90 min from 
the FDG injection time. The PET/MR study consisted 
in four MR sequences (3D LAVA-Flex, 3D Proton Den-
sity weighted ZTE, T1-weighted 3D-BRAVO and 2D 
T2-weighted PROPELLER) acquired using a 32-channel 
coil array within a simultaneous 20-min PET scan. Only 
the first three MR sequences were used in this work. Acqui-
sition parameters were as follows:
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• Axial 3D LAVA-Flex: TR = 4 ms, TE = 1.7 and 2.23 ms, 
flip angle = 5˚, acquisition matrix = 256 × 128 × 480; recon-
structed matrix: 256 × 256, reconstructed FOV = 264 × 264 
 mm2, reconstructed voxel size = 1.95 × 1.95 × 2.6  mm3

• 3D ZTE: TR = 399.5 ms, TE = 0.016 ms, flip angle = 0.8˚, 
acquisition matrix = 110 × 110 × 166, reconstructed 
matrix = 128 × 128, reconstructed FOV = 264 × 264  mm2, 
reconstructed voxel size = 2.06 × 2.06 × 2.4  mm3

• Axial 3D T1-weighted (BRAVO): TR = 8.34  ms, 
TE = 3.10 ms, TI = 500 ms, flip angle = 12˚, acqui-
sition matr ix = 240 × 240 × 328, reconstructed 
matrix = 512 × 512, reconstructed FOV 240 × 240  mm2, 
reconstructed voxel size 0.47 × 0.47 × 0.5  mm3

511 KeV LRAM Generation for FDG Patients

FDG PET data acquired with the PET/CT scanner were 
reconstructed off line with the Recon Research Tool pro-
vided by GEMS (PETTOOLBOX 2.0). The reconstruction 
algorithm requires as inputs PET raw data and a LRAM. 
In the Discovery-STE PET/CT scanner AC pipeline, the 
LRAM is obtained by applying a bilinear scaling and a 
10-mm full width at half maximum (FWHM) Gaussian fil-
ter to CT images and by resampling the result on a coarse 
voxel grid of 5.47 × 5.47 × 3.27  mm3. Eight LRAM vol-
umes were generated:

• LRAMCT-System: LRAMs automatically generated by 
the PET/CT system after processing the original CT 
images reconstructed on a 0.8 × 0.8 × 2.5  mm3 voxel 
grid. To ensure coherence among multiple datasets, 
the bilinear scaling function used in the SIGNA PET/
MR system was used. PET images reconstructed with 
 LRAMCT-System were considered as reference. LRAMs 
obtained after the bilinear scaling and the 10  mm 

FWHM Gaussian filter but before the coarse grid res-
ampling were called  LRAMCT-System-HighRes and were 
used as reference output by UNets generating LRAMs 
before resampling, as described in the following.

• LRAMATLAS and  LRAMZTE: LRAMs automatically gen-
erated by the SIGNA PET/MR system with atlas-based 
and segmentation-based methods, respectively relying on 
LAVA-Flex and LAVA-Flex and ZTE sequences. Both 
 LRAMATLAS and  LRAMZTE accounted for the radiofre-
quency coil contribution to attenuation. To allow a com-
parison of the MR based attenuation maps when using 
PET emission data obtained in the PET/CT study session, 
the MR coil attenuation component had to be removed 
and substituted with the PET/CT head holder (HH). Vol-
umes were then registered to CT volumes by means of 
a rigid transformation with bilinear interpolation using 
MIPAV software (https:// mipav. cit. nih. gov/).

• LRAMCNN-ZTE and  LRAMCNN-T1: LRAMs obtained 
with a UNet trained on 0.8 × 0.8 × 2.5  mm3 
 LRAMCT-System-HighRes and ZTE (T1) pairs.

• LRAMCNN-ZTE-Coarse: LRAM obtained with a UNet 
trained on 5.47 × 5.47 × 3.27  mm3  LRAMCT-System and 
ZTE pairs.

• LRAMCNN-pseudoCT-ZTE and  LRAMCNN-pseudoCT-T1: 
LRAMs obtained applying the AC pipeline to pseu-
doCTs (pseudoCT-ZTE and pseudoCT-T1) obtained with 
a UNet trained on 0.8 × 0.8 × 2.5  mm3 CT and ZTE (T1) 
pairs.

The process of image generation is represented in Fig. 1.
Corresponding images are shown in Fig. 2.
CT,  LRAMCT-System-HighRes and  LRAMCT-System to be given 

as reference outputs to UNets were obtained by remov-
ing the HH. ZTE and T1 volumes to be given as inputs to 
UNets were obtained by correcting ZTE and T1 volumes for 

Table 1  MR-based DL approaches for AC correction in brain PET/MR

Ref Input Output Network No. in train and test Dice in 
bone 
regions

Regional PET bias PET 
surface 
error

Anatomic 
abnormalities

Gong et al. 2018 [14] Dixon pseudoCT 2.5D UNet 40 (cross validation) 0.76  < 3% (8 VOIs) No No
Dixon + ZTE pseudoCT 2.5D GroupUNet 14 (cross validation) 0.80  < 3% (8 VOIs) No No

Blanc-Durand et al. 
2019 [4]

ZTE PseudoCT 3D UNet Train 23 Test 47 No  < 2% (70 VOIs) No No

Arabi et al. 2019 [12] T1 PseudoCT 3D DL-AdvSS 40 (cross validation) 0.80  < 3.5% (63 VOIs) No No
Spuhler et al. 2019 

[3]
T1 LRAM 2D UNet Train 55 Test 11 No  < 3% (19 VOIs) No No

Tao et al. 2021 [13] T1 pseudoCT 2D cGAN 11 (cross validation) No No No No
Dixon pseudoCT 2D cGAN 10 (cross validation) No No No No

Gong et al. 2021 [15] T1 pseudoCT 2.5D GroupUNet 35 (cross validation) 0.84  < 2% (10 VOIs) Yes No
Dixon pseudoCT 2.5D GroupUNet 35 (cross validation) 0.84  < 2% (10 VOIs) Yes No
mUTE pseudoCT 2.5D GroupUNet 35 (cross validation) 0.87  < 2% (10 VOIs) Yes No
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magnetic field inhomogeneity using the N4 algorithm imple-
mented in the 3D Slicer Software [20, 21], by normalizing 
intensities on a case by case basis by median tissue values 
and by registering the resulting volumes to corresponding 
CTs by means of a rigid transform with bilinear interpolation 
using MIPAV software (https:// mipav. cit. nih. gov/). HH was 
lastly added to volumes estimated by UNets.

METH PET/MR and CT Data Acquisition

The PET/MR acquisition protocol for METH studies con-
sisted in axial 3D LAVA Flex and 3D ZTE sequences (already 
described in “FDG PET/MR Data Acquisition”) and in a set of 
diagnostic MR sequences acquired simultaneously to a 20-min 
PET scan. Patients had also a diagnostic CT scan (120 kVps, 
250–330 mA) performed to exclude complications immedi-
ately after surgery, about 1 month before the PET/MR session.

511 KeV LRAM Generation for METH patients

METH PET data acquired with the PET/RM scanner were 
reconstructed using five LRAM volumes:

• LRAMCT-System: LRAM generated off line with the Recon 
Research Tool provided by GEMS (PETTOOLBOX 2.0) 
starting from the diagnostic CT scan rigidly registered to 

corresponding RMs with MIPAV software (https:// mipav. 
cit. nih. gov/)

• LRAMATLAS and  LRAMZTE, automatically generated 
by the SIGNA PET/MR system with atlas-based and 
segmentation-based methods

• LRAMCNN-ZTE: LRAM obtained with a UNet trained on 
 LRAMCT-System-HighRes and ZTE pairs of the sixteen FDG 
patients, when receiving in input the patient ZTE volume

• LRAMCNN-pseudoCT-ZTE: LRAM obtained applying the AC 
pipeline to pseudoCTs obtained with a UNet trained on 
CT and ZTE pairs of the sixteen FDG patients, when 
receiving in input the patient ZTE volume

PET Reconstruction

FDG PET images were reconstructed with 3D Ordered 
Subsets Expectation Maximization (OSEM). OSEM 
parameters were constrained to be consistent to those used 
in our institution to reconstruct the PET database needed 
for Statistical Parametric Mapping (SPM) analysis [19] (2 
iterations, 24 subsets, FOV 25 cm, voxel grid 128, voxel 
size 1.95 × 1.95 × 3.27  mm3, Transaxial Gaussian Filter of 
4 mm FWHM, Axial-Post Filter Standard). METH PET 
images were reconstructed with 3D OSEM with time of 
flight (TOF) information. OSEM parameters were: 3 itera-
tions, 16 subsets, FOV 25 cm, voxel grid 128, voxel size 

Fig. 1  Scheme representing the considered LRAM volumes. In 
green, LRAMs automatically generated by the PET/CT scanner 
 (LRAMCT-System and  LRAMCT-System–HighRes, before coarse grid resa-
mpling) and by the PET/MR scanner  (LRAMZTE and  LRAMATLAS). 
In blue, LRAMs generated by UNets: (1)  LRAMCNN-T1 and 
 LRAMCNN-ZTE, respectively obtained with UNets trained on T1/
LRAMCT-System-HighRes and ZTE/LRAMCT-System-HighRes pairs; (2) 

 LRAMCNN-pseudoCT-T1 and  LRAMCNN-pseudoCT-ZTE, respectively 
obtained by scaling and filtering pseudoCTs obtained with UNets 
trained on T1/CT and ZTE/CT pairs; (3)  LRAMCNN-ZTE-Coarse 
obtained with a UNet trained on ZTE/LRAMCT-System pairs. Dotted 
lines indicate connections used for UNet training. Continuous lines 
indicate connections used both in UNet training and test
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1.95 × 1.95 × 3.27  mm3, Transaxial Gaussian Filter of 3 mm 
FWHM, Axial-Post Filter Standard.

U‑Net Architecture, Implementation and Parameters

A 2D UNet model was implemented in Keras with Tensor-
Flow as backend on a NVIDIA Quadro RTX 8000 GPU. 
The network architecture is shown in Fig. 3. The network 
takes in input a 2D axial slice of the ZTE (T1) volume and 
provides in output the corresponding slice of the estimated 
CT or LRAM volume. The UNet is composed by 5 con-
volution layers in the encoding/decoding part with 3 × 3 
kernels and Elu activation function. In encoding, each con-
volution layer is constituted by a first convolution extract-
ing 16/32/64/128/256 features, by dropout, by a second 
convolution extracting 16/32/64/128/256 features and by 
2 × 2 max-pooling. In decoding, feature maps from deeper 
layers are deconvolved with stride 2, concatenated with cor-
responding feature maps coming from the encoding part and 
given in input to a convolution layer identical to the encod-
ing one. The squared L2 norm of the difference between 
reference and UNet outputs was used as loss function dur-
ing training with the Adam stochastic optimization method 
(learning rate = 0.0005, β1 = 0.9, β2 = 0.999). UNet weights 
were initialized with the He Normal Keras initialization, i.e. 
weights were sampled from a truncated normal distribution 

N(0,σ) with � =
√

2∕� , where ν is the number of input units 
in the weight tensor.

On the FDG dataset, a leave-one-out (LOO) scheme was 
used to fairly evaluate the strategy performance on all the 
sixteen subjects. For each LOO run, twelve of the remaining 
patients were used for training and three for validation, with 
an early stopping on validation loss to prevent overfitting. 
On the METH dataset, UNets trained on the whole FDG 
dataset were used.

Data Analysis

As for the FDG dataset, PET images reconstructed with 
 LRAMCT-system,  LRAMATLAS,  LRAMZTE,  LRAMCNN-ZTE, 
 LRAMCNN-T1,  LRAMCNN-pseudoCT-ZTE,  LRAMCNN-pseudoCT-T1 
and  LRAMCNN-ZTE-Coarse were all normalized to the stereo-
tactic space by using the SPM software (https:// www. fil. ion. 
ucl. ac. uk/ spm/). PET images were then qualitatively evalu-
ated by two expert nuclear medicine physicians, who looked 
for differences in the radiotracer distribution depiction and 
ultimately in the clinical interpretation.

For each patient, a mask was defined on the reference 
(i.e. PET reconstructed with  LRAMCT-system) by selecting 
voxels with more than 1/10 of the FOV mean activity. This 
mask practically discards all background (air) voxels, which 
are not of interest for the analysis as they are not impacted 
by attenuation. PET images were then compared to the 

Fig. 2  Representative images for a FDG patient: a original CT 
and  LRAMCT-System, ground truth for AC; b MR T1, MR ZTE and 
 LRAMATLAS,  LRAMZTE generated by the PET/MR system for AC; c 
T1-based attenuation maps generated by the UNet:  LRAMCNN-T1 and 

pseudoCT-T1, from which  LRAMCNN-pseudoCT-T1 is obtained; d ZTE-
based attenuation maps generated by the UNet:  LRAMCNN-ZTE and 
pseudoCT-ZTE, from which  LRAMCNN-pseudoCT-ZTE is obtained
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Fig. 3  UNet architecture scheme. The same architecture was used in all the experiments
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reference inside the mask in terms of mean-error (ME) and 
root mean-square-error (RMSE), defined as follows:

PET images were finally quantified on a regional basis inside 
six macro volumes of interest (VOIs) (Fig. 4) identified on the 
automated-anatomical-labelling (AAL) atlas [22]. In each 
lobe, we specifically chose the most critical areas for attenu-
ation factor estimation: (1) frontal superior orbital and frontal 
mid orbital region in the frontal lobe; (2) frontal superior and 
frontal mid region in the frontal lobe; (3) calcarine, cuneus and 
lingual region in the occipital lobe; (4) parietal superior and 
inferior areas in the parietal lobe; (5) temporal inferior areas 
in the temporal lobe; (6) whole cerebellum. Bilateral regions 
were always used. Significant differences with respect to the 
reference were assessed by means of the Mann Whitney test.

As for the METH dataset, multiple 2D ROIs were manu-
ally delineated on registered CT images in the anatomically 
altered region. Mean PET counts in each ROI were then 
computed and compared, taking as reference the counts 
obtained on PET images reconstructed with  LRAMCT-system. 
ROI examples are shown in Fig. 5.

Results

As for the FDG dataset, visual image analysis did not reveal 
any qualitative differences or visually recognizable artefacts 
in any of the sixteen patients. In Fig. 6, a representative 
transaxial PET image is shown for three patients (A, B, C) 
reconstructed using the eight considered LRAMs. Patients B 
and C show regions of reduced uptake (white arrows) which 
are due to their brain dysfunction.
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ME and RMSE computed on PET images are shown in 
Fig. 7.

Atlas-based and segmentation-based LRAMs together 
with LRAMs computed on the coarse voxel grid provide 
the largest error on PET images. Errors are smaller and com-
parable on PET images corrected with LRAMs computed on 
the finer grid and with LRAMs derived from pseudoCTs. 
In particular, LRAMs obtained from ZTE provide smaller 
bias and smaller variability than LRAMs obtained from 
T1-weighted images.

Results of the regional analysis are shown in Fig. 8.
Atlas-based LRAM and segmentation-based LRAM 

provide a null intersubject 18F-FDG uptake average bias 
respectively in frontal region and temporal lobe, but larger 
bias in the other regions. In particular,  LRAMATLAS induces 
a 3% average bias in temporal and parietal lobes,  LRAMZTE 
a nearly 3% average bias in parietal lobe and frontal supe-
rior region. Similarly, LRAM computed from coarse grid 
ZTE generates a negligible average bias in the frontal region, 
but an unacceptably large bias in most of the other regions. 
LRAMs derived from pseudoCT and those directly esti-
mated on the finer grid, from both ZTE and T1-weighted 
images, perform more regularly among regions, with an 
intersubject 18F-FDG uptake average bias always smaller 
than 1.5%. The intersubject bias variability is large for 
 LRAMCNN-ZTE-Coarse and for LRAMs generated starting from 
T1-weighted images. It is instead the lowest (always lower 
than 2%) for LRAMs obtained with UNet and ZTE images. 
No differences with respect to the reference resulted statisti-
cally significant.

As for the METH dataset, original CTs and corresponding 
pseudoCTs generated by the UNet trained on the anatomi-
cally normal FDG patients are shown in Fig. 9. Anatomic 
variations appear all well reconstructed.

In Fig. 10, original CTs and LRAMs generated by the 
PET/MR system  (LRAMZTE,  LRAMATLAS) and by the UNet 
 (LRAMCNN-pseudoCT-ZTE,  LRAMCNN-ZTE) are shown for a 
METH patient.

Results of the regional analysis for a METH patient (over 29 
ROIs corresponding to 29 brain consecutive image sections) are 

Fig. 4  VOIs for regional quantification of FDG PET images
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shown in Fig. 11.  LRAMCNN-ZTE and  LRAMCNN-PseudoCT-ZTE 
appear able to provide values similar to  LRAMCT-System 
with respect to  LRAMZTE and  LRAMALTAS. Globally, 

 LRAMCNN-ZTE,  LRAMCNN-PseudoCT-ZTE and  LRAMZTE obtained 
a mean error smaller than 2% in all the three patients; 
 LRAMATLAs on a patient got a mean error of 4%.

Fig. 5  Four representative 
images (CT (left) and PET 
(right)) of a METH patient with 
superimposed ROIs for PET 
quantification in the anatomi-
cally altered region

Fig. 6  A representative PET transaxial image for three different 
patients (A, B, C) reconstructed using the eight LRAMs. No vis-
ible technical artefacts can be recognized in any of the reconstructed 

images as well as in the comparison with the reference (first column). 
Regions of lower uptake (arrows) were confirmed by physicians as 
result of the patient pathology
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Discussion

Many works in literature have already shown that deep learn-
ing strategies applied to MR images in PET/MR are able to 
provide synthetic AC maps, and consequently PET images, 
more accurate than segmentation or atlas-registration strat-
egies. In this work, we investigated the best MR image to 
be used and the best point of the AC pipeline to insert the 
synthetic map in. For this reason, we used the same UNet 
architecture throughout the study and evaluated all the pos-
sible inputs/outputs combinations.

The assessment was firstly done on FDG PET data 
acquired on a PET/CT scanner and reconstructed with the 
vendor offline tool. MR images of the same patient to be 
given in input to the UNet were acquired on a PET/MR scan-
ner. MR images were corrected for bias field inhomogene-
ity, normalized and registered to CT images; MR coils were 
removed and substituted with the CT HH. We can confirm 
the results obtained by other authors [2] about the greater 
importance of data pre-processing (bias field correction and 
spatial registration) compared to CNN architecture parame-
ters and hyperparameters (results not shown). We think that, 

probably, even better results could be obtained by further 
improving these data pre-processing steps.

Sixteen patients were considered and a LOO training/
testing scheme was adopted. A 2D UNet with 5 levels of 
convolution in the encoding/decoding parts was successfully 
trained on 12 patients with an early stopping on the valida-
tion loss computed on 3 patients. PET images reconstructed 
with AC maps estimated by the UNet were quantitatively 
compared to reference PET reconstructed with AC maps 
derived from acquired CT data. Attenuation maps generated 
by the PET/MR scanner were also assessed, for comparison.

Results show that UNet AC models generally provide an 
estimate of 18F-FDG uptake with a lower bias than state-of-
the-art atlas-based or segmentation-based AC methods. This 
confirms the results previously obtained by other authors [4, 
8, 12–14]. As for the best point in the AC pipeline to insert 
the synthetic map, results show that it is nearly equivalent 
to generate synthetic CT or directly LRAM after bilinear 
scaling and low pass filtering. Synthetic CTs provide a mean 
average bias of −0.7% (−1.0%) and a mean average vari-
ability of 2.4% (1.1%) among brain regions, if obtained from 
T1-weighted (ZTE) images; LRAM has a mean average bias 

Fig. 7  ME and RMSE com-
puted on FDG PET images. For 
each LRAMs, mean and stand-
ard deviation were computed 
across the sixteen patients

440 Journal of Digital Imaging  (2022) 35:432–445

1 3



of −0.7% (−0.8%) and a mean average variability of 2.5% 
(1.4%). It is instead not recommended to generate LRAM 
after the coarse resampling: in this condition, average bias 
and bias variability nearly double. The MR image resam-
pling on the coarse grid induces in fact an excessive detail 
loss which leads to the reconstruction of incorrect LRAM 
and PET images. As regards instead the best MR sequence, 
results show that the average bias among patients is nearly 
the same on images corrected with AC maps obtained from 
ZTE and T1-weighted images. Only in the frontal region 
the average bias is larger on images coming from ZTE 
images (about −1.3%) and lower on images coming from 
T1-weighted images (about −0.5%). If, however, we look at 
the bias variability, results clearly show that the least vari-
ability is obtained with AC methods that exploit ZTE infor-
mation. This also confirms the results previously obtained 
by other authors [16]. In particular, we observed that the 
same UNet architecture for CT (LRAM) generation provides 
on average a 120% (70%) lower variability when working 
on ZTE images than on T1 images. This can be explained 

by the fact that a CNN can always “learn” the characteris-
tics of the population on average, but accurate prediction at 
the individual level requires subject-specific information to 
be present in the input layer. Overall, we can conclude that 
UNet models working on ZTE and generating synthetic CT 
or LRAM provide the best results in terms of both accuracy 
and variability.

To contextualize these numbers within the clinical 
application, we analysed a typical 18F-FDG brain analysis 
pipeline, which involves pixel-wise statistical compari-
sons against a pool of healthy controls [23]. We found 
that, after image scaling to the mean brain activity, the 
coefficient of variation among subjects lies between 7 and 
9%, depending on the location. This means that, even at 
very liberal statistical thresholds (p < 0.01; uncorrected), 
regions are highlighted as hypometabolic only when the 
activity reduction is at least larger than 14%. Indeed, in 
a group comparison on a large number of Alzheimer’s 
disease subjects [23], we observed a 19% average activity 
reduction in the most impacted region, the parietal lobe.  

Fig. 8  Results of the regional analysis of FDG PET images inside six macro-VOIs
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It is therefore very important to have a systematic bias 
less than 1% in all the regions and a standard deviation 
smaller than 2% as provided by ZTE-based AC methods, 

since these values are mostly guaranteed not to signifi-
cantly influence the outcome and therefore to provide 
robust quantification.

Fig. 9  METH patients. Original CTs and corresponding pseudoCTs generated by the UNet

Fig. 10  Three representative sections of a METH patient: original CT (left) and corresponding LRAMs,  LRAMCNN-pseudoCT-ZTE,  LRAMCNN-ZTE, 
 LRAMZTE,  LRAMATLAS
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We successively assessed the UNet ability to provide AC 
maps on three PET/MR METH patients with anatomical 
abnormalities due to surgery. We did not use T1 images in 
this case, but only ZTE images which intrinsically contain 
the whole information needed for AC. UNets trained on 
the sixteen anatomically normal FDG patients on ZTE/CT 
and on ZTE/LRAMCT-System pairs resulted able to correctly 
reconstruct bone abnormalities, with improved accuracy 
with respect to  LRAMATLAS and  LRAMZTE. The generation 
of LRAM volumes, which intrinsically have a low resolu-
tion, resulted less sensitive to such anatomical variations 
respect to the generation of high resolution CT volumes. 
PET mages were quantified near bone abnormalities and 
results were compared with those obtained with AC coming 
from coregistered diagnostic CTs. Results confirmed those 
obtained on the FDG dataset. Further studies on this kind of 
patient/lesions are however needed.

This study has several limitations, which will be dis-
cussed in the following.

• We chose to use a 2D UNet instead of the best-performing 
2.5D or 3D UNets because of the scarce number of patients. 
However, we do not believe that the results obtained in 
terms of best MR sequence and best synthetic image inser-
tion point would change as the network changes. Other 
strategies have been recently proposed in literature, such as 
GAN or cycleGAN [13], which could provide better results 
thanks to their robustness to misregistration. The generator 
used by most of this network is however a 2D UNet, like 
the one used in this study. Furthermore, these networks 
require a larger number of patients to be trained. We think 
we should invest in these networks for abdominal PET/MR 
AC, where misregistration is definitely a challenge; in brain 
studies, simpler strategies may be sufficient.

• In this work, the AC correction pipeline implemented 
on our PET/CT and PET/MR scanner was considered. 
Other vendors probably use slightly different pipelines, 
e.g. with a reduced low pass filter FWHM of with a less 
coarse resampling grid. Indeed, this was one of the rea-
sons motivating our choice to compare synthetic image 
insertion into different points of the AC pipeline. If 
nearly equivalent PET was obtained generating CTs or 
LRAMs after 10 mm filtering, we think that equivalent 
PETs will be also obtained if generating less filtered 
LRAMs.

• A further limitation is due to the smaller axial FOV of 
the PET/CT scanner (15.7 cm) compared to the wider 
axial FOV of the PET/MR scanner (25.0 cm). In order 
to obtain pairs of well spatially correlated CT-MR data, 
we necessarily had to remove the lower neck region from 
MR images. However, considering that the lower neck 
region is generally not crucial for brain neurological 
evaluations, this limitation reasonably seems not critical 
for the work.

Conclusions

In this work, we generated synthetic images for AC correc-
tion in brain PET/MR from ZTE or T1 images by means of 
a 2D UNet. The first objective was to understand which of 
the two MR sequences is able to provide more accurate AC 
maps and PET images. Results obtained on the 16 anatomi-
cally normal FDG patients show that ZTE provides a com-
parable intersubject average bias on PET images, but a lower 
intersubject bias variability with respect to T1. ZTE results 
appear also accurate on the 3 methionine patients containing 
cranial anatomy abnormalities due to surgery. Well knowing 

Fig. 11  Results of the regional analysis for a METH patient (over 29 ROIs). Mean counts are computed on PET images reconstructed with dif-
ferent LRAMs inside ROIs manually delineated on cranial anatomical abnormalities
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the PET/MR AC pipeline which does not make a full usage 
of the synthetic CT information but uses a reduced contrast 
and a reduced spatial resolution version (LRAM), as a sec-
ond objective, we wanted to understand whether there are 
differences in generating UNet images at different points of 
the AC pipeline. Results obtained on both the 16 anatomi-
cally normal FDG patients and the 3 methionine patients 
show that you can equivalently generate synthetic CTs or 
LRAMs after bilinear scaling and smoothing but before 
coarse resampling.
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