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� Abstract
Clustering-based algorithms for automated analysis of flow cytometry datasets have
achieved more efficient and objective analysis than manual processing. Clustering
organizes flow cytometry data into subpopulations with substantially homogenous
characteristics but does not directly address the important problem of identifying the
salient differences in subpopulations between subjects and groups. Here, we address
this problem by augmenting SWIFT—a mixture model based clustering algorithm
reported previously. First, we show that SWIFT clustering using a “template” mixture
model, in which all subpopulations are represented, identifies small differences in cell
numbers per subpopulation between samples. Second, we demonstrate that resolution
of inter-sample differences is increased by “competition” wherein a joint model is
formed by combining the mixture model templates obtained from different groups. In
the joint model, clusters from individual groups compete for the assignment of cells,
sharpening differences between samples, particularly differences representing subpopu-
lation shifts that are masked under clustering with a single template model. The benefit
of competition was demonstrated first with a semisynthetic dataset obtained by deliber-
ately shifting a known subpopulation within an actual flow cytometry sample. Single
templates correctly identified changes in the number of cells in the subpopulation, but
only the competition method detected small changes in median fluorescence. In further
validation studies, competition identified a larger number of significantly altered sub-
populations between young and elderly subjects. This enrichment was specific, because
competition between templates from consensus male and female samples did not
improve the detection of age-related differences. Several changes between the young
and elderly identified by SWIFT template competition were consistent with known
alterations in the elderly, and additional altered subpopulations were also identified.
Alternative algorithms detected far fewer significantly altered clusters. Thus SWIFT
template competition is a powerful approach to sharpen comparisons between selected
groups in flow cytometry datasets. VC 2015 The Authors. Published Wiley Periodicals Inc.
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INTRODUCTION

IN response to the increasing complexity and dimensionality of flow cytometry data,

several algorithms have recently been developed to automate the identification and/

or quantification of cell populations in flow cytometry data (1–11). Some algorithms

function by automating the traditional manual gating procedure for detecting and

isolating specific subpopulations of interest, others attempt to completely resolve

cells within a sample into clusters that ideally correspond to biologically meaningful

subpopulations. Among the latter class of techniques, algorithms based on probabil-
istic models can describe overlapping subpopulations commonly observed in flow

cytometry. These algorithms may therefore provide a better description of the overall

dataset, although individual cells are not unambiguously labeled by such methods.
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We have previously described a model-based algorithm,

SWIFT, that provides high-resolution analysis of high-

dimensional flow cytometry samples and is capable of detecting

extremely small subpopulations (8,10,11). SWIFT generates a

probabilistic mixture model description for the observed data

in a sample, and each mixture model component is then equa-

ted to a (soft) cluster. The model can also serve as a cluster tem-

plate to which additional samples may be readily assigned by

computing posterior probabilities of membership in each of

the clusters for each cell in the sample. To facilitate comparisons

across multiple samples when some subpopulations exist only

in a subset of the samples (e.g., negative control samples may

lack stimulated cells), the cluster template should be obtained

from a sample that contains all the subpopulations to be ana-

lyzed. With this requirement met, the template-assign proce-

dure ensures that all samples can be compared using identical

cluster descriptions with no “missing” subpopulations (11).

The cluster template approach is effective for comparing the

number of cells in each cluster, across many different subjects

and experimental conditions. Comparisons of cell numbers in

specified subpopulations is a major outcome measured in flow

cytometry analysis. Because cells are assigned to each cluster on

the basis of their probability of belonging to that cluster, rather

than according to a rigidly defined boundary, the cluster tem-

plate approach allows meaningful comparison of cell numbers

in subpopulation clusters even when uncontrolled experimental

variations cause minor shifts in the fluorescence intensity of

markers between different samples.

However, with clearly distinct subpopulations, changes in

intensity that may also provide information about differences

between sample groups can be masked by the basic cluster

template assignment procedure outlined above. To address

this limitation, we have developed a modification of the basic

cluster template method using competition between cluster

templates to sharpen distinctions between cell populations in

different samples. The validity of this approach has been con-

firmed on semisynthetic samples and a clinical study of

human T cell differences between young and elderly subjects.

METHODS

SWIFT Clustering and Templates

The SWIFT algorithm (10) clusters samples via a three

step process with essential details as follows: In the first step, a

Gaussian mixture model with specified number of components

is fit to the data using the Expectation Maximization (EM)

algorithm with an iteratively weighted sampling procedure that

improves scalability and resolution of smaller clusters. The sec-

ond step examines each of these clusters individually, and if

necessary, splits individual clusters into additional Gaussian

mixtures until all clusters are unimodal along individual

dimensions. The third step examines and merges pairs of clus-

ters that appear unimodal along the axis of maximal separation

identified by linear discriminant analysis. The end result after

this agglomerative merging step is a hierarchical mixture model

in which each mixture component is itself composed of one or

more Gaussian components that were obtained from the

splitting phase. The merging and splitting steps are important

for three reasons: for automatically adjusting the number of

clusters to mitigate the dependence on the initial operator-

supplied number; for identifying very small populations; and

for representing skewed non-Gaussian clusters as agglomera-

tions of smaller Gaussian components. SWIFT generates several

output files, including a cluster template that provides all rele-

vant mixture model parameters, including means and covari-

ance matrices for the multivariate Gaussian mixture

components in the primary and split clusterings, and a list of

merging indices that identifies the post-split Gaussian clusters

that constitute each merged cluster. This template is critically

important as multiple samples in a dataset can be assigned to

the template, allowing samples and groups to be compared

between matched clusters. The cluster template derived from a

single SWIFT clustering analysis of a sample (or consensus

sample) will be referred to as a Single Clustering Run (SCR)

template.

Combining Templates

The swift_template_combine program (included in the

currently-distributed version of SWIFT (10,11)) combines

SCR templates from multiple SWIFT analyses into one Joint

template, provided the flow cytometry input parameters are

identical across the templates and the per-channel data trans-

formations are close. Specifically, the Joint template includes

all final mixture model components in each of the constituent

SCR templates, in the same relative proportions, e.g., if two

templates are combined, all proportions will be reduced two-

fold. A CSV file is created referencing the Joint template clus-

ter indices to prior cluster indices from the parent templates.

Multiple samples can then be assigned to the Joint template.

As the constituent sets of clusters will compete for cell assign-

ment, this will be referred to as cluster template competition.

Single Cluster Isolation, Transformation, and

ReInsertion

A human sample of peripheral blood mononuclear cells

(PBMCs) was clustered in SWIFT, sample events were stochas-

tically assigned to the cluster template and an individual cluster

(#22) selected. All events in cluster #22 were isolated and saved

in a new FCS file, with modifications that were manually
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specified in a CSV file as part of the input to the cluster isola-

tion program. After compensation (matrix left division), and

transformation (inverse hyperbolic sine) using the same param-

eters as in the original SWIFT analysis, the cluster was modified

in the transformed space by shifting the position, i.e., uniformly

changing the scale of the fluorescence values by specified

amounts in the CD4, CD8, CD14, and CD45RA dimensions as

shown in Supporting Information Figure S2. In addition to the

modified cluster shown in Supporting Information Figure S2

(CD4 median 10,000), three more modified clusters were pro-

duced with CD4 medians of 20,000, 30,000, and 40,000. Finally,

the events were converted back to instrument space by untrans-

forming (hyperbolic sine), then uncompensating (matrix mul-

tiplication), then saving as a new FCS file. The resulting

modified single-cluster FCS files were then concatenated (in

different proportions) with a 10% random subsample of the

initial sample, so that each resulting concatenated FCS file con-

tained all normal cell subpopulations, plus a new “target” sub-

population at a specified location and size. These semisynthetic

FCS files were then clustered in SWIFT as usual.

Clinical Samples

Blood was collected from healthy human subjects, ages

19–82 years, in two studies performed in 2003 (Study 1) and

2012 (Study 2). PBMCs were isolated from sodium hepari-

nized peripheral blood by Ficoll-HypaqueTM gradient centrif-

ugation, washed and cryopreserved in 90% FBS and 10%

DMSO (Sigma-Aldrich, St. Louis, MO). Cells were frozen to

2808C using an isopropanol-filled, controlled-rate freezing

device. After 24 2 48 h at 2808C, the vials were transferred

into liquid nitrogen. All procedures and the consent form

were approved by the Research Subjects Review Board at the

University of Rochester Medical Center, Rochester, New York.

Ages and genders of the subjects are shown in Supporting

Information Table 1.

Flow Cytometric Analysis

PBMC were thawed in RPMI 1640 (Cellgro, Manassas,

VA), supplemented with penicillin (50 IU/mL)-streptomycin

(50 mg/mL) (GIBCO, Carlsbad, CA), 10 mg/mL DNase (Sigma-

Aldrich, St. Louis, MO) and 8% FBS (assay medium). Cells

were centrifuged and re-suspended in RPMI 1640, supple-

mented with 8% FBS. PBMC were labeled with a 15-color T

cell phenotyping panel of antibodies (Supporting Information

Table 2) using a micromethod (12,13). Cell data were acquired

using an LSR II cytometer (BD Immunocytometry Systems).

All samples from both studies were analyzed in a single batch,

so that no normalization needed to be applied to the data.

Data Processing Workflow (Summarized in

Supporting Information Fig. S1)

Compensation was examined manually, and adjusted

where necessary. Consensus samples were produced by con-

catenating equal numbers of cells from random sub-samples

from all samples in each experimental group, e.g., concatenat-

ing all samples from elderly subjects to produce a consensus

Old sample. The consensus samples were clustered in SWIFT,

to generate a SWIFT mixture model that clustered the events

into mixture model components. The resulting templates

(probability distributions for membership in each cluster)

were then used to assign all events (fractionally) in all individ-

ual samples in both subject groups. In addition to assigning

all samples to the individual templates, the samples were also

assigned to combination templates in which the clusters

derived from the two constituent templates competed for

event assignment. For each cluster, the numbers of events in

each sample were tested for statistical significance using the

distribution-free two-tailed Wilcoxon test to compute p values

for each cluster, comparing e.g., young versus elderly or male

versus female subjects for each cluster. The P values were

adjusted using the Benjamini-Hochberg correction (14) for

multiple tests, with a false discovery rate of 5%.

The clusters were also normalized using z-scores and

were used to classify young or elderly subjects using a linear

Support Vector Machine (SVM), a supervised learning

method (15). The SVM classifies samples by finding the

hyper-plane in a high dimensional space that maximizes the

margin between the two classes. The SVM is robust and effec-

tive especially when the number of features (clusters) is

greater than the number of samples (16).

Availability

Raw FCS data are publically available at http://flowrepo-

sitory.org (17), under repository ID FR-FCM-ZZGS.

The SWIFT suite of programs, in MATLAB (Release

2014b, The MathWorks, Inc., Natick, MA), includes the tools

required for consensus sample construction and template

competition, and is freely available on request from: http://

www.ece.rochester.edu/projects/siplab/Software/SWIFT.html.

RESULTS

Strategy for Detecting Size Versus Fluorescence

Intensity Variations in Clusters Across Samples

The SWIFT clustering algorithm produces a cluster tem-

plate that describes the probability density of the observed

flow cytometry measurements as a mixture of components (or

clusters), each of which is composed of one or more multivar-

iate Gaussians. Cells in the same sample, or any other sample

analyzed under the same conditions, are assigned to clusters

based on their probability of belonging to each cluster (10).

Therefore, the semantics of populations in similar locations

across multiple assigned samples are preserved. Assignment

can be fractional (partial membership in multiple clusters), or

stochastic (full membership in single clusters). This method

effectively quantifies the number of cells per cluster across

samples, e.g., distinguishing between stimulated and unstimu-

lated samples (11), as diagrammed in Fig. 1A, in which the

clusters are represented by variable shading to emphasize the

probabilistic nature of the cluster template. Provided that the

template is produced from a sample (or consensus sample)

containing all clusters to be analyzed, the cluster template

assignment procedure is able to quantify cells in rare subpo-

pulations, down to zero, and is robust to small differences in

the position of the subpopulation in different samples.
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However, if a population has a different median fluores-

cence intensity in one or more channels (i.e., shift in

position), the population will be assigned to the nearest avail-

able cluster within the template (Fig. 1B, clusters depicted as

circles for clarity). This may still be the appropriate cluster,

but this process loses the information that the subpopulation

has shifted. Both numbers of cells/cluster and the positions of

the clusters may provide information about differences

between subject groups. Therefore, we have sought to capture

both types of information by combining two SCR templates

into a Joint template. When a sample is assigned to the Joint

template, clusters associated with each of the two templates

compete for cells, so that each subpopulation will be assigned

to a cluster that provides the best “fit” (Fig. 1B).

Semisynthetic Data for Evaluating Competition

Assigning multiple samples to a single SCR template was

first compared to the competition method using semisynthetic

datasets constructed by isolating one cluster of cells from an

actual human PBMC sample, modifying the location of this

cluster in four channels, and inserting the modified cluster into

a normal PBMC sample from the same experiment (Support-

ing Information Fig. S2). This strategy was designed to keep the

final sample as close as possible to real biological data, while

allowing precise identification of the altered cluster. The con-

struction of semisynthetic samples allowed clear analysis of the

different requirements for resolving changes in cell numbers or

positions of clusters in different samples.

Cell Number Differences Detected by SCR Templates

The semisynthetic approach was first used to confirm that

SCR template assignment identified differences in the NUM-

BER of cells per cluster, without change in the median fluores-

cence values. A single SWIFT cluster (1,042 cells) was isolated

from a PBMC sample, and its values in four channels (CD3,

CD4, CD8, CD14) were modified (Supporting Information Fig.

S2) by moving to a region (CD41CD32 CD81CD141) that

was relatively empty in the original dataset, allowing the behav-

ior of SWIFT assignment to be analyzed with minimal interfer-

ence from neighboring clusters. This modified target cluster

was then added at different cell numbers to a normal sample,

resulting in samples containing 0, 20, 40, 60, 80, and 100% of

the target cluster. A SWIFT cluster template was constructed

from the 100% sample, and each sample was assigned to this

SCR template. Figure 2A shows that SWIFT correctly identified

the number of cells in the added cluster, confirming that the

SCR template/assignment strategy correctly quantifies changes

in the number of cells in each population.

Moderate Shifts in Fluorescence Are Not Identified by

SCR Templates

We next asked whether changes in the POSITION of the

cluster could be detected by SCR templates. The same

Figure 1. Strategy for competitive cluster template assignment. A: SWIFT identifies clusters as a mixture of unimodal probability density

distributions, indicated by the shaded circles in the lower panels. Note that the small black subpopulation can only be identified in a tem-

plate produced from the stimulated sample. B: Using a template derived from a single sample, cells are captured by the nearest cluster,

even if this is not a perfect match, e.g., the red population in Samples X and Y. However, if a Joint template is produced from the X and Y

Single Clustering Run (SCR) templates, each subpopulation in each sample is captured selectively by the best-fitting cluster. Bar graphs

show percent allocations of cells from each subpopulation to clusters for the patterns shown in the scatterplots. SCR templates capture

the two subpopulations within a single cluster without identifying the shifts in population medians, whereas the Joint template reveals

the altered positions as the fraction of assignments to clusters from templates derived from X and Y.
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modified cluster (at 100%) was added to the full sample at

different median CD4 fluorescence intensities (Fig. 2B, Sam-

ples W, X, Y, Z). SWIFT cluster templates were produced by

independent clustering analyses of all four samples, and each

sample was assigned to each template. During assignment to

a template, events are assigned on the basis of probability of

belonging to a particular cluster, therefore if no other cluster

interferes, cells in a shifted population (e.g., the target cluster

in sample W versus Z) will still be assigned to the same clus-

ter unless there is a nearby cluster that could compete. Figure

2C shows that each SCR template detected the added cluster

in sample A at the same numbers, i.e., the shift in cluster

position was not detected.

Template Competition Detects Populations That

Change Fluorescence Intensity

To detect changes in the position of equivalent clusters in

different samples, we combined templates X, Y, Z pairwise

with template W. When samples are assigned to a Joint

template, all clusters that are described equally in the two con-

stituent SCR templates (in this case, all clusters from the back-

ground sample) should be assigned about 50% of the cells in

their relevant population. However, the added population in

W should fit better (i.e., >50% capture of cells) in the relevant

cluster in template W, compared to the relevant clusters in the

other three templates. Figure 2D shows the expected bias in

assignment, increasing progressively as the CD4 median inten-

sity was increased, up to a 5.5-fold preference for the W tem-

plate cluster to capture the target population in W, when

competed with template Z. Thus the Joint template competi-

tion method identifies populations that change intensity

between samples, even when the clusters overlap, and the

number of cells per cluster does not change.

Aging Studies—Consensus Samples and Templates

The cluster competition method was then used to analyze

the differences between PBMC samples from the young and

elderly subject groups. We predicted that if the SCR templates

Figure 2. Performance of basic and competitive cluster assignment using semisynthetic data. A single SWIFT cluster was isolated from a

human PBMC flow cytometry sample, modified by uniformly changing the scale of the CD3, CD4, CD8, and CD14 parameters, and added

back to a random 10% subset of the original sample (Supporting Information Fig. S2). A: Graded numbers, from 0 to 1,042 cells, of the tar-

get subpopulation were added. A cluster template was produced from the sample with 1,042 target cells, and all samples were assigned

to this template. The plot shows the correspondence between the number of cells assigned to the relevant cluster by swift_assign_main,

versus the actual number added. B: The target subpopulation was modified by changing the median CD4 fluorescence intensity in four

increments (W, X, Y, Z), and each was added to the random 10% subset of the original sample. C: SWIFT cluster templates were produced

from samples W, X, Y, Z and Sample A was assigned to each template. The cluster containing the target cells in each template was identi-

fied, and the figure shows the number of cells assigned to those clusters. D: The templates from C were combined pairwise with the Sam-

ple W template, and sample W assigned to each Joint template. Black bars show the number of target cells captured by the relevant

cluster in template W, and red bars show the target cells captured by the competing template in each Joint template pair. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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and the Joint templates were applied to two groups with genu-

ine differences, then the SCR templates should reveal some

group-specific alterations, and this number should be

increased by the Joint template competition approach.

PBMC from 19 young (19 2 35 years old) and 20

elderly (60 2 79 years old) subjects in the Aging 1 study

were analyzed with a 15-color phenotyping panel focused

on T cells (Supporting Information Table 2). Consensus

samples of 4 million cells were then constructed by ran-

dom sampling of equal numbers of cells from the resulting

data files, in three groups: Total (all subjects); Young; and

Old. The construction of consensus samples was important

to ensure that all subpopulations in all samples were repre-

sented in the final cluster template, and to avoid giving

undue weight to any particular sample. Each consensus

sample was then clustered independently in SWIFT, result-

ing in Total, Young and Old SCR templates with 769, 881,

and 634 merged clusters, respectively. The Young and Old

SCR templates were then combined using swift_template_-

combine, yielding the Joint Young/Old template (1,515

clusters). All samples were then individually assigned to

these four templates. A flow diagram summarizing these

steps is provided in Supporting Information Figure S1.

Competition between Young and Old Templates

Improves the Detection of Age-Related Differences

To evaluate whether the initial SCR templates, or the

Joint template could resolve fine differences between the

young and elderly subjects, each cluster was evaluated by the

Wilcoxon ranksum test for significant differences between the

Young and Old groups. As the SWIFT clustering algorithm

has high resolution and produces large numbers of clusters,

the results were analyzed by the Benjamini-Hochberg (BH)

procedure (14). The Wilcoxon P values were adjusted by the

BH procedure, with a false discovery rate of 5%.

The resulting BH-adjusted P values are shown in

Figure 3, plotted against the ratio of the median cells/clus-

ter in the two groups being compared. Among the 769

clusters comprising the Total SCR template (made from a

consensus of all samples, Figure 3A), only 6 clusters were

significantly different at P� 0.05. Substantially larger num-

bers of clusters were significantly different between the

young and elderly subjects when samples were assigned

separately to either the Young or Old SCR templates (Fig.

3B). 52 clusters were derived from the Young (27 clusters)

and Old (25 clusters) templates, respectively. The competi-

tion approach with the Joint template further sharpened

these differences, increasing the number of clusters showing

significant young/elderly differences, to 110 clusters (71

Young and 39 Old, Fig. 3C). As expected, the majority of

clusters that were more highly represented in young sub-

jects (X-axis values >0) were derived from the Young tem-

plate clusters within the Joint template, and vice versa.

These results suggested (1) that competition between two

cluster templates (Fig. 3C) could increase the resolution of

differences between groups of samples (particularly outper-

forming the SCR template derived from a consensus of all

samples, Fig. 3A); and (2) that substantial numbers of the

clusters quantified by the SWIFT Joint template approach

were different between the Young and Old groups.

Is SWIFT Cluster Competition Causing Over-Fitting?

We considered the possibility that the high resolution

and large numbers of clusters identified by SWIFT might facil-

itate finding minor differences between the groups that were

not due to the aging process. This was tested in two ways—by

repeating the entire clustering and templating approach with

the same subjects grouped into male and female subjects; and

by analyzing subjects in a second clinical study that had not

contributed to the cluster templates.

Male/female comparison. All subjects in Study 1 were

regrouped into subsets of 14 male and 29 female subjects,

consensus samples were prepared from the male and female

subjects as described above, and the consensus samples were

clustered in SWIFT. All samples were assigned to the Total

SCR template, both SCR templates, and to the Joint Male/

Female template. Figure 3D shows the resulting BH-corrected

P values for Male versus Female cluster comparisons in the

Total SCR template. In contrast to the young/elderly compari-

son, the male/female comparison showed no clusters reaching

significance in the Total SCR template. When the samples

were assigned to the Male and Female SCR templates, 14 clus-

ters were significantly different between males and females

(Fig. 3E), and this number was increased to 64 using the Joint

Male/Female template (Fig. 3F). Importantly, the improved

detection of significantly different clusters was specific for the

templates used for cluster assignment and competition: The

Male and Female SCR templates did not identify young/

elderly differences any better than the Total SCR template

(Fig. 3G), and competition using the Joint Male/Female tem-

plate also did not result in any improvement in the detection

of young/elderly differences (Fig. 3H). Similar results were

observed in the reverse direction, e.g., competing the Joint

Young/Old template did not improve the detection of male/

female significant differences (data not shown).

Extension to a second study. Samples from subjects in

Aging Study 2 with ages within the ranges of young and

elderly in Study 1 (19 2 35 and 60 2 82 years old) were then

assigned to the templates generated from Study 1, resulting in

the addition of 3 young and 14 elderly subjects to the analysis.

Study 2 was not evaluated separately because only three young

subjects were included. If the competitive cluster template

method had over-fitted the data and found mainly nonage-

related differences, the P values of the comparisons should

generally decrease in the aggregate dataset because the second

dataset did not participate in the construction of the tem-

plates. However, if genuine young/elderly differences had been

detected, the increase in subject numbers due to the contribu-

tion of the second study should further improve the signifi-

cance and result in an increased number of clusters being

judged significantly different. Figure 3I shows that the P values

did improve substantially, and the total number of clusters
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Figure 3. Competitive cluster template assignment identifies a larger number of significant clusters for discriminating young versus elderly

subjects. PBMC from 19 young and 20 elderly subjects were analyzed by a 15-color phenotyping panel, and five consensus samples (Total

(all subjects); Young; Old; Male; and Female) were constructed by random sampling of equal numbers of events from each subject, to obtain

a total of 4 million events per consensus sample. The five consensus samples were clustered in SWIFT, and Joint templates produced by

combining Young and Old SCR templates, as well as Male and Female SCR templates. All individual samples were assigned to each of the

resulting templates. For each cluster, in each template, the numbers of cells assigned to the cluster were compared by a two-tailed Wilcoxon

test between Young versus Old (A, B, C, G, H, I), or Male versus Female (D, E, F) subjects. The resulting P values were adjusted by the

Benjamini-Hochberg correction, at a false discovery rate of 5%. The adjusted P values are plotted against the log of the ratio between the

median numbers of cells assigned to that cluster in the two subject groups being compared. Significance is assumed at P< 0.05 (green line).

Templates used for assignment were Total SCR (A, D), Young and Old SCR (B), Male and Female SCR (E, G), Joint Young/Old (C, I), Joint

Male/Female (F, H). All results show the Aging 1 study only, except panel I which includes both Aging 1 and Aging 2 studies. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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deemed significant increased further, to 226. Thus the addi-

tion of the second study further suggests that genuine age-

related differences were being detected by the cluster template

competition approach.

Competitive SWIFT template analysis of a pregnancy data-

set. The SWIFT competitive template approach was

extended to an independent dataset comprising pregnant and

nonpregnant women. Templates were produced from all preg-

nant and all nonpregnant subjects, and all samples assigned to

the two SCR templates, and the joint template. Supporting

Information Figure S3 shows that SWIFT identified a number

of clusters that were significantly altered in pregnant subjects,

and the detection of these differences was enhanced by tem-

plate competition.

Machine learning classifier. Additionally, we used a SVM

to determine if the template competition approach improves

classification between young and elderly subjects. Three

strategies were used for classification using SCR and Joint

templates, after normalizing results for each cluster by z scores

across all samples: 1) ten-fold cross-validation was performed

on clustering results from Study 1; 2) ten-fold cross-validation

was performed on the aggregate results from Studies 1 and 2;

and 3) Study 2 results were used as an independent test set

after training on the Study 1 samples. All three strategies

showed a classification accuracy of >80% (Table 1), confirm-

ing that the differences detected by SWIFT represented real

aging-related changes. In the first two strategies, template

competition further increased the accuracy of the classifica-

tion, and in the independent analysis of Study 2, the accuracy

was equal with or without competition.

What Are the Clusters Identified by the

High-Resolution Competitive Method?

To determine whether the clusters with significant

young/elderly differences detected by the competition strategy

were biologically reasonable, we examined the 24 clusters with

the most significant P values derived from each of the Young

and Old constituent templates within the Joint template. Fig-

ure 4 shows the properties of each cluster in each subject, for

24 clusters (12 each from the Young and Old templates)

selected from these 48. The selected Young template clusters

were all represented at higher levels in the Young samples (Fig.

4A), whereas the clusters from the Old template were more

populous in the elderly subjects. Figure 4B shows that, within

each cluster, the median fluorescence intensity values were

normally consistent across all subjects, suggesting that the

same subpopulations were being identified in each subject.

There was considerable heterogeneity between clusters, partic-

ularly when all parameters were considered (Fig. 4B and Sup-

porting Information Fig. S4). Four main patterns of marker

expression were observed in these selected 24 clusters: from

the Young template, eight clusters had the phenotype of na€ıve

CD8 T cells (CD31CD42CD81CD451CCR71) and four

were CD31CD42CD82 (probably gamma-delta T cells).

From the Old template, five clusters appeared to be memory

CD4 T cells (CD31CD41CD82CD452), three expressed

monocytic markers (CD32CD141CD11B1), and four

expressed both T cell and monocyte markers and showed high

FSC-W values, consistent with T cell/monocyte conjugates.

The T cell results fit well with previous studies that showed a

shift in frequency from na€ıve to memory CD8 T cells on aging

(18–21), consistent with the accumulation of memory cells

with continued antigen stimulation, and oligoclonal expan-

sion of specific memory CD8 T cell populations (22,23). Simi-

larly, a decrease in gamma-delta T cells has been reported

previously (24,25). Although CD27 expression was variable in

the clusters detected by SWIFT, clusters 913, 1,328, and 908

were memory CD4 T cells that expressed low levels of CD27

and were over-represented in the elderly, consistent with pre-

vious studies (26–28). Thus the competitive template assign-

ment in SWIFT identified many potentially different clusters

between young and elderly. Some of these were consistent

with previous reports, and further subpopulations were iden-

tified for future analysis.

In the pregnancy dataset, several CD4 T cell clusters

differed significantly between pregnant and nonpregnant

groups (Figs. S3 and S5). These were mostly naive

(CD45RA high), with one large cluster (#12) of CD4 mem-

ory cells. The significantly different CD8 T cell clusters

were also mostly naive, except for the abundant cluster

#14, and were also mostly more abundant in the samples

from pregnant subjects. Finally, there were four CD141

clusters (#407 to #413) that probably represent monocytes,

and these were all decreased in the pregnant subjects. Clus-

ter #413 is probably an aggregate of monocytes and CD8

T cells. Previous studies have shown alterations in NK cell

populations during pregnancy, particularly in association

with different pregnancy outcomes (29,30). The effects of

pregnancy on circulating T cell populations are less known,

although we and others have shown a subtle alteration of

T cell cytokine patterns during pregnancy ((31–33), and

our data not shown). Alterations in specific monocytes

Table 1. Machine learning classification according to SWIFT

clusters

TEMPLATE STUDY

CLASSIFICATION

ACCURACY (%)

Young and

Old SCR

10-fold cross-validation

on #1

89.7

10-fold cross-validation on

#1 & #2

91.1

Trained on #1 82.4

Independently tested on #2

Joint

Young/Old

10-fold cross-validation

on #1

100

10-fold cross-validation

on #1 & #2

96.4

Trained on #1 82.4

Independently tested on #2

A support vector machine was used to classify young and

elderly subjects using numbers assigned to the clusters obtained

by SCR or Joint templates.
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sub-populations have been described (34). Because the

dataset used for the analysis presented here was from a T

cell-focused phenotyping panel using resting PBMC, differ-

ences in NK cell and activated T cell patterns would not

be expected to be well-resolved, whereas subtle differences

in T cell populations could be identified.

Comparison of SWIFT Cluster Template Competition

with Other Publicly Available Programs

We compared the SWIFT competitive template approach

with alternative algorithms that could compare cluster data

between groups of samples, using the available implementa-

tions on the GenePattern (35) server or in R:Bioconductor

Figure 4. Properties of clusters that exhibit statistically significant differences between young and elderly subjects. Twelve clusters each

were chosen from the Young and Old templates, with significant differences between young and elderly subjects in the number of cells

per cluster, as evaluated by the Joint Young/Old template (A). For each cluster, the inverse hyperbolic sine of the median fluorescence

intensity of the cluster in each subject is plotted (with labels referring to actual fluorescence values) for eight markers (B) (additional

markers are shown in Supporting Information Fig. S4). The coarse scale on the X-axis represents different clusters, and the fine scale

shows the age of each subject.
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(36). Using the Aging 1 dataset, competitive SWIFT analysis

was benchmarked against seven clustering and comparison

algorithms. Three of these programs [SamSpectralCluster,

(37), FlowMergeCluster, and FlowClustClassify (38)], in their

GenePattern versions, were not able to cluster the large sam-

ples (about 1-4 million cells, 19 parameters) used in these

analyses. ImmPortFLOCK (5) (plus ImmPortCrossSample)

could be used in a similar manner as SWIFT, by combining

templates from Old and Young subjects. Using the same post-

processing analysis as for SWIFT, FLOCK identified one cluster

that was significantly different between old and young groups

(after the Benjamini-Hochberg correction) (Supporting Infor-

mation Fig. S6). KMeansClassifyFCS (39) 1 MClustClusterLabel

also identified one significant cluster. Both FLOCK and KMeans

clusters were na€ıve CD81 T cells, consistent with the identifica-

tion of naive CD8 T cells as some of the most significant clusters

by SWIFT. FlowMeansCluster (40)1 MClustClusterLabel was

able to cluster only 22 of the 39 Aging 1 samples, and possibly

because of the reduced subject numbers, no clusters were signifi-

cantly different between old and young subjects. We also tested

our Aging 1 dataset on the recently published immunoClust

algorithm (41) available in R:Bioconductor. Because of its rela-

tively high computational resource requirements, immunoClust

was not able to complete the analysis of all 39 samples (running

on the University of Rochester BlueHive computing cluster,

https://info.circ.rochester.edu/BlueHive/System_Overview.

html). We selected subsets of eight Young and 8 Old subjects,

and analyzed this smaller data set using both SWIFT and immu-

noClust. SWIFT identified 22 significant clusters (P <0.05 after

the Benjamini-Hochberg correction) whereas immunoClust did

not identify any cluster with a BH-corrected P values <1 (Sup-

porting Information Fig. S7). Thus alternative methods for find-

ing differences between experimental groups gave compatible

results for some methods, but the increased resolution of

SWIFT and the competition approach resulted in many more

significantly different clusters being identified.

DISCUSSION

The SWIFT template competition method takes advantage

of two features of the SWIFT clustering output—the high reso-

lution of complex samples into relatively large numbers of clus-

ters, and the cluster templates that allow assignment of many

samples to the same template. Changes in the numbers of cells

per cluster are detected effectively by the original SWIFT method

of assigning samples to a SCR template, but this process does

not readily detect small changes in the position of clusters. In

fact, this property is an advantage in many applications address-

ing target subpopulations, as the template/assign procedure will

compensate for small shifts in the positions of subpopulations,

allowing the program to adapt to the small differences normally

seen between subjects (11). For example, if the goal of an experi-

ment is to enumerate the antigen-specific T cell response to

antigen stimulation, the original SCR template/assign method

yields excellent results. The template competition method was

developed in response to a concern that in exploratory analysis,

searching for subpopulations that are altered between groups

defined by age, gender, disease, vaccination, etc., there might be

alterations in both numbers of cells/cluster, as well as the fluo-

rescence intensity of the cluster in one or more channels.

The competition method effectively reveals small shifts

or larger shifts in the absence of competing subpopulations.

Competition can reveal shifts of only twofold in median fluo-

rescence intensity in one channel (Fig. 2D), using a relatively

broadly distributed cluster as the test case. If these samples

were analyzed by a single consensus template, the two popula-

tions would be merged, and therefore the difference between

the samples would be obscured. As the competition method

depends on the overlap between the probability distributions

of the clusters, subpopulations with lower CVs would be

resolved even more. However, if a subpopulation shifts so far

that it overlaps with another subpopulation, cells may still be

misassigned. This difficulty is shared with other analysis

methods, and can only be resolved by analysis with additional

markers. However, competition may improve the precision of

identification in cases where a subpopulation has moved par-

tially toward a different subpopulation—by providing a better

fit, the combined template may pull cells away from the neigh-

boring, inappropriate cluster.

The cluster template competition strategy also works well

for multiple SCR templates, for example four-way competi-

tions (data not shown). As the number of cells per cluster is

diluted by multiple templates, evaluation of subpopulation

memberships by fractional assignment of cells is more appro-

priate than stochastic assignment of whole cells—both assign-

ment choices are available in the SWIFT config file.

Comparison of SWIFT with alternative methods showed

that at least two other methods could identify a sub-population

of na€ıve CD8 T cells that differed significantly between young

and elderly subjects, but that the alternative methods did not

identify several other populations identified by SWIFT, including

at least two cell types that were also known from previous studies

to be altered in elderly subjects. The higher resolution of

SWIFT—hundreds of clusters versus e.g., 30 for alternative

methods—may have helped to resolve more subpopulations,

and this resolution was further increased by the competition

strategy. Both in our previous studies (10,11) and in this study,

at least some of the small populations identified by SWIFT were

biologically significant. Thus at least SOME of the extra resolu-

tion afforded by SWIFT is valuable for identifying true biological

diversity. Without exhaustive analysis of the hundreds of SWIFT

sub-populations it is difficult to know whether ALL of the sub-

populations are biologically meaningful, although it is increas-

ingly clear that the full diversity of T cells, for example, is much

greater than previously thought (recently reviewed in Ref. 42).

Although the extensive model-fitting, splitting and merg-

ing steps in SWIFT resolve clusters that correspond as closely as

possible to biological subpopulations of cells, the subsequent

template competition method introduces some redundancy

into the clusters. If a cell subpopulation is identical in the two

samples used to derive two SCR templates, then the subpopula-

tion will be described by two clusters in the Joint template (one

from each constituent SCR template), each capturing about

half of the cells in that subpopulation. Duplicate clusters could
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be removed by performing an additional SWIFT merging step

after combining the cluster templates, but this might reduce

resolution by merging clusters with small shifts, e.g. samples W

and X in Figure 2B. As a major purpose of the cluster template

competition method is to identify any populations that are

altered between groups of samples, the duplication of unaltered

clusters does not interfere with the interpretation of the results.

The competitive SWIFT template method is ideally suited to

identifying leads for further biological analysis, and providing

diagnostic signatures for classification purposes. Thus the nor-

mal outcome of such projects is to identify cell subpopulations

that will be targeted in follow-up experiments.

The clinical studies analyzed here were primarily targeted

at identifying differences between young and elderly subjects,

but as the subjects included both genders, male/female differen-

ces could be investigated in the same dataset. This provided a

good reciprocal demonstration of the effectiveness of the cluster

template competition procedure, as the Joint Young/Old tem-

plate enhanced detection of young/elderly but not male/female

differences, whereas the Joint Male/Female template did the

opposite. Interestingly, more young/elderly differences were

revealed by either the SCR or Joint templates, suggesting that

aging has a larger effect than gender on PBMC subpopulations.

Some of the altered subpopulations identified by SWIFT were

consistent with known changes in the elderly, e.g. the shift from

na€ıve to memory CD8 and T cells. However, all na€ıve CD8 T

cell subpopulations were not affected equally, suggesting that

the extra resolution of SWIFT, compared to manual analysis,

may reveal more detailed and specific differences. Additional

subpopulations identified by SWIFT, e.g. the monocyte clusters,

may provide fruitful leads for further investigation.

The cluster competition method thus provides an impor-

tant extension to the cluster template method developed in

SWIFT. Competition improves the detection of subpopula-

tions that have altered the expression of different markers,

and is particularly suited to the agnostic detection of subpo-

pulations that have changed between experimental groups.

The ability to interrogate different aspects of the population,

by judiciously choosing the templates to construct and com-

pete, makes this a versatile tool for enhancing the detection of

altered subpopulations.
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