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Background: The commercial coronary computed tomographic angiography artificial intelligence 
(CCTA-AI) platform has made great progress in clinical application. However, research is needed to 
elucidate the current stage of commercial AI platforms and the role of radiologists. This study compared the 
diagnostic performance of the commercial CCTA-AI platform with that of a reader based on a multicenter 
and multidevice sample.
Methods: A total of 318 patients with suspected coronary artery disease (CAD) who underwent both CCTA 
and invasive coronary angiography (ICA) were included in a multicenter and multidevice validation cohort 
between 2017 and 2021. The commercial CCTA-AI platform was used to automatically assess coronary 
artery stenosis by using ICA findings as the gold standard. The CCTA reader was completed by radiologists. 
The diagnostic performance of the commercial CCTA-AI platform and CCTA reader was evaluated at the 
patient and segment levels. The cutoff values of models 1 and 2 were 50% and 70% stenosis, respectively.
Results: It took 20.4 seconds to accomplish post-processing per patient when using the CCTA-AI platform, 
which was significantly shorter than the time taken to complete this task with the CCTA reader (1,112.1 s). In the 
patient-based analysis, the area under the curve (AUC) was 0.85 using the CCTA-AI platform and 0.61 using the 
CCTA reader in model 1 (stenosis ratio: 50%). In contrast, the AUC was 0.78 using the CCTA-AI platform and 
0.64 using the CCTA reader in model 2 (stenosis ratio: 70%). In the segment-based analysis, the AUCs of CCTA-
AI were slightly better than those of the readers. The negative predictive value (NPV) increased from model 1 to 
model 2. Furthermore, the diagnostic performance was better for larger-diameter arteries.
Conclusions: The commercial CCTA-AI platform may provide a feasible solution for the diagnosis of 
coronary artery stenosis, and it has a diagnostic performance that is slightly better than that of a radiologist 
with a moderate level of experience (5–10 years of experience).
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Introduction

Coronary artery disease (CAD), also known as coronary 
atherosclerosis, results in myocardial ischemia and 
necrosis (1). CAD is currently one of the leading causes 
of death worldwide (2). Despite the development of drugs 
and interventional therapies, the clinical prognoses of 
patients with CAD are still poor. Accurate assessment and 
management of the risk factors for CAD are very important 
for optimal treatment selection and the prognosis of 
patients (3). Although invasive coronary angiography (ICA) 
is the gold standard for assessing the severity of CAD, it 
is an invasive examination associated with high medical  
costs (4).

Coronary computed tomographic angiography (CCTA) 
is the first-line investigation for suspected chest pain (5). 
CCTA can clearly show the structure of the heart and 
coronary artery. A radiologist can use this to assess the 
degree of coronary artery stenosis and the characteristics 
of the plaque and classify the patient’s risk (6). CCTA 
provides a useful noninvasive imaging method for the 
initial diagnosis of CAD (7,8). However, the diagnosis of 
CAD using CCTA requires manual image post-processing 
and subjective visual observation by the radiologist, which 
demands significant human resources and time and lacks 
efficiency and accuracy (9).

Artificial intelligence (AI) has rapidly gained popularity 
over recent years, and the application of AI in the medical 
field has become commonplace (10). In the cardiovascular 
f ield,  AI technology could significantly speed up 
cardiovascular image reconstruction, provide an objective 
means of image segmentation, and be used to evaluate 
the degree of vascular stenosis (11,12). AI technology 
can also be used to assess calcification and the computed 
tomography fractional flow reserve (CT-FFR) (13).  
Recent research has focused on the reconstruction and 
optimization of AI models based on machine learning, 
including supervised learning, unsupervised learning, 
and deep learning (DL), which is the main technology 
of AI. Supervised learning includes many techniques and 
algorithms, such as artificial neural networks, support vector 

machines, decision trees, and random forests (14,15). DL 
includes convolutional neural networks (CNNs), recurrent 
neural networks, and deep neural networks (16,17). AI 
technology differs in its applications and limitations for 
different data types. Therefore, finding an appropriate 
intelligent mathematical model could facilitate accurate 
diagnosis of CAD. Some studies have started to address 
the diagnostic efficiency of AI for CAD and verified the 
feasibility of this based on CCTA using DL (18,19). There 
exist a few commercial coronary computed tomographic 
angiography artificial intelligence (CCTA-AI) platforms 
that can be used in the cardiovascular clinic for image post-
processing and diagnosis. However, there is not enough 
research that tests the CCTA-AI platforms’ actual levels 
of diagnostic performance at the segment and lesion levels 
based on multicenter and multidevice data.

We hypothesized that AI-based assisted analysis is at a 
level equivalent to that of expert readers with 5–10 years 
of experience in assessing coronary artery morphology 
and stenosis. Using ICA as the gold standard, this study 
compared CCTA-AI with radiological readers to identify 
the current stage of commercial AI platforms and the role 
of radiologists by completely external data from different 
CT models in multicenter hospitals. In addition, this study 
further verified the generalization ability of contemporary 
commercial algorithm models. We present the following 
article in accordance with the STARD reporting checklist 
(available at https://qims.amegroups.com/article/
view/10.21037/qims-22-1115/rc).

Methods

Patient population

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). This study was approved 
by Southwest Hospital, Third Military Medical University 
[Army Medical University (No. KY2020306)] and the 
medical science research ethics committees of 3 other 
hospitals [The Second People’s Hospital of Liao Cheng 
(No. 2021-8); UIanqab Central Hospital (No. 2021-3); 
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LinFen central hospital (ethics approval No. 2021-23-1)]. 
The requirement for individual consent for this retrospective 
analysis was waived. This retrospective study involved 4 general 
hospitals in western [Southwest Hospital, Third Military 
Medical University (Army Medical University)], eastern (The 
Second People’s Hospital of Liao Cheng), northeast (UIanqab 
Central Hospital), and central (LinFen central hospital) China. 
Patients with suspected chest pain who underwent CCTA and 
ICA in these hospitals between January 2017 and December 
2021 were retrospectively reviewed.

All patients subsequently underwent ICA within 1 month 
of their CCTA scan. The exclusion criteria were as follows: 
(I) patients with a history of cardiac surgery, including 
coronary artery bypass grafting or percutaneous coronary 
intervention; (II) patients for whom the AI platform was 
not able to complete the analyses; (III) patients for whom 
the diagnostic image quality of CCTA or ICA did not meet 
the requirement [classified as either poor or sufficient (20)]. 
The flowchart of this study is displayed in Figure 1.

Image acquisition

Patients were scanned on either a second-generation 
dual-source CT system (SOMATOM Definition Flash, 
Siemens Healthcare, Forchheim, Germany), a 64-row CT 
scanner (Optima CT680, GE Healthcare, Milwaukee, 
WI, USA), a multidetector CT system (Discovery CT750 

HD; GE Healthcare, USA), or a Brilliance CT Elite FHD 
scanner (Philips Healthcare, Best, The Netherlands). Scan 
parameters used on each system are shown in Table 1.

ICA was obtained using either an Axiom Artis 
angiography system (Siemens Healthcare, Erlangen, 
Germany), an Allura Xper FD20 angiography system 
(Philips Medical Systems, Best, the Netherlands), or an 
INNOVA 3100 digital plate angiography system (GE 
Healthcare, Waukesha, WI, USA). The contrast medium 
was injected manually, and the dosage was 20–30 mL.

Image analysis

In the CCTA-AI part of this study, CCTA images were 
automatically analyzed using a commercially available 
CCTA-AI platform package (Coronary Doc, ShuKun 
Technology, Beijing, China) without any human subjective 
intervention. This platform can automatically identify 
vascular segments and detect stenosis using maximum 
intensity projection, multiplanar reconstruction, curvature 
plane reconstruction, and volume reconstruction based on a 
CNN model (18).

In the CCTA reader part of this study, the CCTA images 
were evaluated by 2 cardiovascular radiologists (with  
5–10 years of experience) independently on a post-
processing workstation (Syngo Via, Siemens Healthineers, 
Forchheim, Germany). The radiologists were blinded to 

66 cases were excluded for:
•	 Time interval between CCTA and ICA 

examinations >1 month (n=27)
•	 Patients with a history of cardiac surgery (n=21)
•	 Unqualified CCTA images (n=12)
•	 The AI platform was not able to complete the 

analyses (n=6)

426 cases of CCTA and 439 cases of ICA were 
performed respectively

CCTA and ICA were performed 
simultaneously in 384 cases 

500 of suspected CAD

318 cases were finally enrolled

Figure 1 The flow diagram shows the study inclusion and exclusion criteria. CAD, coronary artery disease; CCTA, coronary computed 
tomographic angiography; ICA, invasive coronary angiography; AI, artificial intelligence. 
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each patient’s outcome data. Disagreements were resolved 
by discussion until a consensus was reached.

ICA was performed with a standard position and image 
for each vessel according to standard procedures (21). All 
ICA images were re-evaluated visually by 1 experienced 
interventional cardiologist (Doctor A) who was blinded 
to the patient’s CCTA images and clinical information. 
To ensure reliability, another interventional cardiologist 
(Doctor B) completed the assessment in a randomly selected 
group of 40 patients, and interclass correlation coefficients 
(ICCs) were used to evaluate the reproducibility. An ICC 
greater than 0.75 indicated good agreement of the data.

Each coronary artery was segmented according 
to the 18-segment model proposed by the Society of 
Cardiovascular Computed Tomography (SCCT) (22). 
After any coronary artery segment with a diameter of less 
than 2 mm was excluded, the proximal right coronary 
artery (pRCA), mid-right coronary artery (mRCA), distal 
right coronary artery (dRCA), right posterior descending 
artery (R-PDA), proximal left anterior descending artery 
(pLAD), mid-left anterior descending artery (mLAD), 
distal left anterior descending artery (dLAD), first diagonal 
branch (D1), proximal circumflex artery (pCx), first obtuse 
marginal artery (OM1), and left circumflex artery (LCx) 
remained. The cutoff values of models 1 and 2, were 50% 
and 70%, respectively. Model 1 compared stenosis rates 
between 0–49% and 50–100%. Model 2 compared stenosis 
rates between 1–69% and 70–100%.

Statistical analysis

Statistical analyses were performed using SPSS 21.0 (IBM 
Corp., Armonk, NY, USA), where statistical significance 
was considered at a level of P<0.05. Categorical variables 
were compared using the χ2 test, whereas continuous 
variables were compared using the independent-sample  
t test or Mann–Whitney U test as appropriate following the 
Kolmogorov–Smirnov test of normality. Models 1 and 2 
were used to determine the sensitivity (Se), specificity (Sp), 
positive predictive value (PPV), and negative predictive 
value (NPV) and their corresponding 95% confidence 
intervals (CIs). The diagnostic performances of AI for 
coronary artery stenosis with models 1 and 2 were evaluated 
using receiver operating characteristic (ROC) curves and 
quantitatively expressed using the area under the curve 
(AUC). ROC curve analysis was performed using MedCalc 
version 19.0 (MedCalc Platform bvba, Ostend, Belgium; 
https://www.medcalc.org; 2019).

Results

Patient characteristics

After applying strict inclusion and exclusion criteria,  
318 patients with suspected chest pain were included in our 
final analysis (Figure 1). Among the numerous risk factors, 
hypertension (65%) was the most common, while incidence 
rates of other risk factors were less than 50%. The average 

Table 1 The scan parameters of different CT scanners in CCTA

Scan parameters
Siemens dual-source  

CT flash
GE Optima  

CT680
GE Discovery  

CT750 HD
PHILIPS Brilliance iCT 

Elite FHD

Tube voltage (kV) 80–100 100–120 100–120 100–120

Tube current (mAs) Auto Auto Auto Auto

Slice thickness (mm) 0.750 0.625 0.625 0.900

Slice gap (mm) 0.750 0.625 0.625 0.450

Field of view (cm) 150–200 150–200 150–200 150–200

Retrospective gating Both Both Both Both

Scan trigger mode Bolus tracking Test bolus Test bolus Bolus tracking

Contrast material volume (mL) 50–55 65–75 65–75 50–55

Contrast flow rate (g/s) 5.5–6.0 4.5–5.5 4.5–5.5 4.5–5.5

Contrast concentration (mgI/mL) 350–370 350–370 350–370 350–370

CCTA, coronary computed tomographic angiography.

https://www.medcalc.org; 2019
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post-processing times of the CCTA-AI platform and CCTA 
reader were 20.4±4.1 and 1,112.1±122.8 s, respectively. 
The degree of vascular stenosis and the number of lesion 
vessels at the patient level of ICA are shown in Table 2.  
Other detailed demographic and clinical characteristics are 
shown in Table 2. The ICCs of 2 interventional cardiologists 
ranged from 0.806 to 0.100, indicating good interobserver 
assessment reproducibility.

Patient-level analysis

Table 3 describes the detailed data of no visible (0), minimal 
(1–24%), mild (25–49%), moderate (50–69%), severe 
stenosis (70–99%), and occluded (100%) of the segment 
level of vascular stenosis on CCTA-AI and CCTA reader. 
The specific diagnostic performance parameters of CCTA-
AI assessed the detection of vessel stenosis at the patient 
level, as displayed in Table 4. The ROC results for these 
comparisons are illustrated in Figure 2. The AUCs (0.85 
and 0.78) were obtained by the CCTA-AI platform using 
the bounds of models 1 and 2. The AUCs obtained by 
the CCTA reader were 0.61 and 0.64 for models 1 and 2, 
respectively. At the patient level, the AUC of CCTA-AI was 
significantly better than that of the CCTA reader.

Segment-level analysis

Coronary artery segments were analyzed based on 
SCCT. Coronary artery stenosis of CCTA and ICA were 
categorized by order of the stenosis grade. The segments 
of pRCA, mRCA, dRCA, LM, pLAD, mLAD, dLAD, D1, 
pCx, OM1, and LCx were included. The detailed diagnostic 
parameters of CCTA-AI and CCTA reader assessed using 
the segment-based analysis were compared as shown in 
Tables 5-8.

The diagnostic performance of the CCTA-AI platform 
and CCTA reader at the segment level was moderate 
for models 1 and 2 (see Figure 3 for specific examples). 
Furthermore, the AUCs of CCTA-AI were slightly better 
than those of the CCTA reader in models 1 and 2. With 
the stenosis cutoff value increasing from model 1 to 2, 
the diagnostic values of Sp and NPV showed a gradually 
increasing trend. Conversely, the Se showed a gradually 
decreasing trend. Meanwhile, the diagnostic performances 

Table 2 Characteristics of the study participants

Characteristics Value

Age (years), median ± standard deviation [range] 62±10 [29–86]

Male 223 [70]

Female 95 [30]

Hypertension 204 [65]

Hypercholesterolemia 74 [23]

Diabetes 123 [39]

Current smoking 122 [38]

Current drinking 78 [25]

Family history of CAD 25 [8]

Image quality (4-point Likert scale)

3 127 [40]

4 191 [60]

The average post-processing time with  
CCTA-AI(s)#

20.4±4.1

The average post-processing time with the 
reader(s)#

1,112.1±122.8

ICA

Lesion vessels 

None 12 [4]

One vessel 54 [17]

Two vessels 63 [20]

Three vessels 179 [56]

Four vessels 10 [3]

The degree of vascular stenosis at the patient level

0% 13 [4]

1–24% 3 [1]

25–49% 29 [9]

50–69% 56 [18]

70–99% 160 [50]

100% 57 [18]

Unless otherwise indicated, data are numbers of patients, with 
percentages. #, data are presented as the mean ± standard 
deviation. ICA, invasive coronary angiography; CAD, coronary 
artery disease; CCTA, coronary computed tomographic 
angiography; AI, artificial intelligence.
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Table 3 Description of the segment level of vascular stenosis by the CCTA-AI platform and the CCTA reader

Vessels stenosis pRCA mRCA dRCA LM pLAD mLAD dLAD D1 pCx OM1 LCx

CCTA-AI, n [%]

0 111 [35] 139 [44] 182 [57] 201 [63] 114 [36] 93 [29] 288 [90] 241 [75] 166 [52] 272 [85] 197 [62]

1–24% 26 [8] 21 [6] 18 [6] 42 [13] 36 [11] 14 [4] 8 [3] 28 [9] 29 [9] 12 [4] 27 [9]

25–49% 85 [27] 80 [25] 56 [18] 49 [15] 73 [23] 75 [24] 14 [4] 21 [7] 73 [23] 17 [5] 44 [14]

50–69% 64 [20] 50 [16] 48 [15] 20 [6] 66 [21] 91 [29] 7 [2] 18 [6] 33 [11] 14 [4] 30 [9]

70–99% 27 [8] 26 [8] 14 [4] 6 [2] 27 [8] 44 [14] 1 [1] 10 [3] 17 [5] 2 [1] 20 [6]

100% 5 [2] 2 [1] 0 [0] 0 [0] 2 [1] 1 [0] 0 [0] 0 [0] 0 [0] 1 [1] 0 [0]

CCTA reader, n [%]

0 126 [39] 153 [48] 209 [66] 223 [70] 60 [19] 120 [38] 285 [89] 256 [80] 153 [48] 284 [89] 211 [66]

1–24% 34 [11] 28 [9] 13 [4] 57 [18] 26 [8] 15 [5] 3 [1] 16 [5] 47 [15] 8 [3] 15 [5]

25–49% 72 [23] 55 [17] 46 [14] 29 [9] 79 [25] 45 [14] 15 [5] 21 [7] 48 [15] 12 [4] 21 [7]

50–69% 26 [8] 42 [13] 21 [7] 7 [2] 56 [17] 59 [18] 8 [3] 15 [5] 26 [8] 8 [3] 27 [8]

70–99% 59 [18] 40 [13] 29 [9] 2 [1] 97 [31] 79 [25] 7 [2] 10 [3] 43 [13] 6 [2] 39 [12]

100% 1 [1] 0 [0] 0 [0] 0 [0] 0 [0] 0 [0] 0 [0] 0 [0] 1 [1] 0 [0] 5 [2]

CCTA, coronary computed tomographic angiography; AI, artificial intelligence; pRCA, proximal right coronary artery; mRCA, mid-right 
coronary artery; dRCA, distal right coronary artery; pLAD, proximal left anterior descending artery; mLAD, mid-left anterior descending 
artery; dLAD, distal left anterior descending artery; D1, first diagonal branch; pCx, proximal circumflex artery; OM1, first obtuse marginal 
artery; LCx, left circumflex artery.

Table 4 The diagnostic performances of the CCTA-AI platform and reader on patient-based analyses

Accuracy parameters
The diagnostic efficacy in model 1 The diagnostic efficacy in model 2

CCTA-AI Reader CCTA-AI Reader

TP 245 192 109 135

FP 13 80 13 78

FN 28 16 108 25

TN 32 30 88 80

Se, % [95% CI] 90 [85–93] 93 [88–95] 50 [43–57] 84 [78–89]

Sp, % [95% CI] 71 [55–83] 27 [19–37] 87 [79–93] 51 [43–59]

PPV, % [95% CI] 95 [91–97] 71 [65–76] 89 [82–94] 63 [56–70]

NPV, % [95% CI] 53 [40–66] 65 [50–78] 45 [38–52] 76 [67–84]

AUC, % [95% CI] 85 [81–89] 61 [56–67] 78 [73–82] 64 [58–69]

Numbers in parentheses are 95% CIs. CCTA, coronary computed tomographic angiography; AI, artificial intelligence; TP, true positive; FP, 

false positive; FN, false negative; TN, true negative; Se, sensitivity; Sp, specificity; PPV, positive predictive value; NPV, negative predictive 

value; AUC, the area under the curve; CI, confidence interval.
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for segments of large-diameter vessels were better than 
for narrower ones. For instance, the AUCs of CCTA-
AI for identifying stenosis in the pRCA, mRCA, and 
dRCA segments using model 1 were 0.73, 0.70, and 0.69, 
respectively.

Discussion

This study aimed to explore the diagnostic performance of 
one commercialized CCTA-AI platform for the evaluation 
of coronary artery stenosis compared with a CCTA reader 
using external multicenter and multidevice data. The main 
findings of the study can be summarized as follows: (I) at 
the patient level, the CCTA-AI platform provided a useful 
tool for the diagnosis of coronary artery stenosis, with 
significantly improved diagnostic efficiency; and (II) at the 

segment level, the CCTA-AI platform with models 1 and 2 
exhibited moderate diagnostic performance that was slightly 
better than that of the CCTA reader. In addition, the 
diagnostic performance in narrow-diameter segments was 
comparatively weaker.

The results demonstrated that the CCTA-AI platform 
had a relatively moderate diagnostic performance in the 
diagnosis of coronary stenosis. The platform was able to 
accurately identify coronary artery stenosis at the patient 
level, with results consistent with those of other similar 
studies (23,24). Thus, the CCTA-AI platform has the 
potential to be a reliable diagnostic tool for the detection 
of coronary artery stenosis. In addition, compared with 
manual processing and reporting times ranging from 18 to 
85 minutes, as reported in our and other previous studies 
(25,26), the mean automatic post-processing time of the 
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Figure 2 The graph shows the performance of the CCTA-AI platform and the CCTA reader for models 1 and 2 in the patient-based 
analysis. (A) The CCTA-AI platform showed an AUC of 0.85 in the classification of model 1. (B) The CCTA-AI platform showed an 
AUC of 0.78 in the classification of model 2. (C) The CCTA reader showed an AUC of 0.61 in the classification of model 1. (D) The 
CCTA reader showed an AUC of 0.64 in the classification of model 2. CCTA, coronary computed tomographic angiography; AI, artificial 
intelligence; AUC, the area under the curve; CI, confidence interval. 
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Table 5 The diagnostic parameters of the reader on segment-based analyses for model 1

Accuracy 
parameters

pRCA mRCA dRCA LM pLAD mLAD dLAD D1 pCx OM1 LCx

N 318 318 318 318 318 318 318 318 318 318 318

Prevalence of 
stenosis, n [%]

87 [27] 81 [25] 38 [12] 15 [5] 144 [45] 121 [38] 23 [7] 49 [15] 70 [22] 28 [9] 61 [19]

TP 43 37 17 6 90 65 2 9 34 6 45

FP 44 45 33 3 63 73 13 16 40 8 26

FN 43 44 21 9 54 56 21 40 40 22 50

TN 188 192 247 300 111 124 282 253 208 282 197

Se, % [95% CI] 50 [39–61] 46 [35–57] 45 [29–62] 40 [17–67] 63 [54–70] 54 [44–63] 9 [1–30] 18 [9–33] 46 [34–58] 21 [9–41] 47 [37–58]

Sp, % [95% CI] 81 [75–86] 81 [75–86] 88 [84–92] 99 [97–100] 64 [56–71] 63 [56–70] 96 [92–98] 94 [90–96] 84 [79–88] 97 [94–99] 88 [83–92]

PPV, % [95% CI] 49 [39–60] 45 [34–56] 34 [22–49] 67 [31–91] 59 [51–67] 47 [39–56] 13 [2–42] 36 [19–57] 46 [34–58] 43 [19–70] 63 [51–74]

NPV, % [95% CI] 81 [76–86] 81 [76–86] 92 [88–95] 97 [94–99] 67 [59–74] 69 [62–75] 93 [89–96] 86 [82–90] 84 [79–88] 93 [89–95] 80 [74–84]

AUC, % [95% CI] 66 [60–71] 63 [58–69] 67 [61–72] 70 [64–75] 63 [58–69] 58 [53–64] 52 [47–58] 56 [51–62] 65 [60–71] 59 [54–65] 68 [62–73]

TP, true positive; FP, false positive; FN, false negative; TN, true negative; Se, sensitivity; Sp, specificity; PPV, positive predictive value; NPV, negative 
predictive value; AUC, the area under the curve; CI, confidence interval; pRCA, proximal right coronary artery; mRCA, mid-right coronary artery; 
dRCA, distal right coronary artery; pLAD, proximal left anterior descending artery; mLAD, mid-left anterior descending artery; dLAD, distal left 
anterior descending artery; D1, first diagonal branch; pCx, proximal circumflex artery; OM1, first obtuse marginal artery; LCx, left circumflex artery.

Table 6 The diagnostic parameters of the CCTA-AI platform on segment-based analyses for model 1

Accuracy 
parameters

pRCA mRCA dRCA LM pLAD mLAD dLAD D1 pCx OM1 LCx

N 318 318 318 318 318 318 318 318 318 318 318

Prevalence of 
stenosis, n [%]

86 [27] 77 [24] 34 [11] 13 [4] 137 [43] 114 [36] 21 [7] 48 [15] 66 [21] 28 [9] 93 [29]

TP 42 38 15 8 65 71 2 8 23 5 30

FP 44 42 45 14 33 67 5 13 14 9 18

FN 41 39 19 5 72 43 19 40 43 23 63

TN 191 199 239 291 148 137 293 257 238 281 207

Se, % [95% CI] 51 [39–62] 49 [38–61] 44 [28–62] 62 [32–85] 47 [39–56] 62 [53–71] 9 [1–32] 17 [8–31] 35 [24–48] 18 [7–38] 32 [23–43]

Sp, % [95% CI] 81 [76–86] 83 [77–87] 84 [79–88] 95 [92–97] 82 [75–87] 67 [60–73] 98 [96–99] 95 [92–97] 94 [91–97] 97 [94–98] 92 [87–95]

PPV, % [95% CI] 49 [38–60] 48 [36–59] 25 [15–38] 36 [18–59] 66 [56–75] 51 [43–60] 29 [5–70] 38 [19–61] 62 [45–77] 36 [14–64] 63 [47–76]

NPV, % [95% CI] 82 [77–87] 84 [78–88] 93 [89–95] 98 [96–99] 67 [61–73] 76 [69–82] 94 [90–96] 87 [82–90] 85 [80–86] 92 [89–95] 77 [71–81]

AUC, % [95% CI] 73 [68–78] 70 [64–75] 67 [61–72] 79 [74–84] 70 [65–75] 67 [61–72] 53 [47–59] 64 [58–69] 73 [68–78] 62 [57–68] 69 [63–74]

CCTA, coronary computed tomographic angiography; AI, artificial intelligence; TP, true positive; FP, false positive; FN, false negative; TN, true 
negative; Se, sensitivity; Sp, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, the area under the curve; CI, 
confidence interval; pRCA, proximal right coronary artery; mRCA, mid-right coronary artery; dRCA, distal right coronary artery; pLAD, proximal left 
anterior descending artery; mLAD, mid-left anterior descending artery; dLAD, distal left anterior descending artery; D1, first diagonal branch; pCx, 
proximal circumflex artery; OM1, first obtuse marginal artery; LCx, left circumflex artery.
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Table 7 The diagnostic parameters of the reader on segment-based analyses for model 2

Accuracy 
parameters

pRCA mRCA dRCA LM pLAD mLAD dLAD D1 pCx OM1 LCx

Number 318 318 318 318 318 318 318 318 318 318 318

Prevalence of 
stenosis, n [%]

51 [16] 48 [15] 24 [8] 8 [3] 103 [32] 78 [25] 14 [4] 30 [9] 47 [15] 20 [6] 61 [19]

TP 27 16 8 1 54 32 1 5 19 4 24

FP 24 24 21 1 43 47 13 5 25 2 20

FN 24 32 16 7 49 46 21 25 28 16 37

TN 233 246 273 309 172 193 282 283 246 296 237

Se, % [95% CI] 53 (39–67) 33 (21–49) 33 (16–55) 13 (1–53) 52 (42–62) 41 (30–53) 7 (0–36) 17 (6–25) 40 (27–56) 20 (7–44) 39 (27–53)

Sp, % [95% CI] 91 (86–94) 91 (87–94) 93 (89–95) 100 (98–100) 80 (74–85) 80 (75–85) 98 (96–99) 98 (96–99) 91 (87–94) 99 (97–100) 92 (88–95)

PPV, % [95% CI] 53 (39–67) 40 (25–57) 28 (13–47) 50 (3–97) 56 (45–66) 41 (30–52) 14 (1–58) 50 (20–80) 43 (29–59) 67 (24–94) 55 (39–63)

NPV, % [95% CI] 91 (86–94) 88 (84–92) 94 (91–97) 98 (95–99) 78 (72–83) 81 (75–85) 96 (93–98) 92 (88–95) 90 (85–93) 95 (92–97) 86 (82–90)

AUC, % [95% CI] 70 (65–75) 62 (57–68) 63 (58–68) 56 (50–62) 66 (61–71) 61 (55–66) 53 (47–58) 58 (52–63) 66 (60–71) 60 (54–65) 66 (60–71)

TP, true positive; FP, false positive; FN, false negative; TN, true negative; Se, sensitivity; Sp, specificity; PPV, positive predictive value; NPV, negative 
predictive value; AUC, the area under the curve; CI, confidence interval; pRCA, proximal right coronary artery; mRCA, mid-right coronary artery; 
dRCA, distal right coronary artery; pLAD, proximal left anterior descending artery; mLAD, mid-left anterior descending artery; dLAD, distal left 
anterior descending artery; D1, first diagonal branch; pCx, proximal circumflex artery; OM1, first obtuse marginal artery; LCx, left circumflex artery.

Table 8 The diagnostic parameters of the CCTA-AI platform on segment-based analysis for model 2

Accuracy 

parameters
pRCA mRCA dRCA LM pLAD mLAD dLAD D1 pCx OM1 LCx

No 318 318 318 318 318 318 318 318 318 318 318

Prevalence of 

stenosis, n [%]

50 [16] 77 [24] 34 [11] 6 [2] 98 [31] 72 [23] 12 [4] 52 [16] 40 [13] 20 [6] 60 [19]

TP 12 8 3 3 20 19 0 4 5 0 13

FP 12 14 11 1 8 24 1 2 2 1 7

FN 38 37 17 3 78 53 12 25 35 20 47

TN 256 259 287 311 212 222 305 287 276 297 251

Se, % [95% CI] 24 (14–38) 18 (9–33) 15 (4–39) 50 (14–86) 20 (13–30) 26 (17–38) 0 (0–30) 14 (5–33) 13 (5–28) 0 (0–20) 22 (12–35)

Sp, % [95% CI] 96 (92–98) 95 (91–97) 96 (93–98) 100 (98–100) 96 (93–98) 90 (86–94) 100 (98–100) 99 (97–100) 99 (97–100) 100 (98–100) 97 (94–99)

PPV, % [95% CI] 50 (30–70) 36 (18–59) 21 (6–51) 75 (22–99) 71 (51–86) 44 (29–60) 0 (0–95) 67 (24–94) 71 (30–95) 0 (0–95) 65 (41–84)

NPV, % [95% CI] 87 (83–91) 88 (83–91) 94 (91–97) 99 (97–100) 73 (68–78) 81 (75–85) 96 (93–98) 92 (88–95) 89 (85–92) 94 (90–96) 84 (79–88)

AUC, % [95% CI] 75 (70–80) 74 (68–78) 69 (64–74) 88 (83–91) 70 (65–75) 65 (60–70) 58 (53–64) 66 (60–71) 70 (65–75) 64 (59–70) 69 (64–74)

CCTA, coronary computed tomographic angiography; AI, artificial intelligence; TP, true positive; FP, false positive; FN, false negative; TN, true negative; 

Se, sensitivity; Sp, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, the area under the curve; CI, confidence interval; pRCA, 

proximal right coronary artery; mRCA, mid-right coronary artery; dRCA, distal right coronary artery; pLAD, proximal left anterior descending artery; mLAD, 

mid-left anterior descending artery; dLAD, distal left anterior descending artery; D1, first diagonal branch; pCx, proximal circumflex artery; OM1, first obtuse 

marginal artery; LCx, left circumflex artery.
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CCTA-AI platform was 20.4 seconds. As such, this platform 
could significantly reduce the work burden of doctors while 
improving diagnostic efficiency.

The diagnostic performance of CCTA-AI depends on 
the degree of stenosis at the segment level. At the segment 
level, compared with model 1, the diagnostic Se of model 2 
was generally lower. In contrast, the diagnostic Sp, NPV, and 
AUC increased. This finding may be related to CCTA itself 
estimating a relatively high NPV in the judgment of vessel 
stenosis, particularly in cases of severely stenotic vessels (27).  
Another factor may be that more severe stenoses tend to 
exhibit more severe vascular calcification. Consequently, 
the quantification of stenosis can be overestimated due to 
artifacts caused by coronary calcification (28). These findings 
are consistent with those of previous CCTA studies (7,29).

The diagnostic efficacy at the segment level was closely 
related to the vessel diameter. The Se, PPV, and AUC of 
large-diameter vessels were comparatively higher than those 
of narrower ones. Conversely, the Sp and NPV showed the 
opposite trend. This finding may be due to the impact of 
CT artifacts in images of narrow vessels caused by cardiac 
arrhythmia, dense calcifications, or other artifact sources (30). 
Alternatively, it may be that CCTA has an intrinsically lower 
accuracy for narrower vessels (especially those <2 mm), 
as reported previously (29). Thus far, the vast majority of 

research in this area has focused on diagnostic capacity in the 
major branches of the coronary artery (31). In summary, the 
diagnostic performance of narrow-vessel stenosis by CCTA-
AI may be relatively limited, which might be down to the 
nature of CCTA itself, but more external data validation is 
required to confirm it.

In this study, the CCTA-AI platform was based on a 
CNN model. CNN models have been widely used for 
object detection, classification, and segmentation, including 
in medical images (32-34). Similarly, in cardiovascular 
research, CNN models have been used to overcome some 
important issues. Some limitations of these models have 
been reported, specifically that CCTA-AI has been shown 
to have limited performance in the diagnosis of narrow 
vessels (35). Therefore, it might be necessary to introduce 
CCTA-AI correction measures to correct or compensate 
for this systematic deviation. It is important to note that the 
correction must follow a certain rule, for example, coronary 
artery disease-reporting and data system (CAD-RADS) 
or CCTA-AI results. However, this is only a preliminary 
suggestion, and further large-scale multicenter studies 
using AI computational modeling are needed to confirm the 
appropriateness of this course of action.

There were some limitations to this study. Although 
this was a multicenter and multidevice study involving 

A B

C D

Figure 3 The specific cases were reported based on CCTA-AI, CCTA reader and ICA. (A) A 54-year-old male. At the proximal left anterior 
descending artery (pLAD), the diagnosis of CCTA-AI, CCTA reader, and ICA are mild stenoses (25% to 49%). (B) A 56-year-old male. At 
the proximal left anterior descending artery (pLAD), the diagnosis of CCTA-AI and CCTA reader are moderate stenoses (50% to 69%), 
while the ICA is mild stenosis. (C) A 62-year-old male. At the proximal left anterior descending artery (pLAD), the diagnosis of CCTA-
AI and CCTA reader are mild stenoses, while the ICA is severe stenosis (70% to 99%). (D) A 57-year-old female. At the proximal right 
coronary artery (pRCA), the diagnosis of CCTA-AI is minimal stenosis (1% to 24%), then CCTA reader is mild stenosis, while the ICA is 
minimal stenosis. Lesions are marked with white arrows. CCTA, coronary computed tomographic angiography; AI, artificial intelligence; 
ICA, invasive coronary angiography.
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a relatively large sample, the extent and the distribution 
of disease severity were relatively small and non-
homogeneous. More varied data are required to provide 
a robust AI model. Second, the study did not assess the 
nature of the plaque or the CT-FFR when evaluating the 
prognoses of patients and coronary artery hemodynamic 
effects, even though these are both crucial pieces of 
information in the treatment of CAD.
Conclusions

This study shows that the commercial CCTA-AI platform 
may provide a feasible and useful tool for diagnosing 
coronary artery stenosis at the patient level, as shown 
using an external multicenter and multidevice dataset. 
This technology could significantly improve the diagnostic 
efficiency of stenosis, and radiologists could use the 
technology as a one-stop tool for rapid post-processing of 
images. However, the ability of this technology to be used 
to make a diagnosis, particularly for smaller branches or 
distal vessels, still needs to be improved.
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