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Excessive activation of N-methyl-D-aspartic acid (NMDA) receptors after cerebral
ischemia is a key cause of ischemic injury. For a long time, it was generally accepted
that calcium influx is a necessary condition for ischemic injury mediated by NMDA
receptors. However, recent studies have shown that NMDA receptor signaling,
independent of ion flow, plays an important role in the regulation of ischemic brain
injury. The purpose of this review is to better understand the roles of metabotropic NMDA
receptor signaling in cerebral ischemia and to discuss the research and development
directions of NMDA receptor antagonists against cerebral ischemia. This mini review
provides a discussion on how metabotropic transduction is mediated by the NMDA
receptor, related signaling molecules, and roles of metabotropic NMDA receptor
signaling in cerebral ischemia. In view of the important roles of metabotropic
signaling in cerebral ischemia, NMDA receptor antagonists, such as GluN2B-
selective antagonists, which can effectively block both pro-death metabotropic and
pro-death ionotropic signaling, may have better application prospects.

Keywords: NMDA receptor, ion-flow independent, metabotropic signaling, cerebral ischemia, NMDA receptor
antagonists

INTRODUCTION

Glutamate receptors mediate glutamate’s excitatory role in physiological processes such as memory,
learning, and synaptic plasticity (Hansen et al., 2021); thus, they also play a part in several common
neurological diseases, such as depression (Xia et al., 2021), Alzheimer’s disease (Srivastava et al.,
2020) and epilepsy (Alcoreza et al., 2021). Glutamate receptors are both ionotropic and
metabotropic. The ionotropic N-methyl-D-aspartate (NMDA) glutamate receptor is a tetrameric
complex containing two obligatory GluN1 subunits and two additional subunits, either GluN2
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(GluN2A-D) or GluN3 (GluN3A-B) (Sun et al., 2019). The
diversity of NMDA receptor subtypes endows the receptor
family with a variety of physiological and pathological
functions (Paoletti et al., 2013; Perez-Otano et al., 2016).

The traditional view on signal transduction through
ionotropic glutamate receptors (NMDA receptors, α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
receptors, and kainate (KA) receptors) is that glutamate
binding opens ion channels, which allow Na+, K+, or Ca2+

to enter or exit the cell and subsequently transmit ion-
dependent excitatory signaling (Rajani et al., 2020).
However, the discovery of the metabotropic action of KA
receptors in 1998 revealed another mode of signal
transduction (Rodriguez-Moreno and Lerma, 1998). The
metabotropic activities of both KA receptors and AMPA
receptors have been found to modulate neurotransmitter
release (Falcon-Moya and Rodriguez-Moreno, 2021). With
the deepening of research into this subject, there is
increasing evidence that NMDA receptors can also mediate
both ionotropic and metabotropic signaling (Dore et al., 2016;
Dore et al., 2017; Montes De Oca Balderas, 2018).
Metabotropic NMDA receptor signaling, which is
independent of ion flow, is involved in long-term
depression (LTD) (Nabavi et al., 2013), synaptic depression
induced by β-amyloid (Aβ) (Kessels et al., 2013; Tamburri
et al., 2013; Birnbaum et al., 2015), dendritic spine shrinkage
(Stein et al., 2015; Stein et al., 2020) and long-term
potentiation (LTP)-induced spine growth (Stein et al.,
2021). Recent studies have found that ion-independent
metabotropic NMDA receptor signaling plays an important
role in the regulation of cerebral ischemic injury (Weilinger
et al., 2016; Chen et al., 2017). Metabotropic NMDA receptor
signaling has not been found in some other important
processes, such as spike timing-dependent plasticity
(Rodriguez-Moreno and Paulsen, 2008; Banerjee et al., 2014;
Andrade-Talavera et al., 2016) and presynaptic glutamate
release modulation (Abrahamsson et al., 2017; Prius-
Mengual et al., 2019). This mini review provides a
discussion on how metabotropic transduction is mediated
by the NMDA receptor, known related signaling molecules,
and their interplay in cerebral ischemia.

NMDA RECEPTOR METABOTROPIC
OPERATION

The prevailing view on NMDA receptors states that agonist
glutamate and co-agonist glycine (or D-serine) jointly activate
the receptor, initiating excitatory signaling. Unlike this
classical mode, transduction of metabotropic NMDA
receptor signaling only requires ligand binding to either one
of the two agonist-binding sites, the one for glutamate, GluN2,
or the one for glycine, GluN1 (Rajani et al., 2020). By
measuring Förster resonance energy transfer (FRET)
between fluorescently tagged GluN1 subunits of NMDA
receptors, Malinow et al. demonstrated that NMDA
exposure induced conformational changes in the

cytoplasmic domain of NMDA receptors, provoking
synaptic inhibition (Aow et al., 2015; Dore et al., 2015).
This phenomenon can be blocked by the glutamate-binding
site antagonist amino-phosphonovalerate (APV), but not by
the glycine-binding site antagonist 7-chlorokynurenate (7CK)
(Aow et al., 2015; Dore et al., 2015). Low-frequency
stimulation (LFS) in acute hippocampal slices was shown to
induce ion-independent and NMDA receptor-dependent
LTD, which could be blocked by the glutamate-binding site
antagonist D-amino-phosphonovalerate (D-APV), but not
7CK (Nabavi et al., 2013). In calcium-free extracellular
solutions with calcium chelator EGTA or BAPTA, glycine
exposure increased the level of Akt phosphorylation in
cultured mouse cortical neurons, which was inhibited by the
glycine-binding site antagonist, L-689560, and the addition of
NMDA receptor ion-channel blocker, MK-801 or GluN2B-
selective antagonist, Ro 25-6981 could not prevent this effect
(Hu et al., 2016).

Similar to non-channel transmembrane receptors, agonist-
induced conformational change in the cytoplasmic domain of
NMDA receptors is a key requirement for metabotropic
signaling transduction. Using the FRET technique, Dore et al.
showed that in the presence of 7CK or MK-801, FRET between
different GluN1 subunits on individual NMDA receptors could
be reduced after NMDA was administered, which indicated that
the binding of NMDA to NMDA receptors causes
conformational changes in the cytoplasmic domain in the
absence of ion flow (Dore et al., 2015). Intracellular infusion
of a GluN1 C-terminus antibody that can bind and immobilize
two nearby cytoplasmic domains of the GluN1 subunit
prevented FRET changes induced by NMDA exposure (Dore
et al., 2015).

The relative position change and resulting interaction between
different molecules coupled to the C-terminus of NMDA
receptors induced by conformational changes are the
underlying molecular mechanisms of metabotropic NMDA
signaling transduction. Studies have shown that both protein
phosphatase 1 (PP1) and calcium/calmodulin-dependent protein
kinase II (CaMKII) bind to the intracellular C-terminus of
NMDA receptors (Aow et al., 2015; Sun et al., 2018). Without
ligands binding to NMDA receptors, the distance between PP1
and CaMKII is too large for any interaction to occur. However,
when NMDA binds to NMDA receptors, the relative positions of
PP1 and CaMKII change, and the distance between them is
reduced. In this situation, the catalytic site of PP1 can contact
CaMKII, and dephosphorylate it at Thr286 (Aow et al., 2015).
Thereafter, CaMKII is repositioned on the NMDA receptor and
subsequently activates downstream signaling molecules, thereby
inducing synaptic inhibition in an ion-independent manner
(Aow et al., 2015).

Although it is independent of ion transmembrane flow,
metabotropic NMDA receptor signaling may require the
involvement of intracellular calcium and its effectors. Studies have
indicated that themetabotropic actions of KA receptors are involved
inmodulating glutamate release in a biphasicmanner (Falcon-Moya
and Rodriguez-Moreno, 2021). KA receptor-mediated facilitation
of glutamate release is dependent on Ca2+, calmodulin, and
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protein kinase A (PKA) (Andrade-Talavera et al., 2012;
Andrade-Talavera et al., 2013; Falcon-Moya et al., 2018;
Falcon-Moya and Rodriguez-Moreno, 2021). KA receptor-
mediated depression of glutamate release is dependent on
Ca2+, calmodulin, protein kinase A (PKA), and G-protein
(Falcon-Moya et al., 2018; Falcon-Moya and Rodriguez-
Moreno, 2021). Whether these signaling molecules are
involved in metabotropic NMDA receptor-mediated actions
should be studied in the future.

SIGNALING MOLECULES MEDIATING
METABOTROPIC NMDA RECEPTOR
SIGNALING
Metabotropic NMDA receptor actions involve signaling
molecules, such as kinases, second messengers, and other
molecules that have been found to be related to synaptic
plasticity and cerebral ischemia (Table 1).

Signaling Molecules Related to Synaptic
Plasticity
Neuronal nitric oxide synthase (nNOS)/nitric oxide synthase
one adaptor protein (NOS1AP)/p38/MAPK-activated
protein kinase 2 (MK2)/cofilin is a key metabotropic
NMDA receptor signaling pathway for gating the
structural plasticity of dendritic spines. nNOS is a member
of the NMDA receptor complex that anchors to the scaffold
protein postsynaptic density-95 (PSD-95) (Sun et al., 2015).
NOS1AP is a carboxy-terminal ligand of nNOS (Zhu et al.,
2020). L-TAT-GESV, an uncoupling agent of the nNOS/
NOS1AP complex (Li et al., 2013), interferes with
dendritic spine shrinkage driven by metabotropic NMDA
receptor signaling (Stein et al., 2020). The NOS inhibitor
l-NNA was shown to abolish high-frequency uncaging
(HFU)-induced NMDA receptor-dependent spine
shrinkage mediated by non-ionotropic signaling (Stein
et al., 2020). p38, MK2, and cofilin are specific
downstream signaling molecules of NOS1AP (Stein et al.,
2020). Interestingly, during strong Ca2+ influx following LTP
induction, this signaling pathway promotes spine growth
(Stein et al., 2021). It is still unclear how metabotropic
NMDA receptor signaling affects nNOS. Although nNOS

is a member of the NMDA receptor complex, it may play
a physiological role in an NMDA receptor-independent
manner. For example, nNOS-derived NO is involved in the
recently discovered developmental switch from an NMDA
receptor-dependent form of spike timing-dependent LTD to
NMDA receptor-independent LTP (Falcon-Moya et al.,
2020).

PP1 and CaMKII are two important downstream signaling
molecules of metabotropic NMDA receptor signaling involved in
the process of synaptic depression. PP1 becomes an indirect
coupling molecule of the GluN1 subunit by binding to yotiao
(Westphal et al., 1999). CaMKII is a direct binding partner of
GluN2 subunits. Both residues 1120–1482 or residues 839–1120
in GluN2B and the 1389–1464 sequence in the C-terminus of
GluN2A are sufficient for the binding of CaMKII (Sun et al.,
2018). NMDA binding was shown to produce a transient change
in the relative position between PP1 and CaMKII, allow PP1 to
act on CaMKII and dephosphorylate CaMKII at Thr286 (Aow
et al., 2015). This change induced a reorientation of CaMKII
within the C-terminus of NMDA receptors and caused CaMKII
to potentially catalyze substrates necessary for LTD (Aow et al.,
2015).

p38 is also involved in synaptic depression mediated by
metabotropic NMDA receptor signaling. NMDA exposure
increased p38 phosphorylation in cultured neurons, which
could be blocked by D-APV but not by MK-801 (Nabavi et al.,
2013). Synaptic depression can be induced by Aβ exposure,
and the p38 inhibitor SB239063 abolishes this phenomenon
(Birnbaum et al., 2015). Because p38 is not a member of the
NMDA receptor complex, further studies are needed to
identify the related upstream signaling molecules.

Extracellular signal-regulated kinase 1/2 (ERK1/2)
participates in the transduction of metabotropic NMDA
receptor signaling. Co-incubation of hippocampal slices
with metabotropic glutamate receptor type 5 (mGluR5)
agonist CHPG (15 μΜ) and NMDA (5 μΜ) induced a
robust increase in the phosphorylation level of ERK1/2,
which could be inhibited by AP5, but not by MK-801
(Krania et al., 2018). This phenomenon could also be
prevented by the Src inhibitor PP1, which indicated the
involvement of Src in this process (Krania et al., 2018).
Glycine increased ERK1/2 phosphorylation in a dose-
dependent manner, in hippocampal neurons exposed to a
Ca2+-free extracellular solution with EGTA, MK-801, and

TABLE 1 | Downstream signaling molecules of metabotropic NMDA receptor signaling.

Pathophysiological processes Related subunits Downstream signaling molecule References

Spine shrinkage Not reported nNOS, NOSIAP, p38, MK2, cofilin Nabavi et al. (2013); Stein et al. (2020)
CaMKII

Synaptic depression GluN2 p38 Stein et al. (2020)
LTD GluN2 p38 Nabavi et al. (2013); Birnbaum et al. (2015)

Not reported PP1, CaMKII Coultrap et al. (2014); Aow et al. (2015)
LTP Not reported CaMKII Coultrap et al. (2014)
Enhance the function of the AMPA receptor GluN2A ERK1/2 Li et al. (2016)
Excitotoxic injury GluN1, GluN2A Akt Hu et al. (2016)

GluN1 Src, Panx1 Weilinger et al. (2012); Weilinger et al. (2016)
GluN2B PI3K, NOX2 Minnella et al. (2018)
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strychnine (Li et al., 2016). This effect of glycine appeared in
HEK293 cells transfected with cDNAs of GluN1 and GluN2A,
but not in cells transfected with cDNAs of GluN1 and GluN2B
(Li et al., 2016).

Signaling Molecules Related to Cerebral
Ischemia
The NMDA receptor, Src, and pannexin 1 (Panx1) comprise a
metabotropic signaling complex that is involved in the process
of cerebral ischemia (Li et al., 2021). Src indirectly associates
with NMDA receptors by interacting with NADH
dehydrogenase subunit 2 (ND2) via amino acids 40–80
(Gingrich et al., 2004; Liu et al., 2008; Sun et al., 2016). Src
is anchored to NMDA receptors through the interaction
between the PDZ3 domain of PSD-95 and the SH2 domain
of Src (Kalia and Salter, 2003; Sun et al., 2016). Panx1 interacts
with Src via the amino acid sequence 305–318 at the C
terminus (Weilinger et al., 2012). The relative amount of
Src associated with the NMDA receptor complex increased
following NMDA and glycine exposure, and the
phosphorylation level at Tyr416 also increased (Weilinger
et al., 2016). Src can open Panx1 channels by phosphorylating
Panx1 at Tyr308, which can be prevented by the SFK inhibitor
PP2 (Weilinger et al., 2012; Weilinger et al., 2016). NMDA
receptor competitive antagonists APV plus CGP-78608, but
not MK-801, can prevent NMDA-induced Panx1 currents
(Weilinger et al., 2016).

Akt is another downstream metabotropic signaling
molecule involved in cerebral ischemia. In a modified
calcium-free extracellular solution with EGTA or BAPTA,
treating mouse cortical neurons with glycine significantly
enhanced the activity of Akt, which could be blocked by L-
689560, but not by MK-801 or the glycine receptor antagonist,
strychnine (Hu et al., 2016). After inhibiting ion flow by
NMDA receptors, glycine exposure increased Akt
phosphorylation level in GluN1/GluN2A transfected
HEK293 cells, but not in GluN1/GluN2B-transfected cells
(Hu et al., 2016). This indicates that glycine can enhance
Akt phosphorylation through the metabotropic signaling of
NMDA receptors containing GluN2A. Similarly, glycine
could also reduce the infarct volume in the brain of
ischemic stroke rats pre-injected with MK-801 and
strychnine; this effect was sensitive to L-689560 and Akt
inhibitor IV (Chen et al., 2017).

In addition to participating in the regulation of synaptic
plasticity, p38 is involved in neuronal damage induced by
cerebral ischemia. p38 activation induced by glutamate
exposure or NO donors contributes to excitotoxic neuronal
cell death (Cao et al., 2005). The nNOS-PBD (PSD95-binding
domain) construct containing the nNOS PDZ domain and the
adjacent β finger, which binds PSD95 in a manner similar to
nNOS, reduced p38 activation and decreased glutamate-induced
pyknosis in neurons (Cao et al., 2005). The NMDA receptor-
PSD-95-nNOS-NOS1AP-MAP kinase 3 (MKK3) is the upstream
signaling pathway of p38 (Cao et al., 2005; Li et al., 2013; Sun
et al., 2015).

In contrast to previous signaling pathways, NADPH
oxidase-2 (NOX2) activation requires both ionotropic and
metabotropic NMDA receptor signaling. In mouse cortical
neuron cultures, NMDA-induced superoxide production
was blocked by the application of 7CK, L-689560, or
MK-801, and after additional addition of ionomycin to
provide a Ca2+ influx, superoxide production was restored
(Minnella et al., 2018). However, AP5 prevented NMDA-
induced NOX2 activation, and this effect could not be
reversed by co-incubation with ionomycin (Minnella et al.,
2018). NOX2 does not form a complex with the NMDA
receptor. The upstream signaling molecule phosphatidyl-
inositol 3-kinase (PI3K) binds to GluN2B via its p85
regulatory subunit (Wang and Swanson, 2020). After
NMDA stimulation, the activation of PI3K induces the
formation of phosphatidylinositol (3,4,5) trisphosphate
(PIP3) and PIP3 activates protein kinase C (PKC) and
phosphorylates the p47phox organizing subunit of NOX2
(Brennan-Minnella et al., 2015; Wang and Swanson, 2020).

ROLES OF METABOTROPIC NMDA
RECEPTOR SIGNALING IN CEREBRAL
ISCHEMIA
Metabotropic NMDA receptor signaling regulates the
damage induced by cerebral ischemia in a bidirectional
manner (Figure 1). In general, metabotropic signaling
mediated by GluN2B-containing NMDA receptors plays an
important role in promoting neuronal death, whereas
GluN2A-containing NMDA receptors play a
neuroprotective role.

Pro-Death Effect
The metabotropic NMDA receptor-Src-Panx1 signaling
pathway exerts a pro-death effect in cerebral ischemia.
Over-activation of NMDA receptors activates Src, induces
phosphorylation of Panx1 at the Tyr308 site, opens the
Panx1 half-channel, and ion-independently causes neuronal
death (Weilinger et al., 2012; Weilinger et al., 2016). A
combination of the competitive glutamate site antagonist
APV and glycine site antagonist CGP-78608 blocked the
opening of the Panx1 half channel and prevented
excitotoxic damage in hippocampal CA1 pyramidal neurons
(Weilinger et al., 2016). Polypeptide Src48, which interferes
with GluN1-Src interaction, or Tat-Panx308, which interferes
with Panx1 phosphorylation, showed a neuroprotective effect
in vitro (Weilinger et al., 2016). In an in vivo model of stroke,
Tat-Panx308 reduced infarction volume by approximately
9.7% (Weilinger et al., 2016).

The NMDA receptor-PI3K-PKC-NOX2 is a pro-death
metabotropic NMDA receptor signaling pathway. NOX2 is
the primary source of neuronal superoxide production in
response to NMDA receptor activation (Brennan-Minnella
et al., 2015; Minnella et al., 2018). Superoxide production
largely contributes to neuronal death during excitotoxicity
following cerebral ischemia (Brennan-Minnella et al., 2015).
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The signaling pathway that links NMDA receptors to NOX2
activation as well as superoxide production is triggered by
NMDA binding, but not glycine binding, which can be
blocked by the glutamate-binding site antagonist AP5
(Minnella et al., 2018; Wang and Swanson, 2020). Neurons
deficient in GluN2B or expressing chimeric GluN2B/
GluN2A C-terminus subunits did not exhibit NMDA-
induced superoxide production, indicating that GluN2B-
containing NMDA receptors are preferentially involved in
NMDA-induced superoxide production (Minnella et al.,
2018).

p38 may also be a downstream pro-death metabotropic
signaling molecule of NMDA receptors during cerebral
ischemia. p38 is strongly involved in excitotoxicity, and the
cell-permeable peptide, TAT-GESV effectively inhibits
excitotoxic p38 activation, which protects against excitotoxic
neuronal damage and reduces ischemic injury in neonatal
hypoxia-ischemia rats (Li et al., 2013). NMDA exposure in
cultured neurons activates p38 in an ion-independent manner
(Nabavi et al., 2013).

Pro-Survival Effect
The metabotropic NMDA receptor signaling mediated by
GluN2A may play a neuroprotective role in cerebral
ischemia. Glycine administration reduced infarct volume
in middle cerebral artery occlusion (MCAO) animals
pretreated with MK-801 and strychnine; this effect was
sensitive to glycine site antagonists and can also be
blocked by Akt inhibitors (Chen et al., 2017). After
inhibiting ion flow by NMDA receptors, glycine exposure
increased Akt phosphorylation level in GluN1/GluN2A

transfected HEK293 cells, but not in GluN1/GluN2B-
transfected cells (Hu et al., 2016). This indicates that
glycine can enhance Akt phosphorylation through the
metabotropic signaling mediated by NMDA receptors
containing GluN2A.

FUTURE DIRECTIONS OF NMDA
RECEPTOR ANTAGONISTS

The roles of NMDA receptors in cerebral ischemia are
complex. NMDA receptors mediate both pro-death and
pro-survival ionotropic signaling. Similarly, the
metabotropic signaling of NMDA receptors can either be
beneficial or harmful to neuronal survival. This makes
the design of effective treatment strategies based on
NMDARs difficult. The complexity of NMDA receptor
signaling may be one of the important underlying
reasons for the failure of NMDA receptor antagonists in
the treatment of cerebral ischemia. Researchers should
study how to effectively block all pro-death ionotropic and
pro-death metabotropic signaling. Among all NMDA
receptor antagonists, ion-channel blockers and glycine-
binding site antagonists cannot block pro-death
metabotropic signaling. Although glutamate-binding site
antagonists can inhibit both ionotropic and metabotropic
signaling, they have no selectivity for GluN2A and
GluN2B. In theory, GluN2B-selective antagonists may have
unique advantages for blocking the pro-death effect of both
ionotropic and metabotropic signaling without influencing
the pro-survival effect of GluN2A. However, existing

FIGURE 1 |Overview of metabotropic NMDA receptor (NMDAR) signaling pathways involved in cerebral ischemia. Excessive glutamate binds to the GluN2 subunit
of NMDA receptors and initiates several pro-death signaling pathways, such as PI3K-PKC-NOX2, Src-PanX1 and nNOS-MKK3-p38. Glycine binds to the GluN1 subunit
of GluN2A-containing NMDA receptors, activates Akt-CREB signaling pathway and promotes the survival of neurons.
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GluN2B-selective antagonists are negative allosteric
regulators and have the disadvantages of off-target effects
and activity dependence (Kew et al., 1996; Fischer et al., 1997;
Dey et al., 2016). GluN2B-selective glutamate-binding site
antagonists may be a promising research and development
direction for NMDAR antagonists.
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