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Abstract

Neurotrophins (NTs) are a family of secreted growth factor proteins primarily involved in the regulation of survival and
appropriate development of neural cells, functioning by binding to their specific (TrkA, TtkB, and TrkC) and/or common
NGFR receptor. NGFR is the common receptor of NTs, binding with low-affinity to all members of the family. Among
different functions assigned to NGFR, it is also involved in apoptosis induction and tumorigenesis processes. Interestingly,
some of the functions of NGFR appear to be ligand-independent, suggesting a probable involvement of non-coding RNA
residing within the sequence of the gene. Here, we are reporting the existence of a conserved putative microRNA, named
Hsa-mir-6165 [EBI accession#: FR873488]. Transfection of a DNA segment corresponding to the pre-mir-6165 sequence in
Hela cell line caused the generation of mature exogenous mir-6165 (a ,200,000 fold overexpression). Furthermore, using
specific primers, we succeeded to detect the endogenous expression of mir-6165 in several glioma cell lines and glioma
primary tumors known to express NGFR. Similar to the pro-apoptotic role of NGFR in some cell types, overexpression of pre-
mir-6165 in U87 cell line resulted in an elevated rate of apoptosis. Moreover, coordinated with the increased level of mir-
6165 in the transfected U87 cell line, two of its predicted target genes (Pkd1 and DAGLA) were significantly down-regulated.
The latter findings suggest that some of the previously attributed functions of NGFR could be explained indirectly by co-
transcription of mir-6165 in the cells.
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Introduction

Nerve growth factor receptor (NGFR) (NC_000017.10) is a

multi-functional cell surface receptor in many human cell types

including some adult brain cells. This gene can induce apoptosis

and is also involved in injury, nervous system development and

regeneration [1]. NGFR expression is induced in many patholog-

ical conditions, such as atherosclerosis [2], ischemia [3], diabetes

[4–5] and cancer [6–14]. NGFR acts as a tumor suppressor in

most cases of cancers, causing apoptosis and suppression of

metastatic invasion. Contrary, NGFR can induce invasion and

metastasis in glioma [15] and melanoma [9].

There are some transcription factors which regulate NGFR

gene expression in conditions like hypo-osmolar stress and injuries

[16]. There are also an increasing list of ligands, co-receptors and

adaptor proteins which interact with NGFR, involving this gene in

different signaling pathways ending to cell death and/or survival

[17]. Recent publications suggest a ligand independent activation

and also a non-NGF ligand activation of NGFR signaling [18–19].

It remains to be found if non-coding RNAs such as miRNAs are

involved in this regulation as well.

miRNAs are endogenous small non-coding RNAs about 21–

23nt, each capable of interfering with dozens of target mRNAs

through complete or partial complementarities. The miRNA

genes are transcribed by RNA polymerase II or III and the

primary transcript termed pri-miRNA, is quickly trimmed into

,70nt long pre-miRNA precursor. The pre-miRNAs are then

transported to the cytoplasm and further processed to functional

miRNAs, which exert their regulatory functions by complemen-

tary binding to their target genes [20]. To date, more than 1000

human miRNAs have been published in mirbase database [21],

among which 40% are located within introns of protein-coding

‘host’ genes [22–27] and appear to be conserved across the species.

Identification of novel miRNA by forward genetics has been

tedious as a result of the small sizes of miRNAs as well as their

tolerance to mutations that do not affect their seed sequences [28].

On the other hand, the computational prediction of non-coding

RNAs (ncRNAs) has proven to be fast, cheap and effective [29–

30]. After prediction of a miRNA gene, experimental verification

is necessary to demonstrate its exact mature sequence and

function. Briefly, some major characteristics such as the hairpin-

shaped stem loop structure, high evolutionary conservation and

high minimal folding free energy are important features used in

the computational identification of novel miRNAs [31]. Here

bioinformatics tools were used to search for hairpin structures

within the NGFR intronic and exonic regions. One of the NGFR

resided hairpin structures showed all the bioinformatics characters

of producing a real miRNA. Later, accumulative experimental

evidences for the first time showed the presence and the

functionality of this novel NGFR intronic miRNA in human cells.
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Table 1. Primers and oligos used in this research.

Gene and primer name Sequence 59 to 39

NGFR Forward: CCGAGGCACCACCGACAACC Reverse: GGGCGTCTGGTTCACTGGCC

U48 Forward: TGACCCCAGGTAACTCTGAGTGTGT

Precursor Forward: CAGCAGGTCAGCAGGAGGTGAGGGG Reverse: GGGAGGGGCTGGAGCCAGGACAGG

Putative mir1 (Pm1) CAGCAGGAGGTGAGGGGAG

Putative mir1* (Pm1*) TGTCCTGTCCTGTCCTCTCCTG

Anchored Oligo dT GCGTCGACTAGTACAACTCAAGGTTCTTCCAGTCACGACG (T)17N

Universal outer primers (a) AACTCAAGGTTCTTCCAGTCACG
(b) GCGTCGACTAGTACAACTCAAG

Pkd1 Forward: GTTCTCAGGCCTCCACGCTGAG Reverse: AGGGCCAGCACACCAGACTCTTAGA

DAGLA Forward: ACTGGCCTTGCCCTGGAGCT Reverse: CGCAACCACTGGCGACAGCA

doi:10.1371/journal.pone.0035561.t001

Figure 1. Prediction of pre-mir-6165 within the 4th intron of human NGFR gene. A) Position of predicted hairpin structure within the
human NGFR gene is shown in the 4th intorn. This hairpin is predicted to produce Hsa-mir-6165 which is shown as red colored sequence on the stem
loop. B) Prediction of Drosha enzyme 5’ and 3’ cutting sites on the sequence of stem loop by Microprocessor SVM. C) Blat search result shows a strong
conservation of Hsa-mir-6165 between human, rhesus, dog and elephant.
doi:10.1371/journal.pone.0035561.g001
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Materials and Methods

Bioinformatics Tools and Studies
To search for the possible hairpin structures within the area of

interest, SCC profiler [32] and miPRED [33] online classifier

[http://www.bioinf.seu.edu.cn/miRNA] programs were em-

ployed. For the identification of putative miRNA precursors in

NGFR introns CID-miRNA [34] was used along with the

prediction of Dorsha processing sites using Microprocessor SVM

(https://demo1.interagon.com/miRNA/) program [35]. Mireval

[36] (http://tagc.univ-mrs.fr/mireval/) and mirbase (http://www.

mirbase.org/index.shtml) databases were also used to determine

the degree of conservation of mir-6165 and its precursor sequence

along with blat [37] search against human genome and other

organisms.

DIANA-microT web server [38–39] (http://diana.cslab.ece.

ntua.gr/pathways/) was employed in order to find potential target

genes for this novel miRNA. The hsa-mir-6165 prediction was also

performed by using MatureBayes [40], pmirp [41] and mirz [42]

online tools. To search for a putative promoter sequence upstream

of (pri-mir-6165) gene, Promoter 2.0 Prediction Server (http://

www.cbs.dtu.dk/services/Promoter/) was employed [43]. Diana-

mirpath [44] and geneset2miRNA [45] online tools used to find

the pathways in which mir-6165 is involved. To search for the co-

expression of miRNA target genes with miRNA host gene,

GENEMANIA [46] online tool was used. Gene ontology analysis

of mir-6165 potential targets was done by using Gene Ontology

Functional Analysis Tool (DAVID) [47].

Cell Culture
Hela and U87MG (both obtained from Pasteur Institute, Iran)

cell lines were cultured in RPMI-1640 media (Invitrogen),

supplemented with 10% fetal bovine serum (FBS) (Invitrogen),

100 U/ml penicillin and 100 mg/ml streptomycin (Sigma), and

incubated in 37uC with 5% CO2. NT2 cells [48] were cultured in

DMEM-HG containing 10% heat-inactivated FBS, 100 U/ml

penicillin and 100 ug/ml streptomycin.

Tissue Samples
Fresh surgical tissue biopsies of meningioma, glial, astrocytoma

and oligodendroglioma were kindly provided by Imam Hospital

[49].The samples were stored and processed as previously

described in the same reference.

RNA Extraction
Total RNA was extracted from cell lines using Trizol reagent

according to the manufacturer’s protocol (Invitrogen). Residual

DNA was removed using RNAase-free DNAase I (Takara) at 37uC
for 30 min followed by heat inactivation at 65uC for 10 min by

addition of EDTA.

Real-time PCR detection of precursor and mir-6165 mature

form.

According to the predicted precursor and mature miRNA

sequences, primers were designed for quantitative PCR (Table 1),

using NCBI primer-blast, MWG Operon online PCR primer

design tool (www.eurofinsdna.com) and primer bank (http://pga.

mgh.harvard.edu/primerbank/). Briefly, 1 ug of total RNA

Figure 2. pre-mir-6165 overexpression in the Hela cells and detection of Hsa-mir-6165 mature form. A) Schematic presentation of pre-
mir-6165 cloning, overexpression and its RNA adenylation followed by cDNA synthesis, using a universal anchored-oligo-dT primer. For the
amplification of precursor, first strand cDNA was PCR amplified using precursor specific F-primer and reverse anchor primer on the oligo-dT tail. For
the amplification of mature miRNA, predicted mir-6165 sequence was used as the forward primer. B) Hsa-mir-6165 increased production (200,000x)
following transfection of Hela cells with its precursor. In the untransfected cells (U) or scrambled control (M), the level of this miRNA was lower
compared to the transfected cells (T). C) Four sequencing result of TA vector clones containing mir-6165 real time PCR products, are compared to the
precursor sequence. The sequences between the laboratory added polyA and the upstream vector sequence are considered as mature miRNA.
Sequencing of clones #2, #3 and #4 shows that prediction of Hsa-mir-6165 sequence has been correct. Clone#1 also shows the similar sequence
plus AGG extra nucleotides which is considered an iso-mir for the miRNA.
doi:10.1371/journal.pone.0035561.g002
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sample was used in 20 ul Poly A tailing reaction containing; 2.5 U

PolyA polymerase (BioLab), 2 ul of 10 mMol ATP and incubated

at 37uC for 10 min. Then, the total poly adenylated RNA was

used in 10 mL first strand cDNA synthesis reaction using

PrimeScript II reverse transcriptase (Takara) and a cocktail of

specific oligo-dT primers containing a universal anchor (Table-1).

cDNA synthesis reaction was performed at 42uC for 30 min and

terminated at 80uC for 5 s. Real-time quantitative PCR was

performed using standard protocols on an ABI PRISM 7500

instrument (Applied Biosystems). Briefly, the run method profile

consisted of: stage 1, 95uC for 5 s,stage 2, 60uC for 20 s; stage 3,

72uC for 34 s. Stage 2 was repeated for 45 cycles. Continuous melt

curve stages included a first step of 95uC/15 s, step 2 at 60.0uC for

1 min, 95uC/30 s and a last step of 60uC for 15 s. Total PCR

products were cloned in TA vector (Fermentas) and were

sequenced (Genfanavaran Co.).

Overexpression of mir-6165 Precursor in Hela Cell Line
Human genomic DNA was extracted from white blood cells

using standard protocol [50]. 84 bp fragment representing the

predicted pre-miRNA was PCR amplified, using precursor

forward and reverse primers (Table 1), using PFU polymerase

(Takara) and cloned in modified pEGFP-C1 expression vector

with two CMV promoters. The 84 bp fragment was cloned in the

vector using Not1 and EcoRV restriction enzymes. Recombinant

vectors were propagated by miniprep (Qiagene Co.) and 2 ug of

this DNA was used for lipofectamin (Invitrogen) transfection of

Hela and U87 cell lines in 24 well plates containing about 2610̂5

cells per well. GFP expression was visualized by a florescence

microscope (Nikon eclipse Te2000-s).

Cell Cycle Analysis
After 34 hours, the U87 and Hela cells over expressing pre-mir-

6165 were harvested and stained with propidium iodide (PI) and

Annexin V (Roche) according to the manufacturer’s protocol. All

samples were analyzed with a FACS Calibur flow cytometer with

Cell Quest software (BD Biosciences). All assays were carried out

in duplicates.

Statistical Analysis
Real time experiments were run in duplicates. Real time data

were analyzed using DDCT method by DataAssist software V3.0

and normalized by endogenous control U48 small nucleolar RNA

gene (SNORD48) and B2m or globalization method [51]. Other

statistical analysis was performed with GraphPad Prism 5.04

(GraphPad, San Diego, CA). For apoptosis studies, data showing

percent of early apoptotic cell population within negative group

and test group, compared with each other by Repeated Measures

ANOVA test, and followed by Bonferroni test using GraphPad.

Data were considered statistically significant, when P-values were

,0.05.

Results and Discussion

Prediction of a Novel Intronic miRNA Within the Human
NGFR Gene

Due to their implications in several diseases including cancer,

miRNAs are under intensive research aiming at novel pharma-

cological interventions. Computational tools have been used for

efficient prediction of novel miRNAs and their target genes [30].

After several failed PCR attempts to amplify the area spanning the

4th intron of rat NGFR gene, chr10: 84267661–84265746[-]

UCSC nov.2004 (Baylor 34 rn4), we used mFOLD program

(http://mfold.rna.albany.edu) to search for possible hairpin

structures in this region. This program introduced multiple

hairpin structures in the 4th intron of NGFR genes both in

human and rat genomes. Using miRNA prediction HMM based

tool (SCC profiler), several potential miRNA precursors were

identified, however, only one of them, named pre-mir-6165,

showed the criteria of producing a real human intronic miRNA

locating; hg19, chr17: 47588166 – 47588269 (Figure 1A).

Microprocessor SVM program also predicted a Dorsha processing

site for pre-mir-6165 (Figure 1B). To date for mir-6165, no

identical miRNA has been reported in the mirbase database,

except a weak resemblance to mir-328a in rat and mouse.

Furthermore, Mireval online tool identified this novel precursor

with strong conservation and with no homology to other miRNAs.

Using blast search, it was demonstrated that both sequence and

structure of pre-mir-6165 was conserved in mammals, while mir-

6165 was mostly conserved in primates (Figure 1C). Overall,

accumulated bioinformatics evidences suggested the existence of a

novel microRNA. Firstly, CIDMIR, Pmirp, MatureBayes, miR-

abela -MirZ and Microprocessor SVM softwares all recognized

pre-mir-6165 with significant scores. These tools consider

conservation, expression level and other characters in order to

predict the possibility of a miRNA production. Secondly,

precursor sequence as a query produced 9 hits with 100% identity

at the level of 20–27 bp in the Blat search against human genome.

Four of these yet uncharacterized hits show common characters of

mir-precursors and are very similar to the already reported

miRNA precursors in the mirbase database. Others have used

similar method for the discovery of new miRNAs [32]. Thirdly,

conservation of seed [52] as well as the rest of mir-6165 sequence

in human genome is a strong bioinformatics supporting evidence

for the presence of this miRNA (Figure 1C). This miRNA is not

clustered and is weakly conserved between taxa, the same property

is already reported for certain miRNAs which are not conserved

[53], not clustered [54], have temporal and cell-specific expression

patterns [55], and have no homology to other miRNAs [35].

Overexpressed pre-mir-6165 is Efficiently Processed in
the Hela Cells

According to the Oncomine [56], the database for the

expression profile of the genes, NGFR gene expression (and as a

result pre-mir-6165) is very low in Hela cell line. In an attempt to

overexpress pre-mir-6165 in Hela cells and check for the

production of mature mir-6165, a corresponding 84 bp DNA

fragment was amplified by PCR from human genomic DNA and

ligated to the pEGFP-C1 modified expression vector under CMV

promoter (Figure 2A). The same vector without insert and/or

containing scramble DNA, were used as a negative controls in

further experiments. Transfection rate of these cells was monitored

via fluorescent emission of GFP, and the best transfected culture

was used for RNA extraction and gene expression studies. In Hela

cells which were transfected with the pre-mir-6165 construct the

level of mature mir-6165 elevated by a factor of 200,000 fold. The

result indicates that mir-6165 precursor cloned under CMV

promoter is efficiently expressed and processed to a mature form

(Figure 2B). Mature mir-6165 real-time PCR products showed an

expected size on the acrylamid gel and were subsequently cloned

in the TA vector for sequencing. The sequencing results of three

independent clones showed the exact sequence of expected mir-

6165 before polyA tail, indicating correct prediction of 39-end of

the miRNA (Figure 2C). On the other hand, sequencing result

from one of the TA clones showed 2 bp extra nucleotides after the

predicted 39 end for mir-6165. This might be the result of subtle

variation in the RNA ends corresponding to Drosha and Dicer

cleavage sites.

Intronic MicroRNA in Human NGFR Gene
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The minimum size of these miRNAs was submitted to EBI data

base under the extension number of; [EBI accession#: FR873488,

FR873489]. Overall, these experiments demonstrate that Hela

cells are able to process the predicted pre-mir-6165 to its predicted

mature miRNA form.

Experimental Detection of Endogenous mir-6165 and its
Precursor in Glioma Cell Lines and Brain Tumors

Promoter 2.0 Prediction Server did not predict an independent

promoter for mir-6165, therefore, its transcription is supposed to

be through NGFR host gene promoter. NGFR is expressed shortly

Figure 3. Detection of Hsa-mir-6165 in the brain derived cell lines and biopsies. A) NGFR and mir-6165expression profile in some glioma
cell lines is compared to non-glioma NT2 cell line Daoy, 1321N1, U87 (glioma cell lines) and NT2 (non glioma cell line) were used for detection of Hsa-
mir-6165 expression. U48 small neucleolar RNA was used as internal control for the amplifications. In glioma cell lines Hsa-mir-6165 expression level
was higher than NT2 cell line. B) Relative, Hsa-mir-6165 and its precursor expression levels in various human glioma tissue samples. The expression
level of Hsa-mir-6165 in the tumor samples were compared to the lowest grade of tumors. U48 small nucleolar RNA gene (SNORD48) was used for
normalizing the expression levels. Error bars indicate standard deviation (SD) of duplicate experiments. Pearson’s test confirmed a positive correlation
between NGFR and its intronic miRNA (p = 0.0065). In all of the high grades (HG) tissue samples, the level of NGFR and mir-6165 were higher than the
low grad (LG) samples.
doi:10.1371/journal.pone.0035561.g003
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Figure 4. mir-6165 overexpression in U87 cell line induces apoptosis. A) PI staining of U87 cells 34 hours post transfection was done to
investigate the effect of mir-6165 on cell cycle. A dramatic change was observable toward sub-G1 stage in the cells overexpressing mir-6165
compared to negative controls (a9- d9).B) Annexin-PI staining of the U87 cells overexpressing mir-6165 shows, the most of the cells have entered early
apoptosis stage compared to negative control and the result is consistent with PI staining in the previous section (a0- d0). The gate setting
distinguished between living (bottom left), necrotic (top left), early apoptotic (bottom right), and late apoptotic (top right) cells. Repeated Measures
ANOVA analysis shows that the changes observed in flow cytometry of U87 cells is extremely significant (p,0.05) between negative controls and the
cells overexpressing mir-6165 (e0).
doi:10.1371/journal.pone.0035561.g004

Intronic MicroRNA in Human NGFR Gene
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Figure 5. mir-6165 overexpression in Hela cell line. A) PI staining of Hela cells overexpressing Hsa-mir-6165 did not show any significant
change in the stages of cell cycle after 34 hours post transfection (a9- c9). B) Annexin-PI staining of the Hela cells shown in figures a0- d0. Repeated
Measures ANOVA analysis shows that the changes observed in annexin test of Hela cells were not significant between negative controls (scramble)
and the test group (e0).
doi:10.1371/journal.pone.0035561.g005
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in few normal cell lineages during the development, but it is

expressed at a detectable level in the human Glioblastoma U87-

MG cell line [15,56]. For this reason, U87-MG and other

glioblastoma cell lines were chosen for the experimental detection

of mir-6165 and its precursor. The fact that one or both of mir and

miRNA-star sequence (miRNA*), the complementary strands of

functional mature miRNA, might exert function, two primers were

designed; one exactly identical to the predicted mir-6165 (called

Pm1 primer, Table-1) and the second primer was identical to its

complementary mir* (called Pm1* primer). After Poly-A addition

to the total RNA extracted from several glioblastoma cell lines,

cDNA was synthesized using anchored oligodT primer (Table-1).

Later along with NGFR gene, the mature form of mir-6165 was

amplified from RNA samples of Daoy, 1321N1, U-87 and NT2

cell lines, using Pm1 primer (Figure 3A). In this figure, mir-6165

expression in Daoy, 1321N1, U87 (brain tumor-derived) cell lines

are compared to a non-glioma (a human teratocarcinoma, NT2)

cell line. mir-6165 and its host gene (NGFR) showed higher

expression level in the brain tumor-derived cell lines, compared to

the NT2 cells. This data supports the correct prediction of mir-

6165 at the first place and also points to the origin of the cells

(glioma) which express this miRNA at a detectable level.

Further supporting evidences were provided through the

detection of endogenous precursor and mature form of mir-6165

in the brain tumor biopsies (Figure 3B). mir-6165 endogenous

expression was detected using real-time PCR on seven brain

tumor tissue samples. Expression data was normalized using U48

endogenous control, and using one of the lowest degree

meningioma samples as a reference. Along with the clear detection

of endogenous mir-6165 in these tissue samples, a strong

correlation was observed between mir-6165 and NGFR gene

expression, which was further confirmed with Pearson’s test

(p = 0.0065). In all of the high grade tissue samples, the level of

NGFR and mir-6165 were higher than the low grade samples

(Figure 3B).

In a neurotrophin-dependent manner, NGFR has been

suggested as an important regulator of glioma invasion [15]. In

that report, NGFR-positive cells within the glioma tumor samples

are more migratory than the NGFR-negative glioma cells.

Consistent with that report, we have seen upregulation of NGFR

in higher grades of brain tumors.

A possible molecular mechanism in which mir-6165 co-operates

with NGFR toward glioma invasion remains unknown; however,

analysis of putative targets of mir-6165 by DAVID software [47]

showed .50% of the predicted targets genes are those expressed

in brain related tissues (Figure S1) among them Pkd1 and DAGLA

genes were down regulated in tested tumor samples (data not

shown).

Cell Death Effect of pre-mir-6165 Overexpression in U87
Cell Line

In order to examine the effect of pre-mir-6165 overexpression

on the rate of apoptosis induction in the transfected cells, flow

Table 2. Top ten predicted targets for novel Hsa-mir-6165
according to DIANAmicro T v.3.

Rank Gene name Ensembl Gene Id
miTG
score Precision SNR

1 DAGLA ENSG00000134780 19.21 0.82 3.97

2 PKD1 ENSG00000008710 18.00 0.82 3.97

3 ENSG00000196518 18.00 0.82 3.97

4 LRRC27 ENSG00000148814 18.00 0.82 3.97

5 KIAA0258 ENSG00000107185 16.09 0.78 3.97

6 VANGL2 ENSG00000162738 16.00 0.78 3.97

7 RHPN1 ENSG00000158106 16.00 0.78 3.97

8 WDTC1 ENSG00000142784 15.00 0.78 3.97

9 ENSG00000138944 15.00 0.78 3.97

10 MECP2 ENSG00000169057 15.00 0.78 3.97

The Signal to noise ratio (SNR) is calculated by the DIANA-microT algorithm and
is based on a comparative analysis of the real miRNA versus a set of mock
miRNAs. Higher miTG scores correspond to higher possibility of correct
prediction. Greater values of SNR correspond to better distinction from the
mock background [38].
doi:10.1371/journal.pone.0035561.t002

Figure 6. Down regulation of hsa-mir-6165 target genes following its precursor overexpression. Down regulation of DAGLA and Pkd1
predicted target genes following the overexpression of Hsa-mir-6165 compared to the scrambled negative controls. Data of expression were globally
normalized against U48, U6 and B2m as endogenous controls.
doi:10.1371/journal.pone.0035561.g006
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cytometry was performed using propidium iodide (PI) and

annexin. This method has been reliably used to show the

involvement of miR-16, let-7a and miR-34a in apoptosis [57].

Compared to the mock transfected control cells, no statistically

significant apoptosis induction was detected 34 hours post

transfection in Hela cells using PI staining. However, transfected

U87 cells showed more than 10% elevation in sub-G1 cell

population (Compare figure 4A with 5A). P value for such

increased cell death rate was calculated by Repeated Measures

ANOVA analysis and the results were highly significant

(p = 0.0009). Annexin test shows the early apoptosis rate of the

transfected cells and is more sensitive than PI test. This test showed

,40% of the transfected U87 cells were in early apoptosis

(p = 0.003) (Figure 4B). Overall, our results suggest a pro-apoptotic

role for mir-6165 in the U87 cells, but not in the Hela cell line

(Figure 5).

Lack of significant apoptotic effect of mir-6165 in transfected

Hela cells may be due to the cellular environment or context of the

cell [58] or lack of its partner(s) or target(s) in this cell line.

Accumulative experimental evidences from the detection of

endogenous mature mir-6165 in the brain tumor samples to the

detection of exogenous mir-6165 in the transfected Hela cells and

its overexpression effect on the cell death rate, all emphasis the

functionality of this miRNA.

Down Regulation of Predicted mir-6165 Target Genes
upon its Overexpression

The sequence of mir-6165 was used as query for target

prediction in DIANA-microT online tool and its top ten candidate

genes are listed in Table 2. In the glioblastoma cell lines in which

NGFR and mir-6165 are expressed, some of these target genes are

down regulated based on the information from Oncomine

database. DAGLA gene (Neural stem cell-derived dendrite

regulator) is the highest scored target gene of the list and its

miRNA recognition element (MRE) is highly conserved among

other organisms. The interaction between this target and mir-6165

was further analyzed using RNAHybride (http://bibiserv.techfak.

uni-bielefeld.de) online tool. Strong complementation was ob-

served between the mir-6165 and its target MRE element in the

DAGLA gene.

For experimental verification of the mir-6165 target genes, real-

time specific primers were designed for (DAGLA and PKD)

predicted target genes. Overexpression of pre-mir-6165 in Hela

cells ended in 200,000 fold increase of mature form, 34h post

transfection but DAGLA and PKD expression level still remained

undetectable. In contrast to Hela cells, DAGLA and PKD genes

were expressed at a detectable level in the untransfected U87 cells.

Upon overexpression of mir-6165 in the U87 cells, a significant

down regulation of these target genes was observed (Figure 6).

Mutations in the PKD1 gene (encoding Polycistin-1) are

accounted for the renal cysts formation [59]. Overexpression of

PKD1 in Madin-Darby canine kidney (MDCK) cells has led to

decreased apoptosis [60] and silencing of PKD1 has led to an

increased apoptosis rate due to a reduced cell adhesion [61].

PKD1 and PKD2 are expressed in a number of tissues and organs,

including the ductal epithelial cells in the kidney, liver, pancreas,

breast, smooth muscle, endothelial cells of the vasculature and

astrocytes in the brain [62]. U87 cell line is an astrocytoma cell

line derived from a human malignant glioma and we showed that

PKD1 was expressed in this cell line (Figure 6). Consistent with

previous studies as well as considering high expression level of

PKD1 in most of the brain tumor-derived cell lines, a reduction in

PKD1 expression following the overexpression of mir-6165 could

justify the increased rate of apoptosis and a change of cell number

distribution toward sub-G1 (Figure 4).

DAGLA gene is involved in endocannabinoid pathway shown

by mouse knock out model. This pathway refers to a group of

neuromodulatory lipids and their receptors [63]. DAGLA gene

effect on proliferation is not yet clear to our knowledge. A recent

publication has suggested that DAGLA deletion ended in ,50%

less cell proliferation of the hippocampus cells [63]. DAGLA gene

has multiple target sites for mir-6165 within its 39-UTR and it is

deducible that overexpression of this miRNA has caused down

regulation of this target gene at least at the mRNA level (Figure 6).

It is remained to be tested if increased rate of apoptosis is related to

the down regulation of DAGLA gene as well.

Co-expression of mRNAs and/or functional similarity of target

and host genes of an intronic miRNA have been hypothesized

[64]. This hypothesis was tested for NGFR and mir-6165

predicted target genes using GENEMANIA database (Figure

S2). There was a co-expression pattern between most of the targets

and NGFR host gene while none of the high scored targets show a

direct physical interaction with NGFR gene.

It has been suggested that intronic miRNAs tend to target the

genes that are functionally similar to their host genes [64]. Using

Funsimmat algorithm (funsimmat.bioinf.mpi-inf.mpg.de) high

scored target genes of mir-6165 showed functional similarity with

NGFR gene as well. Noteworthy, Diana-mirpath and geneset2-

miRNA online servers showed that most of the first 20 high scored

targets of mir-6165 are also targeted by other miRNAs involved in

cancers and brain development like mir-608, mir24 and mir-637.

How this network of miRNAs with overlapped functions act in

cancerous cell and development remain to be tested.

In conclusion, by multiple experimental evidence, our study

revealed that mir-6165 is expressed in brain tumor-derived cell

lines and primary brain tumor tissues. Overexpression of mir-6165

in U87 cell line increased the cell death rate and down regulated

PKD1 and DAGLA target genes, which are involved in apoptosis.

Furthermore, there is a strong co-expression network of mir-6165

host and target genes.

Supporting Information

Figure S1 Co-expression network of NGFR gene with
mir-6165predicted targets. Although there is a co expression

network between targets genes of mir-6165 but none of these

targets have direct interaction with NGFR host gene. The targets

of mir-6165have been shown by the larger nodes.

(TIF)

Figure S2 Percent of putative targets of Hsa-mir-6165 in
different tissues. Analysis of mir-6165 putative target genes by

DAVID showed more than 50 percent of predicted target genes

are expressed in brain related tissues.

(TIF)

Acknowledgments

The authors thank H. khayatzadeh, S. Rohban, and and personnel’s of

flowcytometry section in Tehran Medical University and Royan Institute

for their kind advise and technical assistance.

Author Contributions

Conceived and designed the experiments: SP BMS. Performed the

experiments: SP EH SET. Analyzed the data: SP BMS SJM. Contributed

reagents/materials/analysis tools: BMS SJM. Wrote the paper: SP BMS

SJM.

Intronic MicroRNA in Human NGFR Gene

PLoS ONE | www.plosone.org 9 April 2012 | Volume 7 | Issue 4 | e35561



References

1. Gao X, Daugherty RL, Tourtellotte WG (2007) Regulation of low affinity

neurotrophin receptor (NGFR ) by early growth response (egr) transcriptional
regulators. Mol. Cell. Neurosci 36(4), 501–514: doi: 10.1016/

j.mcn.2007.08.013.

2. Cantarella G, Lempereur L, Presta M, Ribatti D, Lombard G, et al. (2002)

Nerve growth factor-endothelial cell interaction leads to angiogenesis in vitro
and in vivo. The FASEB J. 16(10), 1307–1309: doi: 10.1096/fj.01–1000fje.

3. Caporali A, Pani E, Horrevoets AJG, Kraenkel N, Oikawa A, et al. (2008)

Neurotrophin NGFR receptor (NGFR ) promotes endothelial cell apoptosis and
inhibits angiogenesis: Implications for diabetes-induced impaired neovascular-

ization in ischemic limb muscles. Circ. Res 103(2), e15-e26: doi: 10.1161/
CIRCRESAHA.108.177386.

4. Salis MB, Graiani G, Desortes E, Caldwell RB, Madeddu P, et al. (2004) Nerve

growth factor supplementation reverses the impairment, induced by type 1
diabetes, of hindlimb post-ischaemic recovery in mice. Diabetologia 47(6), 1055–

1063: DOI: 10.1007/s00125–004–1424–5.

5. Wang S, Bray P, McCaffrey T, March K, Hempstead BL, et al. (2000)

p75(NTR) mediates neurotrophin-induced apoptosis of vascular smooth muscle
cells. Am. J. Pathology 157(4), 1247–1258.
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36. Ritchie W, Théodule F, Gautheret D (2008) Mireval: A web tool for simple

microRNA prediction in genome sequences. Bioinformatics 24(11), 1394–1396:
doi: 10.1093/bioinformatics/btn137.

37. Kent WJ (2002) BLAT - the BLAST-like alignment tool. Genome Res 12(4),

656–664: doi: 10.1101/gr.229202.

38. Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, et al.

(2009) DIANA-microT web server: Elucidating microRNA functions through
target prediction. Nucleic Acids Res 37(SUPPL. 2), W273–W276: doi: 10.1093/

nar/gkp292.

39. Maragkakis M, Alexiou P, Papadopoulos GL, Reczko M, Dalamagas T, et al.
(2009) Accurate microRNA target prediction correlates with protein repression

levels. BMC Bioinformatics10, 295: doi:10.1186/1471–2105–10–295.

40. Gkirtzou K, Tsamardinos I, Tsakalides P, Poirazi P (2010) MatureBayes: A
probabilistic algorithm for identifying the mature miRNA within novel

precursors. PLoS ONE 5(8): e11843. doi:10.1371/journal.pone.0011843.

41. Zhao D, Wang Y, Luo D, Shi X, Wang L, et al. (2010) PMirP: A pre-microRNA

prediction method based on structure-sequence hybrid features. Artificial

Intelligence in Medicine 49(2), 127–132. http://dx.doi.org/10.1016/j.artmed.
2010.03.004.

42. Sewer A, Paul N, Landgraf P, Aravin A, Pfeffer S, et al. (2005) Identification of
clustered microRNAs using an ab initio prediction method. BMC Bioinformatics

6, 267: doi:10.1186/1471–2105–6–267.

43. Knudsen S (1999) Promoter2.0: For the recognition of PolII promoter
sequences. Bioinformatics 15(5), 356–361: doi: 10.1093/bioinformatics/

15.5.356.

44. Papadopoulos GL, Alexiou P, Maragkakis M, Reczko M, Hatzigeorgiou AG
(2009) DIANA-mirPath: Integrating human and mouse microRNAs in

pathways. Bioinformatics 25(15), 1991–1993: doi: 10.1093/bioinformatics/
btp299.

45. Antonov AV, Dietmann S, Wong P, Lutter D, Mewes HW (2009)

GeneSet2miRNA: Finding the signature of cooperative miRNA activities in
the gene lists. Nucleic Acids Res 37(SUPPL. 2), W323–W328: doi: 10.1093/

nar/gkp313.

46. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, et al. (2010)

The GeneMANIA prediction server: Biological network integration for gene

prioritization and predicting gene function. Nucleic Acids Res 38(SUPPL. 2),
W214–W220: doi: 10.1093/nar/gkq537.

47. Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. (2003)
DAVID: Database for annotation, visualization, and integrated discovery.

Genome Biology 4(5, doi:10.1186/gb-2003–4–5-p3.

48. Andrews P, Damjanov I, Simon D, et al. (1984) Pluripotent embryonal
carcinoma clones derived from the human teratocarcinoma cell line Tera-2.

Differentiation in vivo and in vitro Lab Invest 50: 147–162.

49. Malakootian M, Mowla SJ, Saberi H, Asadi MH, Atlasi Y, et al. (2010)

Differential expression of nucleostemin, a stem cell marker, and its variants in

different types of brain tumors. Molecular Carcinogenesis 49(9), 818–825:
DOI: 10.1002/mc.20658.

50. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular Cloning: A Laboratory
Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Intronic MicroRNA in Human NGFR Gene

PLoS ONE | www.plosone.org 10 April 2012 | Volume 7 | Issue 4 | e35561



51. Mestdagh P, Van Vlierberghe P, De Weer A, Muth D, Westermann F, et al.

(2009) A novel and universal method for microRNA RT-qPCR data
normalization. Genome Biology 10(6, doi:10.1186/gb-2009–10–6-r64.

52. Lewis BP, Shih I, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of

mammalian MicroRNA targets. Cell 115(7), 787–798: doi:10.1016/S0092–
8674(03)01018–3.

53. Bentwich I (2005) Prediction and validation of miRNAs and their targets. FEBS
Lett 579, 5904–5910: doi:10.1016/j.febslet.2005.09.040.

54. Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, et al. (2005) Clustering

and conservation patterns of human microRNAs. Nucleic Acids Res 33(8),
2697–2706: doi: 10.1093/nar/gki567.

55. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, et al. (2005) MicroRNA
expression profiles classify human cancers. Nature 435(7043), 834–838:

doi:10.1038/nature03702.
56. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, et al.

(2007) Oncomine 3.0: Genes, pathways, and networks in a collection of 18,000

cancer gene expression profiles. Neoplasia 9(2), 166–180: DOI 10.1593/
neo.07112.

57. Aranha MM, Santos DM, Xavier JM, Low WC, Steer CJ, et al. (2010)
Apoptosis-associated microRNAs are modulated in mouse, rat and human

neural differentiation. BMC Genomics 11: 514. doi:10.1186/1471–2164–11–

514.
58. Cheng AM, Byrom MW, Shelton J, Ford LP (2005) Antisense inhibition of

human miRNAs and indications for an involvement of miRNA in cell growth

and apoptosis. Nucleic Acids Research 33(4), 1290–1297: doi: 10.1093/nar/

gki200.

59. Hughes J, Ward CJ, Peral B, Aspinwall R, Clark K, et al. (1995) The polycystic

kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell

recognition domains. Nature Genetics 10, 151 – 160: doi:10.1038/ng0695–151.

60. Boletta A, Qian F, Onuchic LF, Bhunia AK, Phakdeekitcharoen B, et al. (2000)

Polycystin-1, the gene product of PKD1, induces resistance to apoptosis and

spontaneous tubulogenesis in MDCK cells. Mol. Cell 6, 1267–1273. http://dx.

doi.org/10.1016/S1097-2765(00)00123-4.

61. Battini L, Fedorova E, Macip S, Li X, Wilson PD, et al. (2006) Stable

Knockdown of Polycystin-1 Confers Integrin-a2b1–Mediated Anoikis Resis-

tance. J. Am. Soc. Nephrol 17, 3049–3058: doi: 10.1681/ASN.2006030234.

62. Zhou J (2009) Polycystins and Primary Cilia: Primers for Cell Cycle Progression.

Annual Review of Physiology 71: 83–113. DOI: 10.1146/annurev.phy-

siol.70.113006.100621.

63. Gao Y, Vasilyev DV, Goncalves MB, Howell FV, Hobbs C, et al. (2010) Loss of

retrograde endocannabinoid signaling and reduced adult neurogenesis in

diacylglycerol lipase knock-out mice. Journal of Neuroscience 30(6), 2017–

2024: doi: 10.1523/JNEUROSCI.5693–09.2010.

64. Lutter D, Marr C, Krumsiek J, Lang EW, Theis FJ (2010) Intronic microRNAs

support their host genes by mediating synergistic and antagonistic regulatory

effects. BMC Genomics 11: 224. doi:10.1186/1471–2164–11–224.

Intronic MicroRNA in Human NGFR Gene

PLoS ONE | www.plosone.org 11 April 2012 | Volume 7 | Issue 4 | e35561


