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Abstract
Purpose  Members of the transforming growth factor (TGF)-β superfamily play a key role in the regulation of the malignant 
phenotype of glioblastoma by promoting invasiveness, angiogenesis, immunosuppression, and maintaining stem cell-like 
properties. Betaglycan, a TGF-β coreceptor also known as TGF-β receptor III (TβRIII), interacts with members of the TGF-β 
superfamily and acts as membrane-associated or shed molecule. Shed, soluble TβRIII (sTβRIII) is produced upon ectodomain 
cleavage of the membrane-bound form. Elucidating the role of TβRIII may improve our understanding of TGF-β pathway 
activity in glioblastoma
Methods  Protein levels of TβRIII were determined by immunohistochemical analyses and ex vivo single-cell gene expres-
sion profiling of glioblastoma tissue respectively. In vitro, TβRIII levels were assessed investigating long-term glioma cell 
lines (LTCs), cultured human brain-derived microvascular endothelial cells (hCMECs), glioblastoma-derived microvascular 
endothelial cells, and glioma-initiating cell lines (GICs). The impact of TβRIII on TGF-β signaling was investigated, and 
results were validated in a xenograft mouse glioma model
Results  Immunohistochemistry and ex vivo single-cell gene expression profiling of glioblastoma tissue showed that TβRIII 
was expressed in the tumor tissue, predominantly in the vascular compartment. We confirmed this pattern of TβRIII expres-
sion in vitro. Specifically, we detected sTβRIII in glioblastoma-derived microvascular endothelial cells. STβRIII facilitated 
TGF-β-induced Smad2 phosphorylation in vitro and overexpression of sTβRIII in a xenograft mouse glioma model led to 
increased levels of Smad2 phosphorylation, increased tumor volume, and decreased survival
Conclusions  These data shed light on the potential tumor-promoting role of extracellular shed TβRIII which may be released 
by glioblastoma endothelium with high sTβRIII levels.
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Abbreviations
GIC	� Glioma-initiating cell lines
hCMEC	� Human brain-derived microvascular endothelial 

cells
LTC	� Long-term glioma cell lines
sTβRIII	� Soluble TβRIII
TGF	� Transforming growth factor
TβRIII	� TGF-β receptor III

Introduction

Glioblastoma is one of the most common malignant intrinsic 
brain tumors [1]. Prominent biological features of glioblas-
toma include excessive migratory, invasive and angiogenic 
potential, and suppression of anti-tumor immune surveil-
lance. Glioma-derived transforming growth factor (TGF)-β 
is thought to be fundamental in these processes. Self-renew-
ing, highly tumorigenic glioma-initiating cells (GIC) have 
been proposed to be more resistant to therapy than the tumor 
bulk [2], to have invasive properties and to be involved in 
angiogenesis [3–5]. TGF-β signaling has been proposed to 
be a key regulator in glioma vasculature [6] and the main-
tenance of stem cell-like properties and tumorigenic activ-
ity of GIC [7, 8]. Thus, targeting TGF-β may affect glioma 
vessels and GIC, thereby inhibiting tumor growth and sen-
sitizing tumors to conventional therapies [9]. Proteins of 
the TGF-β superfamily interact with TGF-β receptors I–III 
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(TβRI-III). TβRI, also known as activin receptor-like kinases 
(ALK), and TβRII form heteromeric complexes upon bind-
ing of TGF-β family ligands [10]. Subsequently, canonical 
and non-canonical TGF-β signal transduction is activated. 
Canonical TGF-β signal transduction is mediated by Smad 
transcription factors resulting in the phosphorylation of 
the receptor-regulated Smads, Smad 1, 2, 3, 5, and 8 [11]. 
TGF-β receptors may also directly interact with or phospho-
rylate non-Smad proteins initiating parallel signaling that 
cooperates with the Smad pathway in downstream responses 
[12]. The TGF-β receptor core complex is not only consti-
tuted by TβRI and TβRII, but also by the TGF-β signaling 
coreceptor TGF-β receptor type III (TβRIII), a ubiquitously 
expressed accessory TGF-β receptor [13]. TβRIII is a trans-
membrane protein with a large extracellular domain (ECD) 
with glycosaminoglycan groups [41]. By its ECD, it may 
bind multiple members of the TGF-β family such as TGF-
β1-3, activin-A, bone morphogenetic proteins (BMP)-2, 
BMP-4, BMP-7, and growth differentiation factor (GDF) 
5 as well as inhibin [14, 15]. TβRIII undergoes ectodomain 
shedding from the cell surface to generate soluble forms 
of the receptor [16]. The ECD is then capable of binding 
TGF-β ligands [17]. Overall, the role of TβRIII is complex 
and difficult to predict as the balance of cell surface and 
shed TβRIII, which is also called soluble TβRIII (sTβRIII), 
may differentially regulate TGF-β superfamily signaling [13, 
18]. Given the putative central role of TGF-β superfamily 
signaling in glioblastoma, the present study focused on the 
role of TβRIII in the regulation of TGF-β pathway activity 
in this disease.

Material and methods

Cell culture and reagents

Details are summarized in supplementary note 1.

Real‑time PCR (RT‑PCR)

RT-PCR was performed as previously described [19] and is 
described in supplementary note 2.

Immunoblot analyses

Immunoblot analysis was performed as previously described 
[20], and reagents are listed in supplementary note 1.

Enzyme‑linked immunosorbent assay (ELISA)

Experimental details are listed in supplementary note 3.

Flow cytometry

LTCs were seeded at confluency and flow cytometry was 
performed 48 h after serum deprivation [19].

Animal studies

Experimental details are described in supplementary note 
4.

Immunohistochemistry

Experimental steps were conducted as described in sup-
plementary note 5.

Immunofluorescence microscopy

Experimental details are provided in supplementary note 
6.

Single‑cell real‑time polymerase chain reaction 
(scRT‑PCR) of reverse‑transcribed RNA

Experimental details are described in supplementary note 
7.

Statistical analysis

Details are provided in supplementary note 8.

Results

TβRIII expression in gliomas in vivo

Immunohistochemistry was used to assess TβRIII lev-
els in normal human brain and in glioblastoma tissue 
samples. Normal brain of 13 individuals who were not 
diagnosed with a glioblastoma was tested using a tissue 
microarray (TMA). The TMA included normal brain hip-
pocampus tissue punches of 12 different individuals and 
three punches of a gyrus temporo-occipitalis tissue of one 
individual. TβRIII in glioblastoma was examined in 52 
newly diagnosed and nine recurrent tissue samples (Sup-
plementary Table 1). TβRIII protein levels were analyzed 
separately in the tumor and normal brain tissue versus the 
endothelium. Quantitative assessment of non-endothelial 
regions of tumor and normal brain tissue separately from 
the respective endothelial regions revealed higher TβRIII 
levels in the vasculature of glioblastoma (p < 0.001) and 
of normal brain (p < 0.001) than in the tumor tissue proper 
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or the parenchymal brain cells (Fig. 1a). Representative 
paraffin sections of four glioblastoma and four normal 
brain patients stained for TβRIII are shown in Figure 
S1. Survival data were available for all 52 glioblastoma 
patients assessed for TβRIII staining in the tumor cells 
and for 48 patients assessed for TβRIII staining in the 
endothelial cells. Comparison of the median overall sur-
vival (OS) of glioblastoma patients with high versus low 
TβRIII levels (cut-off defined by median TβRIII levels) 
revealed no differences, neither for patients with high 
(median OS 17.7 months, 95% confidence interval (CI) 
11.8–23.5 months) versus low (median OS 15.8 months, 

95% CI 5.8–25.8  months) staining in the tumor cells 
(p = 0.88) (Figure S2A) proper nor for patients with high 
(median OS 19.0 months, 95% CI 8.3–29.7 months) versus 
low (median OS 17.7 months, 95% CI 0.0–53.5 months) 
staining in the glioblastoma vasculature (p = 0.36) (Figure 
S2B).

Representative normal brain and glioblastoma tissue sec-
tions with the endothelial marker vWF and TβRIII stained 
by co-immunofluorescence confirmed a predominant vas-
cular localization both within the normal brain and the glio-
blastoma sections (Fig. 1b). TβRIII levels in tumor cells 
positively correlated with TβRIII levels in endothelium in 
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Fig. 1   TβRIII levels in human glioblastoma in  vivo. a TβRIII was 
detected immunohistochemically and quantified using the H-score 
in a TMA comprising 13 normal brain tissue samples obtained from 
epilepsy surgery and in tissue sections of 57 newly diagnosed and 
nine recurrent glioblastoma patients. Non-endothelial and endothe-
lial cells, which were identified topographically aligning tumor ves-
sels, were analyzed and scored separately; mean values are marked 
by the line, *indicates significance p < 0.001. b Representative pho-
tomicrographs of tissue sections from a analyzed for expression of 

TβRIII (red) and the endothelial marker vWF (green) by immuno-
fluorescence. Scale bar: 50 µm. DNA was stained with 4′,6-diamid-
ino-2-phenylindole (DAPI). c TβRIII expression was determined in 
CD31+ versus CD31− cell fractions of freshly dissociated glioblas-
toma tissues by RT-PCR. d Supernatants from CD31+ (endothelial) 
cells of three freshly dissected glioblastomas were assessed by ELISA 
for levels of shed TβRIII. Data were normalized to protein concentra-
tion of supernatants. (Color figure online)
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newly diagnosed (r = 0.412, p = 0.004) as well as in recur-
rent glioblastoma (r = 0.818, p < 0.005). Regarding corre-
lations of TβRIII with expression of other TGF-β related 
molecules in this glioblastoma patient cohort, only a cor-
relation in newly diagnosed glioblastoma (tumor cells) of 
protein levels of TβRIII and TGF-β1 (r = 0.339, p = 0.046) 
and in recurrent glioblastoma (tumor cells) of protein lev-
els of TβRIII and pSmad1/5/8 (r = 0.898, p = 0.033) were 
detected (Supplementary Table 2). In a previous study, we 
found a localization of CD31 restricted to the tumor blood 
vessels in glioblastomas [21], defining CD31 as an endothe-
lial marker in glioblastoma. As a confirmation that TβRIII 
is more abundant in tumor endothelium than in the tumor 
cells, we used the endothelial cell marker CD31 and com-
pared matched CD31+ and CD31− cell populations from four 
freshly dissociated primary glioblastoma tissues. In three out 
of four tumors, TβRIII expression was higher in the CD31+ 
cell fraction (Fig. 1c). Endothelial-like (CD31+) cell lines 
previously established in our laboratory [22] also released 
sTβRIII into the supernatant (Fig. 1d).

Single‑cell analysis of TβRIII expression 
in freshly glioma cells ex vivo

Next, we expanded our differentiated analysis of TβRIII in 
the tumor versus vascular compartment to the single-cell 
level in cells from glioblastoma tissue obtained directly from 
surgery. To monitor and quantify the heterogeneity of TβRIII 
mRNA in these single cells, we evaluated single-cell profiles 
of six different patients. We performed single-cell real-time 
polymerase chain reaction (scRT-PCR) of TβRIII, and of 
CD31 or alpha-smooth muscle actin (αSMA), as markers 
of the endothelial and pericytic/vascular smooth muscle 
cells (VSMCs). Of the 481 single cells analyzed, 43 cells 
expressed CD31 and 185 cells expressed αSMA (Figure S3). 
TβRIII mRNA was expressed in 156 of 438 cells (36%) of 
the CD31-negative versus 21 of 43 cells (56%) of the CD31-
positive cells, and in 84 of 296 cells (28%) of the αSMA-
negative versus 93 of 185 cells (50%) of the αSMA-positive 
cell population. This confirmed the higher proportion of 
TβRIII-expressing cells in the vascular compartment. Yet, 
remarkably, one third of the CD31-negative cells expressed 
TβRIII, too (Fig. 2a). Correlation analysis of all 481 cells 
of the six glioblastoma patients on single-cell level revealed 
only weak correlations of TβRIII mRNA expression with 
molecules associated with TGF-β superfamily signaling 
such as the extracellular matrix proteins LTBP (LTBP-1, 
r = 0.2, p = 0.00036, LTBP-2, r = 0.18, p = 0.00005, LTBP-
3, r = 0.17, p = 0.014012, LTBP-4, r = 0.17, p = 0.0017), 
fibronectin (FN) (r = 0.18, p = 0.000003) and its oncofetal 
isoforms EDA + FN (r = 0.21, p = 0.000018) and EDB + FN 
(r = 0.25, p = 0.000002), and the TGF-β target gene TGF-β 

induced (TGFBI) (r = 0.23, p = 0.000004), and remarkably 
no correlation with the three TGF-β isoforms. Analysis of 
subpopulations specific for tumor vasculature, such as the 
CD31-positive and αSMA-positive subpopulations, revealed 
for both subpopulations additional positive correlations of 
TβRIII mRNA expression with molecules associated with 
TGF-β superfamily signaling such as all three TGF-β iso-
forms, TGF-βRII, the TGF-β target gene serpine1 and mol-
ecules associated with angiogenic signaling such as VEGF, 
and associated receptors such as vascular endothelial growth 
factor receptor (VEGFR)1, VEGFR2, neuropilin (NRP)1, 
and NRP2. In the CD31-positive subpopulation, there was a 
positive correlation of TβRIII and further molecules linked 
to TGF-β signaling such as ALK-1, aryl hydrocarbon recep-
tor (AhR), the proTGF-β processing enzymes proprotein 
convertase subtilisin/kexin type (PCSK) 5, PCSK 7 and 
furin, and the TGF-β target genes Id (inhibitor of DNA bind-
ing) 1 and Id3 (Fig. 2b).

TβRIII expression and release in human 
glioma cell lines

We assessed TβRIII levels in a panel of human long-term 
cell lines (LTC), glioma-initiating cell (GIC) cultures, and 
cultured human brain-derived microvascular endothelial 
cells (HCMEC). TβRIII was consistently expressed in LTC 
and GIC on mRNA (Fig. 3a) and protein levels as assessed 
in total cellular lysates (Fig. 3b). By flow cytometry, we 
ensured the localization of TβRIII on the cell surface 
(Fig. 3c). Moreover, sTβRIII was detected in the superna-
tant (Fig. 3d) at levels correlating with the levels in cellular 
lysates, indicating constitutive shedding of the receptor in 
the cell lines investigated (r = 0.69; p = 0.0059). Next, we 
evaluated the effect of rhTGF-β2 and of TGF-β signaling 
blockade using the TGF-βRI inhibitor SD-208 [23]. Upon 
TGF-β2 stimulation, TβRIII mRNA expression was reduced 
in a concentration-dependent manner in LN-229 cells. 
Conversely, abrogation of TGF-βRI signaling by SD-208 
increased TβRIII mRNA expression (Fig.  3e). Similar 
changes were seen on protein level in cell lysates of LN-229 
and ZH-161 cells (Fig. 3f). TβRIII levels in the supernatant 
were decreased by TGF-β, too but not increased by SD-208 
(Fig. 3g,h).

Modulation of TGF‑β signaling by (soluble) 
TβRIII

To explore the role of TβRIII in TGF-β superfamily sign-
aling, we transiently silenced its expression in LN-229, 
LN-308, or ZH-161 cells and studied their response to 
TGF-β superfamily ligand stimulation at the level of Smad 
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phosphorylation. LN-229 cells transiently depleted of TβRIII 
by siRNA exhibited increased pSmad2 levels, but no changes 
in pSmad1/5 (Fig. 4a, left panel, lane 1 versus lane 2). In 
response to rhTGF-β2 or rhBMP-4, TβRIII-depleted LN-229 
cells showed increased pSmad2 or pSmad1/5 levels, respec-
tively (Fig. 4a, left panel, lane 3 versus lane 4 for TGF-β2 
stimulation and lane 5 versus lane 6 for BMP-4 stimulation). 
In LN-308 and ZH-161 cells, transient TβRIII depletion by 
siRNA did not modulate pSmad2 or pSMAD1/5, neither 
on constitutive levels nor upon stimulation with exogenous 
TGF-β2 or BMP-4 (Fig. 4a, middle and right panel). Similar 
to the effects of the transient siRNA-mediated knockdown 
in LN-229 cells, stable lentivirus-based TβRIII depletion in 

LN-229 cells (shRNA) increased constitutive pSmad2 levels 
as well as pSmad2 levels upon TGF-β2 stimulation but did 
not affect pSmad1/5 either constitutively or upon BMP-4 
stimulation (Fig. 4b).

To analyze the specific effects of sTβRIII, we overex-
pressed a mutated form of TβRIII comprising only the 
extracellular domain of TβRIII. This had no effect on base-
line constitutive pSMAD levels, but increased pSmad2 
levels in response to TGF-β2 in LN-229 cells (Fig. 4c, 
left panel lanes 2 versus 5); furthermore, increased base-
line and TGF-β2-evoked pSmad2 levels were observed 
in ZH-161 cells overexpressing sTβRIII (Fig. 4c, right 
panel, lanes 2 versus 5 and 1 versus 4). Overexpression 

Fig. 2   TβRIII expression determined by single-cell RT-PCR in 
freshly dissociated human glioblastomas. a Distribution of TβRIII 
expression in CD31- or αSMA-negative versus positive populations 
as determined by single-cell RT-PCR in cells derived from freshly 
dissociated human glioblastoma (N = 6, pooled). x-axis: normalized 
relative log2 expression value of CD31 (upper panel) and αSMA- 
(lower panel), y-axis: normalized relative log2 expression value of 

TβRIII. b Correlation matrix between TβRIII expression and indi-
cated genes on a single-cell level in all cells and in the CD31-neg-
ative- versus the CD31-positive subpopulations. Pearson correlation 
coefficients are visualized using red or blue tilted symbols, indicating 
negative or positive correlations, respectively. Only significant corre-
lations with p-values < 0.05 (after Bonferroni correction) are shown
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of sTβRIII reduced pSmad1/5 levels in LN-229 cells 
stimulated with BMP-4 (Fig. 4c, left panel, lanes 3 ver-
sus 6), whereas baseline and TGF-β2-or BMP-4-evoked 
pSmad1/5 levels were increased in ZH-161 cells overex-
pressing sTβRIII (Fig. 4c, right panel, lanes 3 versus 6). 
For confirmation, we transferred supernatants of LN-229 
cells overexpressing full-length TβRIII (LentiORF-TβRIII 
cells) or of the respective control cells (LentiORF-control 
cells) onto wildtype glioma cells. In line with our results 
from the overexpression approach of sTβRIII shown in 
Fig. 4c, the supernatants of the cells overexpressing TβRIII 
activated TGF-β2/Smad2 signaling in wildtype LN-229 

cells when stimulated with TGF-β2 (Fig. 4d, left panel, 
lane 2 versus lane 5) and reduced pSmad1/5 levels when 
stimulated with BMP-4 (Fig. 4d, left panel, lane 3 versus 
lane 6). To investigate a possible differential modulating 
effect of sTβRIII on TGF-β1- versus TGF-β2-mediated 
signaling, we costimulated with TGF-β1 when supernatant 
from LN-229 cells with shed TβRIII was transferred onto 
wildtype LN-229 cells. Still, an increase in pSmad2 also 
occurred when costimulation with TGF-β1 was performed 
(Fig. 4d). In LN-308 shed, TβRIII did not modulate Smad-
dependent signaling when we transferred supernatant with 
high levels of shed TβRIII onto this cell line (Fig. 4d, right 
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TβRIII in LN-229 cells was included as a negative control. e Relative 
changes of TβRIII mRNA expression in LN-229 cells were assessed 
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24 h. Expression ratios relative to the respective control are depicted. 
f TβRIII protein levels in whole cell lysates of LN-229 cells were 
detected by immunoblot following the treatments described in  e. g 
and h Shed TβRIII levels in LN-229 glioma cell supernatants follow-
ing the treatments as described in e were determined by ELISA (g) 
and by immunoblot (h), ponceau S staining is shown as loading con-
trol in h 



2969Molecular and Cellular Biochemistry (2021) 476:2963–2973	

1 3

panel), consistent with the lack of effect when TβRIII was 
depleted (see Fig. 4a).

(Soluble) TβRIII promotes experimental 
glioma growth in vivo

Finally, we studied whether the biological effects of 
altered TβRIII availability translated into altered glioma 
growth in vivo. In vitro, LN-229 overexpressing sTβRIII 

showed no differences in proliferation or clonogenicity 
(data not shown). LN-229 cells stably overexpressing 
sTβRIII were implanted into the right striatum of athymic 
CD1 nude mice. Cell lines generated ex vivo from mice-
bearing LN-229 sTβRIII or control tumors at the time 
of sacrifice confirmed stable overexpression of sTβRIII 
(Fig. 5a). Assessment of tumor volumes of three mice 
of each group when the first clinical symptoms occurred 
showed increased tumor volumes (Fig. 5b) and increased 
pSmad2 levels in the tumors whereas pSmad1/5 levels 
were unaffected (Fig. 5c). Survival of nude mice with 
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TβRIII (LentiORF TβRIII cells) or the respective control cells (Lenti-
ORF-control cells) were transferred onto the indicated wildtype cells 
(LN-229, panels on the left; LN-308, panels on the right), for 24  h 
with additional stimulation with 2  ng/ml TGF-β2, 1  ng/ml BMP-4 
or 2 ng/ml TGF-β1. Shed TβRIII levels of the respective aliquots of 
these cell culture supernatants are visualized by immunoblot analysis 
(upper panels). a–d For all samples, whole cell lysates were assessed 
for TβRIII, pSmad2, Smad2, pSmad1/5, Smad5, or actin protein lev-
els by immunoblot
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orthotopically implanted tumors overexpressing sTβRIII 
was significantly decreased (Fig. 5d).

Discussion

TGF-β and its receptors TβRI and TβRII have been well 
studied in glioblastoma [24, 25]; however, little is known 
about the coreceptor TβRIII. TβRIII is ubiquitously 
expressed on most cell types, however, commonly not on 
endothelial cells [26]. TβRIII is commonly considered a 
tumor suppressor [26], since its expression is lost during 
progression of several tumor entities, e.g., breast cancer [27], 
non-small cell lung cancer [28], and prostate cancer [29]. 
Sequestering of TGF-β by shed TβRIII inhibiting down-
stream signaling may be a mechanism of action [13, 18, 27, 
28, 30]. However, a tumor-promoting role for TβRIII has 
been deduced from the reduction of tumorigenicity when 
TβRIII expression was reduced in metastatic breast can-
cer cells [31] and in human breast cancer stroma [32]. In 
high-grade non-Hodgkin`s lymphomas [33], colon cancer 
[34], and B-cell chronic lymphatic leukemia [35], TβRIII 
expression is increased and not lost during cancer progres-
sion and may increase tumorigenicity [34]. A dichotomous 
role of TβRIII has been described in the context of lung can-
cer where an extracellular mutant of TβRIII with enhanced 
ectodomain shedding reduced tumorigenicity of the respec-
tive tumor cells but increased their growth rate in vitro and 
in vivo [36]. A study revealed reduced levels of TβRIII in the 
tumor stroma. Further, there were distinct paracrine roles of 
sTβRIII in the tumor microenvironment depending whether 
it was derived from normal or cancer tissue what emphasizes 
the complex regulation of availability of cytokines in the 
ECM [32]. Gene therapy with sTßRII and sTßRIII pointed 
towards a possible therapeutic role of sTβRII and sTβRIII 

[37], what led us to perform the current profound study on 
TβRIII in glioblastoma.

TβRIII levels in newly diagnosed glioblastoma samples 
and of normal brain showed predominantly endothelial 
localization (Fig. 1a, b). Analysis of freshly dissociated 
glioblastoma tissues revealed higher mRNA levels in the 
endothelial fraction of the tumors (Fig. 1c), and endothe-
lial cell lines isolated from freshly dissected glioblastoma 
samples also secreted the shed form of TβRIII (Fig. 1d). 
Single-cell RT-PCR from freshly dissociated tissue of six 
glioblastoma patients confirmed this prevalence in the 
vascular compartment. Both in the vascular (CD31- and 
αSMA-positive cells) and in the non-vascular compart-
ment, TGF-βRIII correlated with molecules associated 
with TGF-β superfamily signaling such as LTBP and FN 
which are both involved in the process of extracellular acti-
vation of TGF-β signaling [20, 21] (Fig. 2b). In line with 
previous studies on embryonic mouse cells [38], levels of 
cellular and shed TβRIII correlated in our cell line panel 
(Fig. 3b, d). As reported for ovarian and breast cancer cell 
lines [39], TGF-β negatively regulated TβRIII expression 
in a TβRI-dependent manner (Fig. 3e–h). Here, TGF-βRI 
inhibition increases membrane-associated TβRIII levels 
(Fig. 3f), but levels of sTβRIII were unaffected (Fig. 3g, 
h). In light of this finding, we speculate that in addition 
to negatively regulating TβRIII expression, TGF-β exerts 
a posttranscriptional effect on TβRIII by increasing shed-
ding and, thus, increasing its release from the cell mem-
brane. Interestingly, expression of TIMP2, an inhibitor of 
TβRIII shedding [17], is reduced in human glioma cell 
lines exposed to TGF-β2 [40].

In many models, TβRIII is described as a dual modula-
tor of TGF-β signaling with cell surface TβRIII enhancing 
signaling and shed TβRIII acting as an antagonist by ligand 
sequestration [41]. More recently, shedding-independent 
inhibition of signaling exerted by the cytoplasmic domain, 

Fig. 5   Overexpression of sTβRIII in a xenograft mouse model. a 
TβRIII expression in cell culture supernatants (Ponceau S staining as 
loading control) of ex  vivo cell cultures generated from established 
tumors from athymic CD1 nude mice (LN-229 pcDNA control ver-
sus LN-229 pcDNA sTβRIII) detected by immunoblot. b Tumor 
volume from established tumors from athymic CD1 nude mice (LN-
229 pcDNA control versus LN-229 pcDNA sTβRIII) calculated as 

length*width*depth multiplied by π/6 of 3 animals. c H scores from 
established tumors from athymic CD1 nude mice (LN-229 pcDNA 
control versus LN-229 pcDNA sTβRIII) for pSmad2 (left panel) and 
pSmad1/5 (right panel). d Overall survival data for CD1 nude mice 
inoculated intracerebrally with 75,000 LN-229 pcDNA control versus 
LN-229 pcDNA sTβRIII presented as a Kaplan–Meier plot
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which sequestered type I and type II TGF-β receptors, 
has been described [42]. Depletion of TβRIII by transient 
(Fig. 4a) or stable (Fig. 4b) knockdown exerted an inhibi-
tory effect on Smad signaling in the glioma cell line LN-229 
as well.

To better distinguish effects of membrane associated ver-
sus soluble TβRIII, we overexpressed sTβRIII in LN-229 
and ZH-161 cells. Surprisingly, sTβRIII activated Smad2 
signaling in both models (Fig. 4c, d) and decreased survival 
in LN-229 tumor-bearing mice (Fig. 5). In the glioma cell 
line LN-308, we observed neither an effect on Smad signal-
ing upon depletion of TβRIII (Fig. 4a) nor upon exposure 
to sTβRIII (Fig. 4d). Since LN-308 is a TGF-β-driven cell 
line as defined by high levels of furin, active TGF-β2, and 
pSmad2 [19, 43], it might not require additional coreceptor 
activity. Indeed, in a classical TGF-β activity assay with 
the TGF-β reporter cell line Mv1Lu (ATCC® CCL-64), 
sTβRIII enhances TGF-β bioactivity, too. Here, a fragment 
of sTβRIII comprising one fourth of the ECD which is clos-
est to the membrane-spanning segment increased binding of 
TGF-β to TGF-β receptor II [44]. Similarly, soluble endog-
lin, a TGF-β type III receptor similar to TβRIII, does not 
inhibit TGF-β superfamily signal transduction but binds 
to circulating BMP-9 and induces signaling on endothelial 
cells [45]. There may be a strong dependency of TβRIII`s 
effects on the cellular context, e.g., presumably including the 
presence of other TGF-β superfamily ligands and receptors. 
Indeed, while sTβRIII inhibited BMP-4/Smad1/5 signaling 
in LN-229 cells, it activated BMP-4/Smad1/5 signaling in 
ZH-161 cells and did not modulate signaling in LN-308 cells 
(Fig. 4). The important role of the balance of shed and cell 
surface TβRIII for Smad1/5 signaling has been studied in 
breast cancer models [13, 18]. We observed an activating 
role for sTβRIII for Smad2 phosphorylation both in TGF-β1- 
and TGF-β2-mediated signaling in glioma cells (Fig. 4d). 
The potency of sTβRIII as a protumorigenic factor in glioma 
cells was confirmed in vivo using xenografts of LN-229 
control versus LN-229 sTβRIII-overexpressing cells in 
nude mice. Orthotopically implanted sTβRIII-transfectants 
formed larger tumors (Fig. 5b) and had increased levels of 
pSmad2 in their tumors (Fig. 5c). In line, the animals had 
shorter survival compared to the controls (Fig. 5d). Previous 
work has pointed towards a role of TGF-β pathway activ-
ity in glioma vessels [6, 25, 46], and glioblastomas are one 
of the most vascularized tumors [24, 47, 48]. Endothelial 
cells might provide large amounts of sTβRIII within the 
tumor to promote TGF-β2/Smad2 signaling in glioma cells 
and thereby promote tumorigenicity. Our study may have 
implications for approaches of pharmacological targeting 
of TGF-β superfamily ligands using TGF-β binding traps 
derived from TGF-β (co-)receptors. Although systemic 
administration of a sTβRIII ECD has been shown to inhibit 

tumor growth in prostate and breast cancer models [49, 50], 
an opposite effect is indicated by our glioma model.
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