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Simple Summary: Many signaling pathways are involved in cancer progression, and among these
pathways, the CXCL12 axis and its two receptors CXCR4 and CXCR7 are well described for many
cancers. This review presents the current knowledge on the role played by each of the actors of this
axis in colorectal cancer and on its consideration in the development of new therapeutic strategies.

Abstract: Colorectal cancer is one of the most common cancers, and diagnosis at late metastatic
stages is the main cause of death related to this cancer. This progression to metastasis is complex
and involves different molecules such as the chemokine CXCL12 and its two receptors CXCR4 and
CXCR7. The high expression of receptors in CRC is often associated with a poor prognosis and
aggressiveness of the tumor. The interaction of CXCL12 and its receptors activates signaling pathways
that induce chemotaxis, proliferation, migration, and cell invasion. To this end, receptor inhibitors
were developed, and their use in preclinical and clinical studies is ongoing. This review provides
an overview of studies involving CXCR4 and CXCR7 in CRC with an update on their targeting in
anti-cancer therapies.

Keywords: colorectal cancer; chemokine; ACKR3; metastasis; microenvironment; signaling pathways;
epigenetics; prognosis; therapy; resistance

1. Cancer Colorectal
1.1. Epidemiology

Colorectal cancer (CRC) is the third most common cancer in the world, with an annual
estimate in 2020 of 1,148,515 new cases affecting both men and women. Because most
patients are diagnosed at metastatic stages of the disease [1], it is the cause of 576,858 deaths
per year, making it the second most deadly cancer. Similar to many cancers, the etiology
of CRC involves a variety of environmental and individual risk factors, including genetic
causes, chronic disease, lifestyle, and age [2].

An average risk is attributed to men and women over 50 years of age with no known
predisposing factors. In absence of genetic factors or family history, environmental factors
such as diet, a sedentary lifestyle, alcohol, and tobacco abuse influence the development of
CRC [3,4]. The high risk, about 20% of the general population, considers family (familial
adenomatous polyposis or FAP or Lynch syndrome) and personal history. Thus, this
risk is two to five times higher than the average risk of developing CRC for people who
have had an adenoma >1 cm, or with at least one first-degree relative who has developed
colorectal adenomas or CRC [5]. The risk is also elevated for people affected by a chronic
inflammatory bowel disease (IBD) such as ulcerative colitis or Crohn’s disease [5].

1.2. Molecular Definition of Colorectal Cancer

CRC occurs and progresses because of an accumulation of sequential mutations
and/or genomic abnormalities. Molecular biology techniques have classified CRCs into
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three major phenotypes according to the abnormalities identified [6]. Tumors with a
Chromosome INstability phenotype (CIN) or a MicroSatellite Stability phenotype (MSS)
are the most frequently observed (80–85%) [7]. This instability is a result of loss or gain of
chromosomes or chromosome fragments leading to loss of tumor suppressor genes or gain
of oncogenes [8]. Examples include the loss of chromosomes 5, 17 and 18 on which the
APC (5q21), TP53 (17p13) and SMAD2-3 (18q21) genes are located, respectively, and the
gains on chromosome 8 for the C-MYC gene on 8q24 [8–12].

The second phenotype represents tumors characterized by MicroSatellite Instability
(MSI) and is present in 15–20% of CRCs [13]. This phenotype is characterized by a deficiency
in the base MisMatch Repair (MMR) system during replication [14]. This defect results in
an accumulation of mutations in microsatellites and repeated sequences of one to twenty
nucleotides in the coding region of certain genes involved in colorectal carcinogenesis [15].
Among the genes affected are mainly MLH1 and MSH2, which are also associated with
Lynch syndrome [16,17]. The MSI phenotype is also classified into MSI-High and MSI-Low.

A third phenotype has been established by observing methylation/hypermethylation
of CG repeat sequences or CpG (cytosine–phosphate–guanine) islands in the promoter re-
gions of some genes, thus repressing their transcriptional expression [18]. These repressions
typically affect many tumor suppressor genes such as MLH1, CDKN2A [19]. The latter
phenotype can be found associated with either of the previous two phenotypes, as 12% of
CIMP cases are found associated with the MSI phenotype and 8% in MSS phenotypes [20].

In general, CRC survival depends directly on the stages. Thus, the overall survival
at 5 years for all stages combined is 63%, and the chance of cure is almost total for stage
0 to II cancers (>90%) and 72% for stage III, but it drops to 14% for stage IV, the stage
of dissemination to distant organs [21]. Survival also depends on CRC phenotype since
patients with MSI tumors have a better prognosis than patients with MSS tumors [22,23].
Other studies have been performed using meta-analyses on transcriptomic data to propose
a consensus molecular classification (CMS) of CRCs by defining four subtypes that have
been associated with a prognostic value for patient survival [24]. The CMS classification
has an important prognostic value and indicates that in non-metastatic CRC (stages 0 to
III), the prognosis is favorable for tumors in the CMS-1 subgroup and to a lesser extent
for the CMS-2 subgroup. Conversely, in a metastatic situation (stage IV), it is the CMS-1
subgroup that is linked to the worst prognosis since the overall survival of patients with a
CMS-1 tumor was 14.8 months against 31.9 months for CMS-2 tumors [25].

Therapeutically, tumor resection remains the primary treatment for all stages of the
disease. However, for stages with lymph node involvement or distant metastases (in
the liver and lungs), chemotherapy combined or not, with targeted therapy is proposed.
Note that therapy using cetuximab or panitumumab, two anti-EGFR (Epidermal Growth
Factor Receptor) antibodies, is proposed only to treat CRCs with wild-type KRAS [26].
In recent years, an increasing number of studies have focused on immunotherapy. The
basis of immunotherapy is to overcome the mechanisms involved in immune tolerance to
tumor self-antigens and to block the immunosuppressive response that occurs in the tumor
microenvironment. This process is primarily driven by the inactivation and depletion of
T cells via the activation of immune checkpoint inhibitors (ICIs) on the surface of T cells,
which prevent them from recognizing tumor neoantigens. Current therapies target the
PD-1 receptor (Programmed cell Death protein 1) and its ligand PD-L1 (Programmed cell
Death protein Ligand 1), and CTLA-4 (Cytotoxic T lymphocyte Antigen 4).

In the exploratory NICHE study (ClinicalTrials.gov: NCT03026140), patients with
early-stage MSS or MSI CRC and neoadjuvant treatment with a single dose of anti-CTLA-4
(ipilimumab) and two doses of anti-PD1 (nivolumab) led to 100% and 27% response in
MSI and MMS tumors, respectively [27]. Several phase II and III randomized controlled
trials are underway to evaluate the efficacy of immunotherapy in metastatic CRC of both
phenotypes (first-line or refractory), with/without chemotherapy [28]. Once it will be
validated in larger cohorts and with at least 3 years of recurrence-free survival data, neoad-
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juvant immunotherapy could potentially become the standard of care for a defined group
of patients.

2. CXCL12 and Its Two Receptors CXCR4 and CXCR7

Chemokines are a group of small proteins of 8 to 12 kDa from the family of chemoat-
tractant cytokines [29,30]. To date, about fifty chemokines have been identified, and they
are structurally classified into subfamilies of chemokines C, CC, CXC and CX3C according
to the presence of the “chemokine domain”, represented by the location of four cysteine
residues conserved in the N-terminal domain necessary for the formation of disulfide
bridges [29,30]. These proteins exert their function by binding to receptors with seven trans-
membrane domains, which are related to rhodopsin receptors [31]. Thus, there is the CR,
CCR, CXCR and CX3CR receptor subfamily. Within each group, several chemokines can
bind to several receptors, and inversely, one receptor can bind several chemokines. Because
of this redundancy, the absence of chemokines or their receptors by gene invalidation of
chemokines or their receptors does not necessarily lead to major effects, except for CXCL12
and its two receptors CXCR4 and CXCR7. Mice invalidated for each of these three proteins
die during the embryonic or postnatal period, demonstrating the essential role of these
proteins during embryogenesis [32–34].

The chemokine–receptor interaction was initially described to induce lymphocyte
migration and recruitment [35,36]. However, it is now clear that their activity extends
beyond immune cell migration. Numerous studies have documented that chemokine
signaling also guides the migration of neurons, neural crest cells and germ cells during
embryonic development and regulates the patterning and remodeling of the vascular
system [37–39]. The chemokine–receptor is also a factor in inflammatory diseases [36,40,41],
infections [30,40,41] and cancers [42–44]. One of the most studied chemokines is CXCL12,
which exerts its biological functions by activating the two receptors CXCR4 and CXCR7.

3. Physiological Roles of CXCL12 and Its Two Receptors CXCR4 and CXCR7
3.1. Chemokine CXCL12

The chemokine CXCL12, also known as stromal-cell-derived factor 1 of the bone
marrow (SDF-1), was originally discovered as a factor stimulating the growth of pre-B
lymphocyte progenitors CD34+ (pre-B CD34+) [33,35,45,46] and is mainly responsible for
the homing and maintenance of hematopoietic stem cells in the bone marrow.

CXCL12 is a homeostatic chemokine whose expression is constitutive in a wide range
of tissues and organs such as bone marrow, liver, lung, heart, brain, spleen, and intes-
tine [35,47]; however, its expression can be induced during inflammatory conditions [48,49].
It is expressed in human and mouse with a highly conserved structure, and the gene
undergoes splicing that generates six isoforms (CXCL12α to φ), the alpha and beta forms
being the predominant and ubiquitously expressed forms [50,51].

In the intestinal epithelium, CXCL12 is expressed in an increasing gradient of concen-
tration from the base to the crypt surface [52]. This high expression at the crypt surface
contributes to the constant turnover of epithelial tissue as the CXCL12-CXCR4 signaling
axis stimulates intestinal epithelial cell migration and enhances the integrity of the innate
barrier of the intestinal mucosal epithelium [53].

3.2. CXCR4 Receptor

The CXCR4 receptor (C-X-C motif receptor 4) was originally discovered as a co-
receptor for HIV entry into lymphocytes [54]. Human (352 amino acids) and murine
(359 amino acids) CXCR4 receptors share 89% homology and are ubiquitously expressed in
both embryonic and adult tissue [55]. As the first receptor that can bind CXCL12, it was
considered for a long time as its only receptor, since mice deficient in CXCL12 or CXCR4
have similar phenotypes with abnormalities in hematopoiesis, blood vessel formation in the
gastrointestinal tract, cerebellar development, cardiac ventricular septum formation and
significant embryonic lethality [32,33,56]. The monogamy relationship between CXCL12
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and CXCR4 was disproved by the discovery of the orphan receptor RDC1, identified by
cDNA cloning in the dog thyroid [57,58].

The interaction of CXCR4 with its ligand CXCL12 activates downstream signaling
pathways, including Ras-MAPK, PI3K-AKT-mTOR, Jak2/3-STAT2/4, PLC β and γ2, NF-κB,
and JNK/p38 MAPK via interaction with Gβγ subunits, while inhibiting adenylate cyclase
and cAMP formation via interaction with Gαi [59]. This signaling pathways activation leads
to an alteration in the expression of genes that will modulate different cellular functions
such as actin polymerization, cell skeleton rearrangement or cell migration [60,61]. The
physiological functions of CXCR4 are not only critical for development and homeostasis
but also for the survival of cancer cells.

3.3. CXCR7 Receptor

More recently, another receptor CXCR7 (C-X-C motif receptor 7), renamed ACKR3
(Atypical Chemokine Receptor 3) in 2014, has been described to bind CXCL12 with 10-fold
higher affinity than CXCR4 [62] and can also bind with CXCL11. A particularity is that
the CXCL12-ACKR3 complex does not couple to a G protein but through activation of the
β-arrestin pathway [63]. However, a study by Nguyen et al. in HEK293 cells shows that
binding of CXCL12 to CXCR7 does not result in activation of signaling pathways via Gαi
subunits but activates G-protein-coupled receptor kinase 2 (GRK2) via βγ subunits and
phosphorylation of the receptor by recruitment of β-arrestin 2 [64]. In contrast to CXCR4,
CXCR7 internalization occurs even in the absence of ligand binding and does not lead to
receptor degradation [65].

Similar to CXCR4, CXCR7 can activate many intracellular signaling pathways, in-
cluding AKT and MAPK pathways, via β-arrestins [63]. CXCR7, which does not activate
calcium responses in the presence of CXCL12, is able to modulate CXCR4-activated cal-
cium signaling through the formation of CXCR4/CXCR7 heterodimers [65–67], which can
form in the absence of CXCL12 ligand [65]. However, contradictory data indicate that the
activation of such heterodimers by CXCL12 leads either to a potentiation of the calcium
response with a loss of early activation of ERK kinase [65], or conversely, to a decrease in
this calcium response [67].

The physiological implications of the CXCR7 receptor have been demonstrated in
CXCR7 knockout mice (CXCR7-/-), which die at birth due to abnormal heart valve devel-
opment, highlighting the critical role of CXCR7 in cardiogenesis [68]. Other studies have
shown that CXCR7 allows for the migration of central nervous system neurons during
development by indirectly controlling their migration, through the regulation of the expres-
sion level of CXCR4, and the loss of CXCR7 function results in the production of neurons
functionally deficient for both receptors [69].

The phenotypic differences described for CXCR4-/- and CXCR7-/- mice [32,34], and
recent work examining the role of these receptors in zebrafish development [70,71], support
the hypothesis that CXCR7 and CXCR4 have specific and distinct biological roles. In addi-
tion, several groups have established that CXCR7 acts as a “scavenger” or “decoy receptor”
for extracellular CXCL12 but also for CXCL11, promoting constant cycling between the
plasma membrane and the cytoplasm, and thus establishing a CXCL12 gradient. Thus,
CXCR7 controls chemokine concentrations in the extracellular space, limiting signaling via
other receptors [72,73]. According to a recent study, the balance between intracellular and
membrane expression of CXCR7, and thus its scavenger function, is tightly regulated by
CXCL12-induced phosphorylation of CXCR7 that ensures its subsequent protection against
degradation [74]. This atypical function of CXCR7 is essential for the development of many
organs, for the control and coordination of cell migration and positioning [75], and is not
only dependent on CXCR7 but requires an intimate interaction between CXCL12, CXCR4
and CXCR7.
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4. CXCL12/CXCR4/CXCR7: Pathological Role in CRC

Pathologically, chemokines and their receptors are involved in the development of
infectious diseases, in particular the role of CXCR4 as a gateway for the HIV virus in CD4+
T cells [54]. However, recently, the involvement of chemokines has aroused a lot of interest
in oncology [43,76,77]. The first evidence emerges from studies in breast cancer, with the
involvement of CXCR4 in the control of metastatic dissemination [78].

4.1. Receptor Expression

Numerous studies have investigated the expression level of CXCR4 and CXCR7 re-
ceptors in solid cancers and in hematological cancers, given their involvement in the
development of the hematopoietic system. These studies show elevated expression of one
or both receptors in tumors compared to adjacent healthy tissues [79–81]. Furthermore,
in CRC, Romain et al. showed that CXCR4 and CXCR7 expression increases with clinical
stages [82]. Several authors have reported that receptor overexpression reflects disease pro-
gression and is therefore associated with tumor aggressiveness, decreased survival and poor
prognosis [80,81,83–87]. Receptor expression is not only associated with tumor cells but
also with endothelial cells of tumor microvessels [88,89] whether in colon, liver, pancreas,
prostate, or lung cancers [90,91]. In contrast, Guillemot et al. described CXCR7 expression
only in vessels of primary colorectal tumors and in liver and lung metastases [92].

4.2. CXCL12 Expression

In CRC, different expression patterns have been reported. The expression of CXCL12
can be increasing from healthy mucosa to adenomas and adenocarcinomas [93] or, on
the contrary, decreasing [94]. Other studies show that CXCL12 expression is higher in
tumors compared to healthy tissues [95], and still, others describe heterogeneous tumors
since within the same cohort, some tumors express the chemokine strongly while others
express it weakly or not at all [96,97]. In tumors, CXCL12 is expressed by epithelial cells
but also by vascular endothelial cells [96] and stromal fibroblasts [97]. Finally, some studies
observe no difference in expression between healthy mucosa and tumor [98]. In contrast,
we showed that CXCL12 expression is strongly decreased in 94% of adenomas and 85%
and 75% of MSI and MSS carcinomas, respectively [52]. Similarly, Wendt et al. describe
an absence of CXCL12 expression in the CRC epithelium [99]. It is always difficult to
understand the reasons underlying different levels of expression of a factor in the same
cancer in different studies.

One of the reasons for these discrepancies could be the mixture of colon and rectal
tumors in the cohorts and the fact that part of rectal tumors are either irradiated and/or
chemically treated before resection, leading to changes in CXCL12 expression level [100,101].
Another reason might be the technique used. For instance, in immunohistochemistry, there
may be differences in the reference of the antibody, its dilution, and in the unmasking and
revelation technique (enzymatic, immunofluorescence). The heterogeneity of the tumor
must also be taken into account, as analyses are usually performed on only a fragment
of the tumor. Depending on how the samples are collected, it is possible to be in areas
with high, low or no expression of the protein. The number of tissue sections must also be
considered; with a limited number of sections, it is possible to be in a tumor area expressing
or not the protein. For these reasons, it could be recommended to separately study rectal
and colon tumors, as well as to combine the expression of the transcript with that of the
protein since these two techniques request separate tumor samples [52].

4.3. CXCL12/CXCR4/CXCR7 Axis in Cellular Interactions

The interaction between tumor cells and the tumor microenvironment, which includes
fibroblasts, immune cells and endothelial cells, participates to the development of tumor
malignancy through the modulation of a wide variety of proteins in both cancer and stromal
cells [102]. For example, there is bidirectional crosstalk between tumor cells and cancer-
associated fibroblasts (CAFs). This crosstalk is mediated by cancer cells releasing factors
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that enhance the ability of fibroblasts to release various tumor-promoting chemokines,
which in turn act on malignant cells to promote their proliferative, migratory and invasive
properties. In this aspect, the CXCL12-CXCR4 pair plays a fundamental role in a large
number of malignancies [103].

More specifically, mesenchymal stromal cells (MSCs) can be recruited to the stroma of
developing tumors to enhance metastasis through their ability to secrete growth factors
such as CXCL12 to promote tumor cell proliferation and tumor angiogenesis [104,105].
However, MSCs are also able to differentiate into CAFs by enhancing CXCR4 expression
and activating the TGF (Tumor Growth Factor) pathway, therefore promoting growth
and metastasis by secreting protumor factors [106]. Similarly, Todaro et al. showed that
medium conditioned with fibroblasts isolated from primary colon tumors increases the
clonogenicity of sphere-cultured colon cells and enhances the migration of CD44 stem cells
isolated from CXCR4-expressing human tumors; this medium also converts non-migrating
CD44v6-negative cells into migrating CD44v6-positive cells [107]. This phenotype can
be mimicked by CXCL12, which also confers metastatic potential and a more aggressive
phenotype to these progenitors in vivo.

MSCs present in the tumor stroma may also exert indirect pro-malignant actions by
promoting tumor angiogenesis through the recruitment of endothelial progenitor cells and
by facilitating the formation and maturation of the tumor vasculature [108]. These patterns
are relevant in situations where the primary tumor expresses CXCL12.

In tumors not expressing CXCL12, other chemokines or growth factors (CCL4 or
CCL5/CCL1 or CXCL8) released by CRCs have the ability to attract cells of the immune
repertoire, angiogenic progenitors, and mesenchymal stem cells, resulting in a metastatic
phenotype [109,110]; these molecules can also be produced by stromal cells [111]. In
addition, MIF (Macrophage migration Inhibitory Factor) was shown to recruit MSCs to
tumors by a physical interaction between MIF and CXCR4 expressing cells observed in vitro
and in vivo [112]. Other factors such as fibroblast growth factor (bFGF), VEGF, platelet-
derived growth factor (PDGF), insulin-like growth factor (IGF), and TGF-β have been
further described for their contribution to tumor growth to MSCs [108].

Conversely, in the liver, hepatic stellate cells (HSCs) constitute the predominant popu-
lation of CAFs, which are the main components of the tumor microenvironment [113]. Tu-
mor/fibroblast interaction has been involved the progression of cancer, the CXCR4/CXCL12
chemokine axis being a main leader of malignancy [114]. In addition, HSCs, together with
liver sinusoidal endothelial cells, are one of the principal sources of CXCL12 secretion
in the liver, where they mediate not only the recruitment of CXCR4-expressing tumor
cells, but also of CXCR4-expressing immune cells [114]. Immunohistochemical analysis
of human liver show that the sinusoidal endothelial cells lining the hepatic vessel wall
abundantly express the CXCL12 protein, which is therefore perfectly positioned to interact
with circulating tumor cells for the formation of metastases [115].

Therefore, CXCL12 promotes communication between cancer cells and the surround-
ing non-neoplastic cells in the tumor microenvironment, including endothelial cells and
fibroblasts, through activation of CXCR4 and CXCR7. The hypoxic tumor microenvi-
ronment can favor the upregulation of CXCR4 and CXCL12 in several cell types such
as endothelial cells and cancer cells through mobilization of the hypoxia induced factor
1 (HIF-1α).

Concerning CXCR7-expressing cells, Guillemot et al. found that, in the primary CRC,
the presence of the CXCR7 protein was restricted to tumor-associated endothelial cells,
whereas it was absent in tumor cells [92]. However, others described CXCR7 expression in
tumor-associated blood vessels but also by the malignant cells in CRC [82,116] and other
cancer types [117,118].

We could speculate that CXCR7 expression in tumor vessels is a common feature of all
cancers, whereas the presence of this receptor in malignant cells would be restricted to a
particular type of cancer.
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5. Prognostic Value of CXCL121/CXCR4/CXCR7 Axis
5.1. CXCL12 as a Prognostic Factor

Clinically, there are divergent viewpoints on the prognostic value of CXCL12 ex-
pression level. High expression is significantly associated with high tumor stage, lym-
phatic invasion, venous invasion, lymph node and distant metastases, and decreased sur-
vival [93,96,97]. Likewise, other studies suggest an association between CXCL12/CXCR4
expression and the induction of adenomas, carcinomas, and the development of metas-
tases [94]. Transcriptomic analysis of a cohort of 49 CRCs and RNA-Seq data from TCGA
for 375 CRCs indicate that increased CXCR4/CXCR7+CXCL12 signature expression is
the only independent prognostic marker for the presence/occurrence of metastasis and
decreased overall survival in both datasets [119].

In contrast, in two cohorts of 290 and 306 patients with stage III CRC, high cytoplasmic
expression of CXCL12, assessed by in situ hybridization and immunohistochemistry, is
associated with a better 5-year event-free survival [120]. Several studies, conversely, did
not find a correlation between high CXCL12 expression levels and clinico-pathological
parameters [88,121]. For example, in a meta-analysis of 25 articles published through 2017,
increased transcript or protein expression of CXCL12 was not associated with TNM stage,
age, gender, or diagnosis, but only with degree of tumor differentiation [121]. In another
cohort of 444 CRCs with MSS phenotype [104], the two molecular subgroups C4 and C6
have higher levels of CXCL12 expression than the other four subgroups and are associated
with a worse prognosis for patients [122].

Fushimi et al. showed that overexpression of CXCL12 in the CT26 syngeneic colorectal
cell line in Balb/C mice resulted in an accumulation of dendritic cells and CD8+ T cells,
which significantly slowed tumor growth after subcutaneous implantation [123]. A signifi-
cant number of studies have shown that CD8+ T-cell infiltration of a tumor is associated
with a better prognosis in CRC [124–127]. In a study of 613 stage III CRC specimens, high
CD8+ T cell infiltration combined with high CXCL12 expression is associated with superior
5-year overall survival compared to patients with tumors with high CD8+ T cell expression
alone [128].

In order to address these conflicting results, it can be hypothesized that during the
early stages of carcinogenesis, CXCL12 production might participate in the transformation
of the colonic mucosa at the beginning of the carcinogenesis process, whereas at later stages,
a lower expression would avoid the recruitment of cytotoxic lymphocytes and facilitate
the development of metastasis. Wendt et al. reported that tumor cells that do not express
endogenous CXCL12 respond better to exogenous CXCL12 produced by distant organs,
leading to metastasis in mice [99].

5.2. CXCR4 as a Prognostic Factor

Regarding the prognostic implication of CXCR4, the literature agrees that high CXCR4
expression in CRC patients is unfavorable, as it correlates with advanced tumor stage and
increased risk of recurrence and distant metastasis [96,121,122]. Several meta-analyses
conclude that there is a significant association between high CXCR4 expression and poor
overall survival [80,121,129–131]. In a similar way, a recent study indicated a particularly
poor prognosis for patients having CRCs jointly and strongly express CXCR4 and VEGF
(Vascular Endothelial Growth Factor) in more than 50% of cells, and this combination of
high expression is a strong and independent predictor of early distant relapse [132]. In
another cohort, the CXCR4+CXCR7+CXCL12-β+ signature stratifies patients with risk
of metastasis and in a TCGA dataset (n = 375), this signature predicts the presence of
metastasis and overall survival [119]. Consistent with these observations, low CXCR4
expression in resections of CRC liver metastases is independently associated with a lower
overall recurrence rate and thus improved disease-related survival [133].

In tumor–stromal cell interactions, CXCR4 and CXCL12 form an important signaling
axis, with the interaction influencing adhesion, migration and invasion, reflecting the
strong association of CXCR4 with the development of metastasis. In addition to being
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a prognostic biomarker, these findings are of clinical relevance given the emergence of
new drugs targeting the CXCR4 receptor. In the context of a combination of molecular
alterations, patients whose tumors overexpress CXCR4 and express the mutated KRAS
gene have the worst prognosis [134,135].

Nevertheless, some studies describe the absence of significant correlation between
CXCR4 expression and metastasis development. For example, Nagasawa et al., by mul-
tivariate regression analysis, found no significant association between CXCR4 transcript
expression and a clinico-pathological factor in a cohort of 200 patients with CRC [136]. In
the same way, work on a small cohort of liver metastases from CRC identified no difference
in the level of CXCR4 expression between tumor tissue and adjacent healthy tissue [137].
Finally, Xu et al. observed that the level of CXCR4 expression in the center of tumors is not
predictive of a poor prognosis, but instead its expression at the invasive border is [138].

5.3. CXCR4 as Stem Cell Marker

The following markers are considered markers of CRC stem cells (CSCs): CD133,
CD144, CD24, CD166, CD44, CD29, ALDH1, LGR5, and emerging studies have also re-
ported the involvement of the CXCL12/CXCR4 axis in several adult stem cells [131]. CD133
is one of the markers described to identify tumor-initiating cells (TICs) in several cancers
and in colon cancer; it has been used to isolate CSCs [139,140]. However, CD133 expression
is not only limited to CSCs [141,142], and in order to identify these cells more accurately,
additional markers have been considered. This is the case, for example, in the study
by Zhang et al. who demonstrated that CXCR4 expression could be used in addition to
CD133 expression to characterize colorectal CSCs [143]. In addition, a high percentage
of double-positive cells for these two markers in human CRCs positively correlates with
the presence of lymph node metastases [144]. Another example has been described where
Lgr5+/CXCR4+ colonic cancer cells respond to the properties of CSCs through a greater
ability to form spheres in vitro, develop tumors in vivo and resist chemotherapy. Further-
more, high levels of Lgr5 and CXCR4 expression in resected human CRCs correlate with
poor prognosis [145].

5.4. CXCR7 as a Prognostic Factor

Since its discovery in 2005 [62], the role of CXCR7 in the carcinogenesis of many
cancers has been well documented, and it is expressed in a wide variety of cancers and
tumor-associated blood vessels, including colon, liver, pancreatic, prostate and lung can-
cers [83,146]. There are conflicting observations regarding the role of CXCR7 in the nature
of the site of metastasis development. The expression of CXCR7 and CXCL12 is higher in
lung metastases than in primary CRC, whereas the expression of CXCR4 in both sites is
not statistically different [147]. Previous studies have observed that CXCR4 expression is
higher in liver metastases than in primary CRC tumor tissue [148,149] and suggest that the
mechanism of development of liver and lung metastases is different. This agrees with the
in vivo experience of Guillemot et al., who showed that CXCR7 is a key factor in the pro-
gression of CRC metastases specifically in the lungs, since systemic treatment of mice with
CXCR7 antagonists reduces metastasis in the lungs but not in the liver, after intravenous
injection of HT-29 or C26 cells expressing CXCR7 [92].

In the study by Yang et al., positive CXCR7 expression is associated with the presence
of lymph node metastases, distant metastases and advanced TNM stage [85]. Sherif et al.
significantly observed cytoplasmic expression of CXCR7 in 11% of colorectal adenomas
and 72.4% of CRC [150]. In contrast to studies favoring a poor prognosis for high CXCR4
and CXCR7 expression in CRC, Kheirelseid et al. observe that patients with above-median
expression have lower mortality (mean survival 46 months) than patients with below-
median CXCR7 expression (mean survival 27 months). Similarly, lower expression of
CXCR4/CXCR7 and CXCL12 is associated with increased tumor size, local invasion, poor
differentiation, advanced lymph node stage, advanced tumor stage, and lymphovascular
invasion [151].
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Therefore, although the expression level of CXCL12, CXCR4 and CXCR7 has been
considered a prognostic factor in several human tumor types (Table 1), none of the actors
of this axis have yet been definitively validated as pro-tumoral factors. Studies suggest that
the CXCL12 axis is a promoter rather than a tumor initiator.

Table 1. Clinical significance of CXCL12, CXCR4 and CXCR7 expression levels in CRC.

Authors
CXCL12 CXCR4 CXCR7

References
Expression Prognosis Expression Prognosis Expression Prognosis

Romain, 2017 ↓; ↓ If ↑; ↓ OS [52]

Fan (meta-analysis), 2018 - ↑ ↓ OS; ↓ DFS [81]

Romain, 2014 - ↑ ↑ [82]

Kim, 2005; 2006 - ↑ ↓ OS [84–121]

Yang, 2015 - ↑ ↓ OS; ↓ DFS [85]

Yang, 2015 - ↑ ↓ OS; ↓ PFS [85]

Xu, 2018 - ↑ ↓ OS [86]

Ingold, 2009 ↑ vascular ↓ OS [88]

Guillemot, 2012 ↑ ↑ ↑ [92]

Greijer, 2008 ↑ [93]

Frick, 2011 ↓ ↑ [94]

Amara, 2015 ↑ ↓ OS ↑ ↓ OS [95]

Yoshitake, 2008 If ↑ ↓ OS If ↑ ↓ OS [96]

Akishima-Fukasawa, 2009 If ↑ ↓ OS [97]

Mousavi, 2018 → → → → [98]

Wendt, 2006 ↓ [99]

Mitchell, 2019 ↑ ↓ OS ↑ ↓ OS ↑ ↓ OS [111]

Stanisavljević, 2016 ↓; ↑ ↓ DFS;
↑ DFS ↑ stage III,

↓ DFS [112]

Li (meta-analysis), 2017 ↑ ↓ OS; ↓ DFS ↑ ↓ OS; ↓ DFS [113]

Lalos, 2021 ↑ ↑ OS [120]

Schimanski, 2005 - If ↑ ↓ OS [122]

Lv, 2014 - ↑ ↓ OS; ↓ DFS [123]

Li, 2015 ↑ ↓ OS [122]

Jiang, 2019 - ↑ ↓ OS [125]

Ottaiano, 2020 - ↑ ↓ OS [124]

Yopp, 2012 ↓; ↑ → If ↑ ↓ OS; ↓ DFS [127]

Nagasawa, 2021 - → → [128]

Jiao (CRC liver
metastases), 2019 → → → → [129]

Xu, 2007 - ↑ invasive
border ↓ OS [132]

Kheirelseid, 2013 - If ↑ ↑ OS [144]

↑: upregulated; ↓: downregulated;→: no change; -: not evaluated; DFS: disease-free survival; PFS: progression-
free survival.
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6. Mechanisms of Expression Regulation
6.1. Regulation of CXCL12 Expression

For both overexpression and loss of CXCL12 expression, several molecular mecha-
nisms have been proposed. Intratumoral hypoxia has been shown to be a factor that pro-
motes the overexpression of CXCL12 in vivo [152–154], ex vivo [155] and in vitro [153,155].
In these studies, CXCL12 expression is associated with hypoxic or HIF-1α-expressing areas
and this association has been confirmed using siRNAs directed against HIF-1α [93,152–154].
In endothelial cells and under hypoxic conditions, the hypoxia-induced upregulation of
CXCL12 expression was clearly attributed to the direct binding of HIF-1α to its specific
binding sites on the CXCL12 promoter [153].

Moreover, several mechanisms have been proposed to explain the loss of CXCL12
expression. Hypermethylation of the CXCL12 promoter in CRCs has been proposed by
Wendt et al. [99], as well as in cervical tumor lines and biopsies, observed by Yadav et al. [156].
In our study of a cohort of 444 MSS CRCs, we showed that the CpG islands of the CXCL12
promoter are methylated in only 30% of tumors [82]. In the same studies, we also reported
that, in vitro, treatment of three colonic lines with histone deacetylases (HDAC) inhibitors
such as butyrate and valproate restored CXCL12 expression and increased acetylation of
histone H3 of the CXCL12 promoter [52]. In vivo, valproate treatment of APC mutant mice
(APCMin/+) decreases the number of intestinal tumors and slows down tumor growth in ec-
topic xenografts while restoring CXCL12 expression [52]. In these CRCs tissues, an analysis
of the expression of 85 genes regulating epigenetic processes showed a loss of expression
of a histone acetyltransferase, the protein P300/CBP-associated factor (PCAF), and forced
expression of PCAF in colon cancer cell lines restored the expression of CXCL12 [52]. A
further study in the blood–brain barrier, with endothelial cells lacking CXCL12 expression
and pericytes expressing it, shows that the CXCL12 promoter is not methylated in both
cell types; in contrast, ChIP experiments indicate reduced levels of histone acetylation of
the promoter in endothelial cells compared with pericytes [157]. It is well documented
that histone deacetylation of promoters generates a compact chromatin configuration that
renders chromatin inaccessible to transcriptional factors and induces transcriptional repres-
sion [158]. Therefore, histone acetylation changes/defects associated with methylation of
the CXCL12 promoter in some CRC subtypes would be involved in CXCL12 expression
changes [52].

Functionally, cells with a decrease/loss in CXCL12 expression would be likely to be
attracted to tissues expressing CXCL12, such as metastasis sites [47]. Moreover, this expres-
sion defect would contribute to the resistance to anoikis with, consequently, a migration
and dissemination of tumor cells favoring the development of metastasis [159].

6.2. Regulation of CXCR4 Expression

The mechanisms leading to the high receptor expression are not clearly defined. A
mode of regulation of gene expression is related to the intrinsic instability of transcripts
due to the presence of adenylate-uridylate-rich element (AREs) in their 3′-UTRs, which are
targeted by RNA-binding proteins for degradation, among which are those of cytokines
or chemokines [160]. However, the role of these AREs may be compromised in cancer,
largely due to a deficiency in proteins that promote mRNA degradation. These sequences
were found in the 3′UTR of many labile mRNAs that encode proto-oncoproteins (c-myc,
c-fos, c-jun) and cytokines [160]. Al-Souhibani et al. showed that in breast tumor cells, the
CXCR4 gene harbors a functional ARE in its 3′-UTR portion, a potential target for the RNA
degradation proteins, TTP and HuR [161]. They also demonstrate that overexpression of
HuR combined with low expression of TTP results in increased stability of CXCR4 mRNA
and consequently higher levels of protein that will promote detachment and migration of
breast tumor cells to distant sites [161].

Tumor progression is associated with intratumor hypoxia, which leads to increased
vascular density, and HIF-1α is a transcription factor that allows for adaptation of tumor
cells to hypoxia [162]. In CRC, hypoxia has been shown to promote increased expression of
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CXCR4 [82,163], and in human colonic cell lines, this effect is mediated by the transcription
factor HIF-1α [82]. Many studies have shown that HIF-1α is expressed at elevated levels
in highly aggressive CRCs [164] and plays a major role in regulating the expression of
many genes involved in angiogenesis and chemotaxis via the CXCL12/CXCR4 axis [165].
Our team has demonstrated that CXCR4 expression is increased by hypoxia in human
colonic cell lines [82]. Additionally, the combined expression of CXCR4, HIF-1α and
VEGF is strongly correlated with the presence of lymph node metastasis and distant
metastasis in human CRC [166]. Zong et al. performed a bioinformatics analysis of Gene
Expression Omnibus (GEO) data of HCT-116 cells subjected to acute and chronic hypoxia to
identify genes differentially expressed in normoxic and hypoxic conditions. Among these
genes, they found CXCR4 whose expression is upregulated under these conditions [163].
Numerous publications have reported the direct involvement of the two hypoxia-inducible
factors, HIF-1α and HIF-2α, on the increase in CXCR4 expression [167], as the promoter of
the gene encoding CXCR4 contains a hypoxia response element (HRE) [168,169].

Studies have suggested that the ERK1/2 and PI3K/Akt pathways, mediators of
chemokine-induced migration, are activated by hypoxia in many cell types [170]. In
addition, in vitro treatment of endothelial progenitor cells with specific inhibitors of the
ERK1/2 or PI3K/Akt pathway indicates that only Akt activation is required for hypoxia-
induced increase in CXCR4 expression and increased chemotaxis [171]. Other studies report
that activation of the PI3K/Akt pathway can increase translation of HIF-1α-coding mRNA
and stabilization of the protein under hypoxic conditions [172], which would promote
increased CXCR4 expression. Likewise, reduction of CXCR4 expression by siRNA in human
colonic tumor cells cultured in hypoxia decreases CXCL12-induced phosphorylation and
activation of Akt, while ERK activation is unchanged [82].

Epigenetic alterations have also been described to regulate CXCR4 expression in CRC.
MicroRNAs (miRNAs or miRs) have emerged as critical regulators of carcinogenesis and
tumor progression and are described to modulate cell proliferation, apoptosis, invasion,
angiogenesis, and metastasis [173]. It is now evident that certain miRNAs may be involved
in the activation of the CXCL12/CXCR4 axis and thus participate in the progression of
CRC to metastasis by controlling CXCR4 expression. For example, miR-9 expression is
decreased in late-stage CRC and low miR-9 levels are significantly associated with lymph
node metastasis [174]. Furthermore, Kaplan–Meier analysis reveals that decreased miR-9
expression is significantly correlated with shorter median survival time, suggesting that
miR-9 is an independent prognostic marker for overall survival of CRC patients and acts as
a potential tumor suppressor gene [174]. In the same study, the authors show that in vitro,
this miR inhibits cell migration and invasion. Moreover, a bioinformatics analysis of miR-9
target genes identified CXCR4, whose transcript has a possible miR-9 binding element
in its 3′-UTR region. Using a Dual-Reporter assay, this observation was validated by
demonstrating that miR-9 negatively modulates the transcriptional and protein expression
of CXCR4 by binding directly to its 3′-UTR. In vivo, injections of colonic tumor cells
overexpressing miR-9 into the tail vein of mice resulted in fewer lung metastases than with
control cells, a similar effect obtained with cells deleted for CXCR4 expression [174].

Another study investigated the prognostic value of miR-126 expression level associated
with that of CXCR4 in CRC, and an inverse correlation was observed between miR-126
and CXCR4 protein expression in CRC [175]. Furthermore, low miR-126 and high CXCR4
expression is associated with distant metastasis, TNM clinical stage, and poor survival,
Multivariate analysis indicates that miR-126 is an independent prognostic factor for overall
survival [176]. In another study, the same team showed that miR-126 negatively regulates
CXCR4 through the AKT and ERK1/2 signaling pathways, and thus this miR functions as
a tumor suppressor in CRC cells [175].

Another miR might be involved in the regulation of CXCR4, miR-622, which is un-
derexpressed in CRC metastases and has been described as a potential tumor suppressor
gene by slowing down KRAS-dependent tumor and metastasis formation in mice [177]. By
overexpressing KRAS in cells, the authors restore normal tumor growth. The same authors



Cancers 2022, 14, 1810 12 of 36

subsequently showed that in vitro, overexpression of miR-622 in HUVEC cells inhibits
capillary tube formation and that in vivo, this overexpression in HT29 cells xenografted to
mice, slows tumor growth by strongly decreasing angiogenesis [177]. In parallel, analyses
also showed that CXCR4 and VEGF-α expression is strongly decreased in these tumors.
Similarly, as for miR-9, miR-622 has a binding site in the 3′-UTR region of the CXCR4
transcript and can therefore directly inhibit CXCR4 expression. Since VEGF is a target of
CXCR4, the anti-angiogenic impact of miR-622 can be mediated by the repression of CXCR4
and consequently, reduces VEGF expression [178].

MiR-133b has also been described as a regulator of CXCR4 expression, with its expres-
sion being much lower in metastatic CRCs (stages C and D) than in early tumors (stages A
and B) [179]. Using bioinformatics algorithms to identify targets of this miRNA, several
targets including CXCR4 have emerged from the analysis, and a luciferase assay showed
the existence of a binding site for miR-133b in the 3′-UTR of the CXCR4 transcript [179], as
had also been described for miR-9 [174], miR-622 [177] or miR-139 [180].

Finally, the relative expression of the CXCR4 transcript and protein are significantly
suppressed by transfecting DLD-1 and SW480 colonic cells with miR-140-3p, and this effect
is reinforced by the existence of a binding site of this miR on the CXCR4 messenger [181].
In another context, the human miR-125b has been described to positively regulate Wnt/β-
catenin signaling by targeting APC expression; however, in a positive feedback, the increase
in miR-125b in turn leads to increased expression of CXCR4 [182].

Studies also highlight the possibility of modulation of CXCR4 expression by changes
in the DNA methylation profile and/or histones of the promoter. A recent work by
Stuckel et al. showed that the overexpression of CXCR4 in human CRCs is observed in both
colonocytes and stromal cells. The authors found that this overexpression is not the result
of hypermethylation of the CpG islands of the CXCR4 promoter but rather of an increase in
5-hydroxymethylcytosine (5hmC), a marker of active demethylation of a gene [183]; and
in this case, the accumulation of 5hmC would reflect increased transcription of CXCR4
in the CRC [184]. This work complements other studies demonstrating the regulation of
CXCR4 expression by epigenetic processes associated with genome methylation. Such
5hmC marks have been described for genomic and circulating DNA from different cancer
types, including CRC, and were distributed in transcriptionally active regions. In addition,
by using 5hmCs as biomarkers, it was possible to separate patients who developed CRC
from those who did not, which also allowed the definition of marks to discriminate genomic
DNA from tumor and healthy tissues [185].

In addition, studies carried out in vitro [186] and in vivo [187] show that cells lacking
CXCR4 expression under stress conditions can begin to express the receptor. This is the
case in Ewing’s sarcoma cell lines, in which the CXCR4 promoter is highly enriched in
activating but also repressive histone marks. These cells, once under stress, show a loss of
the repressive mark H3K27me3 while the activating mark H3K4me3 is increased with a
consequent increase in the expression of CXCR4 [187].

Demonstrating that increased CXCR4 expression facilitates the development of liver
but not lung metastases, and that decreased CXCR4 also reduces liver metastasis without
affecting lung metastasis, Urosevic et al. also showed that transcription factors of the ETS
family mediate CXCR4 expression downstream of RAS-ERK1/2 signaling. ETV4 and ETV5
factors induce a strong expression of CXCR4 in human colorectal lines [188]. It is also
known that the deregulation of genes of the HOX family of transcription factors facilitates
the progression of cancers through various mechanisms [189]. In two independent CRC
cohorts, high HOXB5 expression was positively correlated with the presence of lymph node
metastases, distant metastases, poor tumor differentiation and advanced clinical stage [190].
Moreover, overexpression of HOXB5 in the Caco-2 colorectal cell line leads to changes in
the expression of several genes involved in metastasis, including CXCR4, and the use of
reporter gene systems shows that CXCR4 is a transcriptional target of HOXB5 [190].
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6.3. Regulation of CXCR7 Expression

While the literature provides numerous studies regarding the mechanisms of regula-
tion of CXCR4 expression in CRC, much less data are available for CXCR7. Evidence for
an impact of hypoxia and the transcription factors HIF-1 and -2 exists in other cell types,
such as in bone marrow-derived mesenchymal stem cells where the PI3K/Akt-HIF-1α-
CXCR4/CXCR7 pathway is essential for cell migration, adhesion, and survival [168] or in
glioblastoma cells [191]. The only study published to date in CRC is a work by our team
that showed that in human colonic cells, hypoxia or HIF-1α silencing does not alter the
expression level of CXCR7 [82].

Gene expression can be regulated by transcription factors such as the HIC1 (Hyperme-
thylated in Cancer 1), which is hypermethylated in many tumors including CRC [192,193],
and inactivation following hypermethylation is thought to be a tumorigenesis-triggering
event [194]. The search for HIC1 consensus binding sites (HiRE) in the CXCR7 regulatory
region identified 11 putative HiREs to which HIC1 could bind directly [195]. HIC1 gene
knockdown, CXCR7 promoter HiRE mutations and ChiP-seq approaches demonstrate
that CXCR7 is a direct target of HIC1, which acts as a direct repressor of CXCR7 expres-
sion [195]. This suggests that in tumors with loss of HIC1 expression, the subsequent
increase in CXCR7 may participate in tumor progression.

Although, similar to its partner CXCR4, CXCR7 expression can be regulated by epige-
netic mechanisms involving miRs in different tumor types [195–198]; to date, no data in
the literature have demonstrated the involvement of a miR to regulate CXCR7 expression
in CRC.

7. Implication of CXCL12/CXCR4/CXCR7 Axis in Metastatic Dissemination

For many years, the signaling mediated by this axis has been described to participate in
the different aspects of tumor progression and dissemination (Figure 1). To better determine
the respective involvement of each partner of this axis, different approaches have been
used, such as interfering RNA, genetic editing by overexpression or loss of function,
pharmacological inhibitors, neutralizing antibodies in vitro or in vivo. To understand the
involvement of CXCL12 in tumor dissemination, it is necessary to separate the role of
the chemokine itself from that of the CXCR4 and CXCR7 receptors, as well as the level of
expression of CXCL12 in the primary tumor and the sites of metastatic implantation where
it is highly expressed [52,78].

One hypothesis is that before metastasis develops, many CRC cells undergo DNA
hypermethylation on the CXCL12 promoter [99], such that autocrine and paracrine CXCL12
signaling is reduced and tumor cells can migrate along a gradient that leads them to
distant organs, known to highly express the chemokine [47]. This process would be
initiated early in colonic carcinogenesis since CXCL12 expression is already lost at the
adenoma stage [52]. This downregulation of CXCL12 expression also prevents colonic
tumor cells from undergoing anoikis, a form of apoptosis when cell–cell contact is lost
between epithelial cells [159].

7.1. CXCL12

The implication of CXCL12 has been demonstrated in different models. For example,
in the dorsal skinfold chamber model of syngenic BALB/c mice, Kollmar et al. studied the
effects of increasing concentrations of CXCL12 on tumor growth and angiogenesis induced
by CT26 cell implantation [199]. In vivo, CXCL12 accelerates tumor growth through
induction of angiogenesis, cell proliferation and inhibition of apoptosis [199]. In another
study, the same authors used the same experimental model but performed a hepatectomy
in mice [200]. It is known that liver resection is associated with liver regeneration and a
local and systemic release of potent growth factors, including chemokines [201,202]. This
model permits to understand the role of CXCL12 on the dissemination of CT26 cells in the
tissues around the skinfold chamber. The authors report that neutralization of CXCL12
with an antibody promotes tumor extension to nearby tissues, accelerates angiogenesis and
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neovascularization, increases VEGF expression, microvascular permeability and increases
CXCR7 expression [199]. Moreover, neovascularization and tumor growth are reduced after
CXCR4 neutralizing treatment. Therefore, in the absence of CXCL12, signaling by CXCR4
is interrupted and an alternative pathway must be considered that would be carried by
CXCR7. CXCR7 has been described to increase the production of VEGF [182], which would
be the trigger of the pro-angiogenic effect observed after neutralization of CXCL12 [199].
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Conversely, CXCL12 has also been described as an anti-tumor molecule in pancreatic
cancer [203]. In CRC, Wendt et al. described a strong decrease in CXCL12 expression [99]
and when colon cells treated with a demethylation agent to restore CXCL12, are injected
into the tail vein of mice, metastatic tumor formation is greatly reduced as compared to
cells lacking CXCL12. A similar situation has been observed in APC mutant mice that
spontaneously develop CRCs. When these mice are treated with a histone deacetylase
inhibitor, such as valproate, there is a re-expression of CXCL12 and a decrease in the
number of tumors [52].

7.2. CXCL12 and CXCR4

The contribution of CXCR4 in tumor cell migration involves several cellular aspects
that all converge toward the facilitation of cell migration and invasion. For example,
overexpression of CXCR4 promotes the formation of pseudopodia through actin polymer-
ization [78] and reorganization of the cytoskeleton [204]. Other processes are induced under
hypoxic conditions such as epithelial–mesenchymal transition (EMT) and overexpression
of α2, α5 and β1 integrins [205].

Migration and invasion processes also involve proteolytic activities induced by the im-
portant secretion of gelatinases such as MMP-2, MMP-9 or matrylisin-1 (MMP-7) [204,206,207].
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One study showed that the ability of CXCL12-mediated cell migration and invasion is
highly dependent on MMP-9 secretion and activity via Akt and ERK/MAPK signal-
ing [204] and on β-catenin translocation in the nucleus, suggesting the interaction of
the CXCL12/CXCR4 axis with the Wnt-β-catenin signaling [206].

At the signaling level, CXCR4 regulates the migratory and invasive ability of cells
via the MAPK/ERK1/2 and PI3K/Akt signaling pathways activated by CXCL12-CXCR4
binding [82,204,208,209]. Similarly, CXCL12 binding to CXCR4 activates pro-metastatic sig-
naling by decreasing E-cadherin expression but inducing ICAM-1 expression (InterCellular
Adhesion Molecule) [210]; however, it has been shown that high levels of ICAM-1 in CRCs
are associated with decreased tumor progression and liver metastasis [211]. Activation of
the CXCR4/CXCL12 axis also involves the TGF-β pathway to promote invasion, angiogene-
sis, and promotion of distant metastasis by promoting differentiation of hepatic stellate cells
into CAFs [212]. Furthermore, CXCR4 knockdown strongly reduces in vivo tumor growth
associated with the reduction of tumor capillaries and intra-tumoral blood flow without
affecting VEGF expression [213]. Moreover, in HUVEC cells, CXCR4 knockdown strongly
inhibits angiogenesis after stimulation with CXCL12 ligand, by reducing EGFR, VEGF, and
MMP-2, affecting MAPK/ERK, PI3K/Akt and Wnt/β-catenin pathways [207]. Another
study showed that CXCL12 could stimulate the metastatic behavior of colonic cells express-
ing CXCR4 by increasing cell proliferation and adhesion to fibronectin [214]. These studies
agree with those of Gouveia-Fernandes et al. who show that overexpression of fibronectin
confers invasive and disseminative potential to HCT15 cells by promoting activation of the
CXCL12/CXCR4 axis through modulation of α3 and β3 integrin expression [215].

Furthermore, Zeelenberg et al. demonstrate that CXCR4 expression is regulated posi-
tively by the tumor microenvironment, but it appears that CXCR4 is not required for tumor
cell entry into metastatic sites, but rather for the establishment of micro-metastases [216].
Mice in which murine CT-26 colonic cells deficient in CXCR4 by retention of the receptor
at the level of the endoplasmic reticulum, were injected into the spleen or the tail vein,
indicate that CXCR4 would not play a role in invasion, but rather in the survival of the cells
to form micro-metastases without impacting their proliferation [216].

In the same idea, Matsusue et al. showed that HCT116 cells stimulated by CXCL12
become resistant to apoptosis, and the use of AMD3100 reduces this CXCL12-dependent
anti-apoptotic ability [217]. In vivo, these cells metastasize because CXCR4-positive cancer
cells selectively survive by an anti-apoptotic effect and by the secretion of CXCL12 by
stellate liver cells. Thus, these liver cells, under the action of TFG-β1 secreted by the
tumor cells, will differentiate into CAFs [217]. The involvement of CXCR4 in the metastatic
process could also be potentiated by another receptor, CXCR3 [218], which is activated
by the chemokine CXCL10 by inducing cytoskeletal rearrangements, migration, invasion,
expression of the matrix metalloproteinase MMP-2/9, and cell survival through the ac-
tivation of ERK1/2, Akt and protein kinase G [219]. These ideas are supported by the
findings of Tan et al. who propose that overexpression of CXCR4 by tumor cells in the
hepatic metastatic microenvironment stimulates the production of CXCL12 by stellate
cells, which through a paracrine action, stimulates the secretion of TGF-β1 by tumor cells,
necessary for the differentiation of hepatic stellate cells into CAFs [212]. These studies
suggest that modulation of the CXCL12-CXCR4 interaction can have a strong impact on
tumor dissemination to target organs.

7.3. CXCL12 and CXCR7

A growing number of studies are emerging to understand the mechanisms by which
CXCR7 participates in the growth and progression of colon cancer to organs of metastasis.
Thus, the involvement of CXCR7 in colorectal tumorigenesis has been discussed in several
models and is through the regulation of proliferation, survival, migration, invasion, an-
giogenesis, tumor growth and metastatic dissemination [89,218]. CXCR7 gene silencing
represses cell proliferation and invasion and induces apoptosis with decreased expression
of p-ERK, β-arrestin, PCNA and MMP-2 but with increased expression of caspase-3 [220].
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Subcutaneous tumors induced by SW480 cells deleted for CXCR7 expression are signifi-
cantly smaller than those in control groups [220]. CXCR7, but not CXCR4, expression can
be increased by lipopolysaccharide treatment in cells expressing both TLR4 and the MD2
coreceptor [221]; additionally, in patients, high expression of TLR4, MD2 and CXCR7 is
associated with tumor cell infiltration in lymph nodes and distant metastases [221].

The involvement of CXCR7 has also been described in transendothelial migration, and
CXCR7 expression is found both in tumor cells and in tumor-associated vessels. However,
using the endothelial cell line HUVEC, it was shown that this expression by vessels is
not necessary for CXCL12-mediated transendothelial migration, and this process requires
CXCR7 expressed by tumor cells, without involving CXCR4 [222]. CXCR7 appears to
have angiogenic activity since its overexpression in colonic cells cultured with HUVEC
cells promotes the formation of capillary tubes, and the stable extinction of CXCR7 in
colonic cells prevents this tube formation [89]. CXCR7 exhibits low levels of expression
in normal mature vascular endothelial cells but is highly expressed in endothelial cells
of neovascularized tumors [223]. This effect might be a consequence of the stimulation
by CXCR7 of VEGF production by endothelial cells via activation of the ERK and AKT
pathways [89].

An in vivo study with transgenic mice overexpressing CXCR7 in the intestine showed
that this overexpression exacerbates DSS treatment-induced inflammation by causing
extensive infiltration of myeloid suppressor cells, M2-like macrophages, and Tregs in the
colon, associated with elevated amounts of the proinflammatory cytokines TNF-α, IL-6,
and c-Myc but decreased numbers of CD8+ T cells [205]. This CXCR7 overexpression
also increases tumorigenesis in APCMin/+ mice and these effects are amplified when mice
overexpress the CXCR4/CXCR7 heterodimer [224].

Although the implication of CXCR7 in the metastatic process is well demonstrated,
there are still some questions about its capacity to direct the dissemination more specifically
in an organ. Guillemot et al. have shown that in mice, systemic treatment with specific
CXCR7 antagonists prevents the dissemination of cells in the lungs but not in the liver [92].
Concomitantly, higher expression of CXCL12 and CXCL11 was found in tumor areas in the
lung compared with the liver, indicating that distinct pathways regulate the mechanism
of pulmonary and hepatic metastatic spread. In another study in human CRCs, CXCR7
expression was also found to be higher in lung metastases than in the primary tumor [138].

7.4. CXCL12, CXCR4 and CXCR7

For a possible mechanism of action of CXCL12 in promoting metastasis, numerous
works have highlighted the role of matrix metalloproteinases (MMPs), proteinases re-
sponsible for degradation and remodeling of the extracellular matrix (ECM). Thus, the
persistent localization of these enzymes at the interface between migrating CRC cells and
the surrounding stroma has been demonstrated, supporting a role for MMPs in CRC in-
vasion and metastasis [225]. This study shows that none of the three CRC cell lines tested
express MMP-2 or MMP-9. In contrast, subcutaneous tumors induced by transplantation
of these cells express limited amounts of MMP-2 and MMP-9 while caecal tumors express
them in large amounts [225] showing the role of murine stromal cells in the production of
these proteinases.

Similarly, in myeloma cells, CXCL12 induces the expression of matrix metallopro-
teinases (MMPs) such as MMP-9, membrane MMPs such as MT1-MMP, represses the
expression of inhibitors such as TIMP-1, promoting cell invasion in vitro [226]. However,
these observations do not support a possible role for CXCL12 in the invasiveness of colonic
tumor cells that no longer express CXCL12 [53,123]. In addition, it is possible to speculate
that in vivo, colonic tumor cells acquire the ability to produce MMP regulatory factors
other than CXCL12, such as mutations in tumor suppressor genes or proto-oncogenes,
changes in the microenvironment, extracellular matrix composition, tissue oxygenation
and inflammation [227].
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8. Targeting of the CXCL12/CXCR4/CXCR7 Axis in CRC
8.1. Preclinical Studies

A recent report found that CXCL12 and relative expression of the CXCL12-CXCR4
axis are independent prognostic factors for 5-year relapse-free survival [120]. Multiple
preclinical studies have evaluated the efficacy of many agents; however, only a few drugs
targeting this axis have been approved for clinical use. These agents include anti-CXCR4
neutralizing antibodies, interfering RNAs or antagonist molecules targeting CXCR4 or
CXCR7, or small peptides specifically blocking CXCR4 (Table 2).

In the clinic, the molecules used mainly target CXCR4, and a molecule more specifically
targets CXCL12 [228]. Many preclinical studies targeting the CXCL12/ CXCR4/CXCR7
axis have been published, but few have focused on CRC.

8.2. AMD3100

The best-known molecule to inhibit the biological effect of CXCR4 is the molecule
commonly known as AMD3100 or plerixafor (Mozobil). The Food and Drug Administration
(FDA) approved AMD3100 in 2008 for use in the mobilization of hematopoietic stem cells
for transplantation in patients with non-Hodgkin’s lymphoma [229,230]. AMD3100 is a
specific antagonist of CXCR4 of the bicyclam family [231]. This drug acts as an antagonist
by binding to one glutamine and two aspartate residues in the CXCR4 receptor, preventing
the conformational change necessary to activate intracellular kinases [232]. It is the most
frequently used drug in clinical trials targeting the CXCL12-CXCR4/CXCR7 axis and has
been described in several studies in hematological, breast, pancreatic, lung cancer [231,233].

In an orthotopic model of liver metastasis using the murine colonic line C26, blocking
CXCR4 with AMD3100 reduces the number and size of liver metastatic sites [234]. Im-
munohistochemical analyses revealed a significant decrease in the expression of α-SMA,
a marker for hepatic stellate cells, in the liver foci of AMD3100-treated mice compared
with control mice [234]. The promotion of VEGF production by stellate cells has been
demonstrated in liver metastases in vivo [102], facilitating the recruitment of sinusoidal
endothelial cells and the transition from avascular to vascular stage in these metastatic
sites. In this context, a decrease in stellate cells induced by AMD3100 could therefore
alter the angiogenic response and the blood supply of oxygen and nutrients to the tumor.
However, AMD3100 has been described to also interact with CXCR7 but as an agonist [235].
AMD3100 alone can induce β-arrestin recruitment to CXCR7. Moreover, and in contrast
to the antagonistic effect observed for CXCR4, AMD3100 increases 125I-CXCL12 binding
to HEK293 cells expressing CXCR7 and CXCL12-facilitated recruitment of β-arrestin to
CXCR7, recruitment that is also possible in the absence of CXCL12, albeit at relatively high
concentrations (≥10 mM) [235]. To date and to the best of our knowledge, no molecular
mechanism has been proposed to justify the agonistic property of AMD3100 on CXCR7.

Data about mode of action of AMD100 are limited in CRC. An in vitro study in the
SW480 colon cell line demonstrated that the anti-tumor effect of AMD3100 was mediated
through the reduction of VEGF and MMP-9 expression, but not MMP-2 [236]. Further
evidence comes from a study on mammary stem cells that identified among the proteins
showing CXCL12-induced phosphorylation, up to 22% are involved in signaling pathways
related to cell adhesion and migration, actin and microtubule association in cytoskeletal re-
modeling. These mechanisms are known to support the involvement of CXCL12/CXCR4 in
the metastatic process. By exposing cells to AMD3100, the phosphorylation of key proteins
in these signaling pathways is blocked, such as the catalytic subunit of serine/threonine-
protein phosphatase PP1-gamma (PPPC1) [237]. Conversely, in prostate cancer where
CXCR4 strongly regulates the development of metastasis, treatment of prostate cells with
dihydrotestosterone increased the expression of the androgen receptor, CXCR4, PI3K and
AKT phosphorylation as well as EMT and downstream cell cycle control genes. Con-
versely, treatment with resveratrol and AMD3100 reversed all these changes associated
with increased expression of apoptosis-related genes [238].
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Taken together, these observations suggest that AMD3100 is an allosteric agonist
to CXCR7. Therefore, while this antagonist has proved effective in controlling tumor
progression in various cancers, these observations suggest caution in its use to understand
the respective roles of CXCR4 and CXCR7 as mediators of the biological effects of CXCL12.

8.3. LY2510924

In addition to AMD3100, novel CXCR4 inhibitors have been identified, including
the cyclic peptide LY2510924. From X-ray crystal structures of CXCR4 [239], LY2510924
is suggested to occupy a binding pocket and possess ligand–receptor interactions with
CXCR4 residues such as Asp187, Arg188, Gln200, His113, and Tyr190 [240]. The antag-
onistic effect of this new molecule was confirmed in an SDF-1-induced GTP (guanine-
triphosphate)-binding assay where LY2510924 completely inhibits SDF-1-mediated binding
to GTPγS35 with a Kb of 0.38 nmol/L. Furthermore, LY2510924 was found to inhibit
CXCL12-mediated chemotaxis by blocking SDF-1-stimulated phosphorylation of ERK and
Akt in a concentration-dependent manner [240].

In vivo, its antagonistic effect has been proven by the dose-dependent decrease in
tumor growth in colonic, pulmonary, renal or non-Hodgkin’s lymphoma xenografts and
on the formation of mammary tumor metastases after intravenous injection of mammary
tumor cells [240]. In the latter model, pre-treatment of mice with LY2510924 strongly
decreases lung colonization and prevents the proliferation of implanted cells.

In a separate study, the inhibitory effects of LY2510924 were evaluated in ortho-
topic xenografts of three human colonic lines in the rectal mucosa. While treatment with
LY2510924 strongly reduces tumor size, it does not affect the size of metastases and only
when combined with 5-FU reduced metastasis [241]. A possible explanation for the lack
of effect of LY2510924 on metastasis is the presence of a population of TICs, which is the
source of many therapeutic resistances, or else this molecule is only fully effective when
combined with other conventional therapies.

8.4. PepR

Peptide R (PepR) is a new CXCR4 antagonist peptide, effective mainly in combina-
tion with conventional chemotherapies such as 5-FU and oxaliplatin. In subcutaneous
xenografts of HCT116 or HT-29 cells, mice treatment with PepR potentiates the inhibitory
effect of chemotherapy on the proliferation and activation of EMT [242]. As a proposed
mechanism, an analysis of TCGA dataset RNA-Seq indicates that adding the PepR com-
pound to chemotherapy reverted the increased expression of the mesenchymal markers
as well as PD-L1, all markers being induced by chemotherapy alone [242]. This suggests
a role for CXCR4 in controlling EMT marker expression. In addition, treatment of colon
cells with chemotherapy/radiochemotherapy induced a population of CD133+CXCR4+
cells, supposed to be stem-resistant cancer cells, while adding Pep R reduced this popu-
lation. In a previous study, the same authors showed that this novel antagonist enhances
the efficacy of anti-PD-1 therapy in a mouse model of colon cancer induced with MC38
cells [243]. The increased efficacy of anti-PD-1 therapy by PeR results from changes in
the microenvironment by recruiting Granzyme B-positive cells and decreasing Tregs cells.
Thus, PeR treatment makes the microenvironment more immunosensitive to anti-PD-1
therapy [243]. Other studies have shown that Pep R reduced the expression of CXCL12 and
PD-L1, probably by inhibiting the immunosuppressive effect of the microenvironment and
preventing the recruitment of stromal cells (CAFs, Tumor Associated Macrophages (TAM),
Myeloid-Derived Suppressor Cells (MDSCs)) responsible for the exclusion of cytotoxic T
lymphocytes approximately tumor cells [244,245].

8.5. MSX-122

Unlike other inhibitors that prevent the binding of CXCL12 to its receptor, this
molecule MSX-122, when binding to CXCR4 could interfere with the “lock and key” mecha-
nism between CXCR4 and CXCL12, and modulates functional signaling such as reductions
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in pErbB2, pAKT, pERK and increase in cAMP production, without displacing CXCL12
from the receptor [246].

The efficacy of this CXCR4 antagonist was evaluated in APCMin/+ mice exposed to
azoxymethane (AOM) and treated with MSX-122 [247]. APCMin/+ mice are known to
develop mainly small bowel tumors, while when exposed to AOM, they develop cancers
in the colon [248]. As expected, AOM induced colonic tumors in these mice, whereas
treatment with MSX-122 significantly reduced the incidence of colonic tumors and tumor
volume through decreased cell proliferation as assessed by Ki-67 labeling. The authors
propose that MSX-122, having been well tolerated in a phase Ib clinical trial, may serve as a
chemopreventive agent in individuals at increased risk of developing CRC.

8.6. CCX754 and CCX771

In contrast to CXCR4, studies describing the use of CXCR7 antagonists in CRC are
uncommon despite the development of several of its inhibitors by ChemoCentryx (CCX226,
CCX733, CCX754, CCX771 and CCX773). These molecules have been described as ligands
that do not induce phosphorylation of AKT or ERK. CCX754 and CCX771, two of these
antagonists, were tested in mouse injected with human or mouse lung carcinoma cells [249]
or in models of lung metastasis by injection of murine C26 and human HT-29 colon
cancer cells [92]. Systemic treatment with CCX754 or CCX771 antagonist strongly reduced
tumor expansion in the lungs of mice injected with these cells but not the expansion of
metastases into the liver [92]. However, CCX771 has also been described as an agonist
that recruits β-arrestin-2 to CXCR7 and blocks trans-endothelial migration of human
cancer cells [250]. A theory of receptor desensitization has been proposed to explain the
agonist/antagonistic effect of the molecule. CCX771 would not stimulate chemotactic
activity but rather induce internalization of CXCR7 from the cell surface. This has been
observed for a CCR5-targeting molecule in search for anti-HIV-1 agent [251] or described
for a CCL7 agonist non-glycosaminoglycans (GAGs) binding and evaluated for its anti-
inflammatory effect [252].

The lack of data on the efficacy of these antagonists can be explained by the following
studies showing that those molecules initially designed to inhibit CXCR7 activation also
act as agonists in different pathologies [253]. Likewise, some CXCR4 receptor antagonists
are agonists for the CXCR7 receptor, such as the cyclic peptide TC14012 [254].

There may be several reasons why molecules presented as antagonists/agonists, exert
inverse physiological activity. One possibility is that the mode of action of the molecules
is more related to CXCL12-mediated effects than to CXCR7-mediated effects. For exam-
ple, CXCR7 antagonists prevent CXCL12 internalization leading to increased extracellular
CXCL12 concentrations. They may therefore generate pathophysiological effects such
as those of CXCR7 agonists, as described in experimental autoimmune encephalomyeli-
tis [255].

CCX771 alone induced a concentration-dependent association of CXCR7 with β-
arrestin2 CCX771 was substantially more potent than its natural protein ligand CXCL12 in
triggering β-arrestin2 association

8.7. Chalcones

In 2008, a screening of 3200 molecules from a medicinal library identified a new
class of molecules that bind to the chemokine CXCL12 and act as neutral inhibitor of its
biological activity in a way similar to neutralizing antibodies. The most potent compound
which belongs to the chalcone family and named chalcone 4, has been shown to bind the
chemokine CXCL12 with high affinity thus preventing the binding of the chemokine to
both CXCR4 and CXCR7, and thus blocking the downstream pathways [256]. Later on,
a study from our team demonstrated that chalcone 4 was able to reduce colorectal cell
migration and when combined to irinotecan, further increased the inhibition [82]. However,
this compound would need further characterization, yet no data has reported its capacity
to block the dissemination process in vivo. CXCL12 is efficient in solubilizing chalcone
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molecules with a stoichiometry 3:1 for chalcone 4: CXCL12 and that chalcone 4 binds to
one high affinity site and two low affinity sites in CXCL12 [256].

8.8. NOX-A12

Noxxon Pharma has developed a molecule called NOX-A12 or olaptesed pegol [257].
This molecule is an RNA aptamer (or spiegelmer), which acts by binding to CXCL12,
preventing it from linking and activating its two receptors. It binds to CXCL12 with high
affinity and specificity across various species such as humans, mice, and rats. NOX-A12
has been shown to bind directly to and inhibit CXCL12 but also detach the cell-surface
bound CXCL12, leading to abrogation of the CXCL12 gradient [258]. In tissues, stromal
cells secrete and present CXCL12 on the surface, via GAGs, and NOX-A12 can compete
with GAGs to bind CXCL12, leading to the release of CXCL12 from the cell surface and thus
neutralize the chemokine [258]. A study by Zboralski et al. showed in vitro that in tumor
and stromal cell spheroids that mimic a solid tumor with a CXCL12-rich microenvironment,
NOX-A12 promotes spheroid infiltration by T and NK cells in a dose-dependent manner.
The combination of NOX-A12 and PD-1 checkpoint inhibitor acts synergistically to facilitate
T cell infiltration into spheroids. These observations were validated in vivo in a mouse
model of syngeneic CRC in which treatment with NOX-A12 improved the response to
anti-PD-1 therapy to reduce tumor size [259]. A Phase I/II clinical trial is underway to
study the effects of the NOX-A12 and anti-PD-1 combination in patients with advanced
CRC or pancreatic carcinoma (NCT03168139).

Table 2. Chemical modulators of CXCR4 and CXCR7/ACKR3 activation.

Inhibitor/Antagonist Formula IC50 Target References

AMD3100
1-[[4-(1,4,8,11 tetrazacyclotetradec-1-

ylmethyl)phenyl]methyl]-1,4,8,11-
tetrazacyclotetradecane

37.5 nM CXCR4 [260]

LY2510924 N(1)Phe-D-Tyr-Lys(iPr)-D-Arg-2Nal-
Gly-D-Glu(1)-Lys(iPr)-NH2 0.079 nM CXCR4 [240]

PepR (H-Arg-Ala-[Cys-Arg-Phe-Phe-Cys]-
CO2H) nd CXCR4 [242,243]

MSX-122
N,N-9-(1,4-

phenylenebis(methylene))dipyrimidin-
2-amine

10 nM CXCR4 [260]

CCX754 nd 5 nM CXCR7 [249]

CCX771 nd 4.1 nM CXCR7 [260]

Chalcone 4
((E)-1-(4′-chlorophenyl)-3-(4-hydroxy-

3-metoxyphenyl)
prop-2-en-1-one)

150 nM CXCL12 [256]

NOX-A12 nd 5–200 nM CXCL12 [257]

nd: not determined; IC50: 50% inhibitory concentration.

9. Clinical Trials

While many cases of CRC are diagnosed at an early stage and are treated with curative
surgery, many patients develop synchronous or metachronous metastatic disease with a
five-year survival rate of roughly 13% [261]. The routine treatment of metastatic CRC is
based on the combination of different treatment schedules such as Folfiri/Folfox/Folfoxiri
or Capiri/Capox, which resulted in a survival of about 18 months. However, more recently,
the approval of targeted therapies with EGFR or VEGF antibodies has importantly im-
proved the overall survival, approaching 30 months in clinical trials [262], but the relative
unavailability of biomarkers in metastatic CRC has slowed the progress in tumor curacy.
Because of the bad prognostic value of CXCR4 overexpression across different tumors,
CXCR4-inhibition-based therapies have been therapeutically evaluated in hematologic and



Cancers 2022, 14, 1810 21 of 36

solid malignancies, either as monotherapy or in combination with chemotherapies or im-
munotherapies (for review, see [263–265]). Among the drugs tested in clinical trials, CXCR4
small molecule antagonists, fully humanized anti-CXCR4 antibodies and CXCR4 or CXCL12
peptide inhibitors represent the most advanced programs of CXCR4 inhibition in solid
tumors. Galsky et al. published the first in-human phase I study in patients with advanced
or metastatic CRC that explored the safety and tolerability of LY25110924 among other solid
tumors [266]. To date, AMD3100 is the only approved CXCR4 inhibitor drug [231], while
multiple antagonists are in different stages of development. Presently, the clinical trials
are mainly ongoing phase I/II trials. They mainly concern the CXCR4 peptide inhibitor
LY2510924 (NCT02737072), the anti-CXCR4 antibody LY2624587 (NCT01139788), the small
molecule inhibitors Plerixafor (NCT20179970, NCT03277209), MSX-122 (NCT00591682,
suspended), USL311 (NCT02765165); however, for a number of these trials, the cancer type
is not always indicated, as it only specified that the targeted diseases are solid tumors.

The only available data from completed phase I/II trials evaluated the application
of the NOX-A12 molecule (OPERA trial, NCT03168139), first as monotherapy, and then
continued with pembrolizumab in patients with advanced stage pretreated metastatic
colorectal or pancreatic cancer. The NOX-A12 was well tolerated and allowed for a disease
control rate of 25%, and an overall survival close to 12 months could be achieved [267].
This effect was mediated by a transformation of the tumor immune microenvironment with
the expression of a specific cytokine signature consisting of IL-2, IL-16 and IFN-γ as an
indicator of activation in tumor tissue. Following this success, a phase II trial is currently
underway to evaluate the effect of the combination of NOX-A12 and pembrolizumab in
glioblastoma and pancreatic cancer.

Conversely, treating patients with CRC for seven days with continuous infusion of
the CXCR4 inhibitor AMD3100/Plerixafor induces an integrated immune response with
enhanced intratumoral immune B and T cell responses as observed in paired biopsies of
metastatic lesions (NCT02179970) [268], an immune response that is predictive of a clinical
response to T cell checkpoint inhibition. For other trials, no results are currently available,
due to the required time to exploit the data.

Although several CXCR7 antagonists (CCX771, CCX662, CCX733, CCX754, and
CCX777) have been investigated in preclinical models [253,269], to date, CXCR7 mod-
ulators have not been clinically investigated.

10. Resistance to Treatment

It is well established today that the increase in cancer mortality is partly due to the
resistance of tumor cells to numerous anti-cancer treatments. Thus, understanding the
mechanisms at the origin of this tumor resistance would lead to the development of new
approaches to maximize the effectiveness of treatments. Two types of resistance are de-
scribed in cancerology: innate resistance, which is a consequence of the high molecular
heterogeneity of cells within a tumor, and resistance acquired during treatment [270]. In
a tumor, inhibition of apoptotic signals promoting proliferation, DNA repair, genomic
amplification, a defect in drug metabolism, or epigenetic modifications can generate ac-
quired resistance [271,272]. Given the relevance of the CXCL12/CXCR4/CXCR7 axis in
the development and progression of CRC, several studies have investigated its role in
resistance to anti-cancer therapies.

In tumors, it is a common knowledge that a small population of cells known as
Tumor Initiating Cells with stem cell characteristics are responsible for many tumor re-
currences [273]. A subpopulation of tumor cells positive for TIC marker CD133 has been
isolated from patient CRCs or colonic lines, and these cells are more tumorigenic than cells
not sorted on marker expression CD133 [274]. Thus, the CD133+ cell population isolated
and enriched for CXCR4 expression shows significant tumorigenicity with an increased
in vitro cell proliferation, tumor size and angiogenesis in vivo [274,275]. By analyzing the
secretion of soluble factors by the HK stromal ganglion cells, the authors found a significant
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expression of CXCL12, which by a paracrine action, promotes tumor vascular development
and protects the cells from the therapeutic agents 5-FU and oxaliplatin [274,275].

Another study described co-expression of CXCR4 and Lgr5, a colonic stem cell marker
receptor, in patients with stage IV CR [145]. In vitro, Caco-2 and HT-29 cells isolated by
flow cytometry and strongly expressing CXCR4 and Lgr5 promote sphere formation and
increase cell viability when treated with cytotoxic agents. Similarly in vivo, the concomitant
expression of CXCR4/Lgr5 in cells implanted subcutaneously in mice confers a more
important potential to develop a tumor mass [145].

In another study, combined treatment with endostar or endostatin (an angiogenesis
inhibitor) and oxaliplatin synergistically decreased the proliferation, adhesion, and invasion
of Matrigel [276]. This synergy is a consequence of decreased expression of CXCR4, as well
as those of the hypoxic factors HIF-1α and HIF-2α [276]. The authors showed that only
the accumulation of HIF-2α is responsible for this cell resistance to oxaliplatin, and the
combination of endostar with oxaliplatin overcomes this resistance by making the cells
more sensitive. These data suggest that CXCR4 could be used as a marker to identify tumor
stem cell populations responsible for the resistance and recurrence seen in cancers.

MiRNAs, which are also involved in cancer pathology, are either tumor suppressors
or oncomiRs, largely involved in proliferation, invasion, and resistance to treatment. Some
miRNAs are targets of the CXCL12/CXCR4/CXCR7 axis, and one study investigated
the role of miR-125b in 5-FU resistance of cells expressing CXCR4 [182]. Expression of
miR-125b, increased by the treatment of HCT116 cells with CXCL12, accelerates invasive
ability and promotes EMT, which in turn increases CXCR4 expression, forming a reciprocal
positive feedback loop between CXCR4 and miR-125b. Upregulation of miR-125b also
activates Wnt/β-catenin signaling and the APC gene and contributes to 5-FU resistance by
enhancing cellular autophagy [182].

Contrary to these studies, Heckmann et al. described that overexpression of CXCR4 in
the SW480 colonic line and strong endogenous expression in HT-29 cells is associated with a
higher sensitivity to treatments such as 5-FU, oxaliplatin or irinotecan. This chemosensitiv-
ity, assessed by a decrease in cell survival, cytotoxicity, and apoptosis, is further increased
when one of these molecules is combined with plerixafor [277]. In this case, contrary to
CXCR4, it would rather be the overexpression of CXCR7 that results in the resistance [278].

11. Conclusions

In CRC, activation of the CXCL12/CXCR4/CXCR7 axis leads to progression and
development of metastases with an unfavorable disease outcome and poor patient sur-
vival. Disruption of the CXCL12-CXCR4/CXCR7 axis remains an interesting target for
pharmacological treatment (Figure 2). CXCR4 and CXCR7 antagonists are being tested in
several preclinical and clinical trials for the treatment of CRC, and other gastrointestinal
cancers, but with limited success and the development of combined antagonists, targeting
both receptors are still lacking. Therefore, tumor immunotherapy entered a phase of rapid
development in cancer treatments, but there are too many patients resistant to this therapy.
Furthermore, the use of inhibitors targeting the oncogenic CXCL12 axis in combination
with current immunotherapies should be considered and may provide hope for improving
cancer treatments.
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Abbreviations
ACKR3 atypical chemokine receptor 3
Akt protein kinase B
cAMP cyclic adenosine monophosphate
AOM azoxymethane
APC adenomatous polyposis coli
ARE AU-rich element
ChIP chromatin immunoprecipitation
CIN chromosome instability
CIMP CpG island methylator phenotype
CpG cytosine-phosphate-guanine
CRC colorectal cancer
CTLA-4 cytotoxic T lymphocyte Antigen 4
CXCL-10/12 C-X-C motif ligand 10/12
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CXCR-3/4/7 C-X-C motif receptor 3/4/7
CAF cancer-associated fibroblasts
DSS dextran sodium sulfate
ECM extracellular matrix
EGFR epidermal growth factor receptor
EMT epithelial–mesenchymal transition
ERK extracellular signal-regulated kinases
FAP familial adenomatous polyposis
FGF fibroblast growth factor
5-FU 5-fluorouracil
GAG glycosaminoglycans
GEO Gene Expression Omnibus
GRK2 G-protein-coupled receptor kinase 2
GTP guanine–triphosphate
HDAC histone deacetylases
HIC1 hypermethylated in cancer 1
HIF hypoxia-inducible factor
HiRE HIC1-responsive elements
HIV human immunodeficiency virus
IBD chronic inflammatory bowel disease
ICAM intercellular adhesion molecule
ICI immune checkpoint inhibitor
IGF insulin-like growth factor
IL-2/6 interleukin-2/6
ITG integrin
Jak Janus kinase
JNK c-Jun N-terminal kinase
Lgr5 leucine-rich repeat-containing G-protein coupled receptor 5
MAPK mitogen-activated protein kinases
MDSCs myeloid-derived suppressor cells
MMP matrix metalloproteinase
MMR mismatch Repair
MSC mesenchymal stromal cells
MSS microsatellite stability
MSI microsatellite instability
mTOR mammalian target of rapamycin
NF-κB nuclear factor-kappa B
PCAF P300/CBP-associated factor
PDGF platelet-derived growth factor
PD-1 programmed cell death protein 1
PD-L1 programmed cell death protein ligand 1
PI3K phosphatidylinositol 3-kinase
PLC Phospholipase C
PPPC1 serine/threonine-protein phosphatase PP1-gamma catalytic
SDF-1 stromal-cell-derived factor 1
α-SMA alpha-smooth muscle actin
STAT signal transducer and activator of transcription
TAM tumor associated macrophages
TCGA the cancer genome atlas program
TGF tumor growth factor
TIC tumor-initiating cell
TIMP tissue inhibitor of metalloproteinases
TNF tumor necrosis factor
TNM tumor, node, metastasis
TTP tristetraprolin
UTR untranslated transcribed region
VEGF vascular endothelial growth factor
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