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Abstract: Firefighters are exposed to burning materials that may release toxic partial combustion and
pyrolysis products into the environment, including compounds listed as priority pollutants by the
United States Environmental Protection Agency (EPA). A novel passive sampling dosimeter device
containing firefighter turnout gear as a diffusion membrane and an activated charcoal strip (ACS) for
volatile analyte collection was designed and used to monitor potential exposures of firefighters to
volatile organic compounds. Solvent extracts from the ACS and turnout gear diffusion layer were
analyzed using Gas Chromatography–Mass Spectrometry (GC-MS) to determine the diffusion of
compounds from burned substrates through firefighter turnout gear and compound adsorption to
the turnout gear. The compounds in these samples were identified using target factor analysis (TFA).
An activated carbon layer (ACL) was added to the dosimeter between the turnout gear and the
ACS. The presence of combustion and pyrolysis compounds identified on the ACS in the dosimeter
was reduced.

Keywords: firefighters; carcinogens; fire debris analysis; gas chromatography–mass spectrometry;
target factor analysis

1. Introduction

Firefighters are consistently exposed to atmospheres in structure fires containing
various combinations of partial combustion and pyrolysis components from substrates and
occasionally ignitable liquids. According to the National Fire Protection Association (NFPA)
1971–18 performance specifications, firefighter turnout gear is structurally developed to
protect firefighters from physical threats in a fire, but volatile carcinogens may diffuse
through the material [1]. Current procedures involving turnout gear and chemical vapors
describe the necessity for extra precautions to take place during a chemical, biological,
radiological, or nuclear (CBRN) hazardous materials situation, but do not outline potential
deterrents to protect from carcinogens present in vapors during a normal fire [2].

Carcinogens are defined by the United States Environmental Protection Agency (EPA)
as a compound that can cause cancer in a human, or animal [3]. The EPA has compiled a list
of priority pollutants found in the environment that are considered carcinogenic to humans
and animals [4]. Previous studies have shown firefighters are often exposed to many of the
pollutants on the priority pollutant list including, but not limited to, metals, polyaromatic
hydrocarbons, and halogenated vapors that can have acute effects on the human body [5,6].
A meta-analysis of 32 studies was performed in 2006 to provide a quantitative summary of
risk estimates for various cancers diagnosed in firefighters [7]. The study demonstrated that
firefighters have a higher risk of developing multiple myeloma, non-Hodgkin lymphoma,
prostate, and testicular cancers than the general public [7].

Structural and vehicular fires are known to release chemical vapors and particles
that are carcinogenic in nature to humans [5,6]. The Ignitable Liquid Reference Collection
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(ILRC) and Substrate databases developed by the National Center for Forensic Science
(NCFS) and the Technical/Scientific Working Group for Fire and Explosions (T/SWGFEX)
contain data of ignitable liquids and burned substrate reference materials. Five major
compounds, typically the most abundant compounds are identified for each reference
material. To identify these major compounds, a mass spectral library that currently contains
295 compounds was produced (NCFS library). Mass spectral comparison with the library
was performed using ChemStation software with identification performed by an analyst
applying mass spectral match and retention time shift criteria. The frequency at which
one of the 295 compounds in the library was identified has previously been reported by
Akmeemana et al. [8]. In the study reported here, a novel application for identification of
compounds utilizing target factor analysis (TFA) in an automated process was used with the
NCFS library to attempt identification of all library compounds in the reference materials.
A portion of the identified compounds are contained in the EPA priority pollutant list [9,10].

Fent and Evans previously examined firefighter exposure to chemical vapors during
suppression of vehicle fires by collecting vapor samples using a summa cannister [11]. The
work focused specifically on the use of self-contained breathing apparatus by firefighters.
Fent and coworkers later examined the exposure of firefighters to particulates and chemical
vapors, including polycyclic aromatic hydrocarbons and benzene, during the extinguish-
ment of structure fires [12]. Particulate samples were collected using virtual impactor
sampling devices and personal vapor samples were collected using mechanical pumps
drawing air samples through tubes containing XAD resin. In many cases the air sampling
pumps failed at some point during the experiments. A previous study performed by Barker
et al. used a passive sampling dosimeter to test the performance of a selective permeable
membrane in preventing chemical vapors from diffusing through turnout gear [13]. Methyl
salicylate, the chemical vapor simulant, was used to test the selective permeable membrane
developed [13]. In the study by Barker, commercially available dosimeters were placed
against the skin of test subjects in several locations.

In this work, we utilize passive air sampling dosimeters to monitor chemical vapors
having passed through a sampling ‘membrane’ composed of three layers of firefighter
turnout gear. Unlike summa canisters, passive sampling devices rely on concentration
gradients across a membrane, rather than actively sucking air into a previously evacuated
container. Passive sampling devices do not rely on mechanical pumps that can fail for
an assortment of reasons. Utilizing turnout gear as the diffusion membrane allows direct
measurement of volatile chemicals passing through the gear without the need to involve
human subjects.

The Joint Service Lightweight Integrated Suit Technology (JSLIST) employs either a
chemical protective undergarment (CPU) or vapor protective fire-retardant undergarment
(VPFRU) as chemical vapor barriers [14]. The CPU and VPFRU were made from a single
layer carbon non-woven fabric. In the study reported here, a woven activated carbon
layer (ACL) was incorporated into the passive sampling dosimeter rather than a selective
permeable membrane. Multiple compounds from the partial combustion and pyrolysis
produced from burning select substrate materials were used to test the adsorption of the
compounds onto an ACL. Experiments employing a passive sampling dosimeter and a
compound identification application demonstrated that EPA priority pollutant compounds
permeate through the turnout gear used in this study; however, most of these compounds
may be adsorbed onto an ACL.

2. Materials and Methods
2.1. Development of Passive Sampling Dosimeter

The passive sampling dosimeter developed to study compound adsorption and diffu-
sion through turnout gear is shown in Figure 1. The top and bottom of the dosimeter was
composed of a 1/2 oz. specimen tin can (Electron Microscopy Sciences, Hatfield, PA, USA).
Nine holes were drilled into the top of the dosimeter to allow vapors from the fire to enter
the apparatus. Five 5/16 in. × 1- 1/2 in. zinc fender washers and one 1/2 in. × 1- 1/2
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in. zinc fender washer (Hillman, Cincinnati, OH) were used in the dosimeter to establish
a diffusion path of controlled length. One 5/16 in. × 1- 1/2 in. zinc fender washer was
placed between the top of the dosimeter and the retired turnout gear provided by Osceola
County Fire Rescue (Kissimmee, FL). The turnout gear contains three-layers: (1) an outer
shell composed of 40% Basofil® and 60% Kevlar®, (2) a moisture barrier composed of poly-
tetrafluoroethylene (PTFE) and Nomex® needle fabric, and (3) a thermal layer composed
of spun Nomex®. All three layers of the turnout gear (outer shell, moisture barrier and
thermal liner) were simultaneously mounted in the dosimeter during each test. Two more
5/16 in. × 1- 1/2 in. zinc fender washers were placed behind the turnout gear. An optional
ACL (Shreddies, Leicestershire, England) composed of activated carbon cloth was then
placed behind the two washers, and above two more 5/16 in. × 1- 1/2 in. zinc fender
washers. When the optional ACL was not used in the dosimeter four washers were placed
behind the turnout gear to keep the diffusion path through the dosimeter consistent. An
activated charcoal strip (Albrayco Technologies Inc, Cromwell, CT, USA) was placed in a
1/2 in. × 1- 1/2 in. zinc fender washer at the bottom of the dosimeter, and the apparatus
was closed to be used for analysis.

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 3 of 13 
 

 

2. Materials and Methods 
2.1. Development of Passive Sampling Dosimeter 

The passive sampling dosimeter developed to study compound adsorption and dif-
fusion through turnout gear is shown in Figure 1. The top and bottom of the dosimeter 
was composed of a 1/2 oz. specimen tin can (Electron Microscopy Sciences, Hatfield, PA). 
Nine holes were drilled into the top of the dosimeter to allow vapors from the fire to enter 
the apparatus. Five 5/16 in. × 1- 1/2 in. zinc fender washers and one 1/2 in. × 1- 1/2 in. zinc 
fender washer (Hillman, Cincinnati, OH) were used in the dosimeter to establish a diffu-
sion path of controlled length. One 5/16 in. x 1- 1/2 in. zinc fender washer was placed 
between the top of the dosimeter and the retired turnout gear provided by Osceola County 
Fire Rescue (Kissimmee, FL). The turnout gear contains three-layers: (1) an outer shell 
composed of 40% Basofil® and 60% Kevlar®, (2) a moisture barrier composed of polytetra-
fluoroethylene (PTFE) and Nomex® needle fabric, and (3) a thermal layer composed of 
spun Nomex®. All three layers of the turnout gear (outer shell, moisture barrier and ther-
mal liner) were simultaneously mounted in the dosimeter during each test. Two more 5/16 
in. × 1- 1/2 in. zinc fender washers were placed behind the turnout gear. An optional ACL 
(Shreddies, Leicestershire, England) composed of activated carbon cloth was then placed 
behind the two washers, and above two more 5/16 in. × 1- 1/2 in. zinc fender washers. 
When the optional ACL was not used in the dosimeter four washers were placed behind 
the turnout gear to keep the diffusion path through the dosimeter consistent. An activated 
charcoal strip (Albrayco Technologies Inc, Cromwell, CT) was placed in a 1/2 in. × 1- 1/2 
in. zinc fender washer at the bottom of the dosimeter, and the apparatus was closed to be 
used for analysis. 

Proper functioning of the dosimeter was tested by placing an impermeable mem-
brane made of a thin piece of aluminum foil (not shown in Figure 1) in the diffusion path 
behind the turnout gear and before the second washer. The purpose of the aluminum foil 
was to ensure that vapor phase analytes were not diffusing around the washers to reach 
the activated charcoal strip. 

 
Figure 1. Diagram of passive sampling dosimeter containing turnout gear, ACL, and activated charcoal strip. 

  

Figure 1. Diagram of passive sampling dosimeter containing turnout gear, ACL, and activated charcoal strip.

Proper functioning of the dosimeter was tested by placing an impermeable membrane
made of a thin piece of aluminum foil (not shown in Figure 1) in the diffusion path behind
the turnout gear and before the second washer. The purpose of the aluminum foil was
to ensure that vapor phase analytes were not diffusing around the washers to reach the
activated charcoal strip.

2.2. Burn Method and Extraction

A modified destructive distillation method (MDDM) was utilized to produce the
partial combustion and pyrolysis compounds from substrate materials in these experiments.
Two substrates, vinyl siding and a railroad tie (rationale for the selection of these substrates
is addressed below), were placed in an unlined quart paint can (BestContainers.com,
accessed on 20 April 2021, Eagle, ID) and loosely closed with a compression lid containing
nine drilled holes in the top of the can. The substrates were positioned at the bottom of
the can and heated by applying a propane torch to the bottom external surface of the can.
After smoke first appeared from the holes of the lid, the substrates were heated for two

BestContainers.com


Int. J. Environ. Res. Public Health 2021, 18, 4833 4 of 12

additional minutes. Once heating ceased, a lid containing no holes was loosely placed
over the can until it cooled to room temperature. Two dosimeters, one containing an
ACL and one without an ACL, and a 1 cm × 2 cm activated charcoal strip suspended
on a paperclip with unwaxed dental floss were then placed in the can for 15 min. After
15 min, the two dosimeters and suspended activated charcoal strip were removed from
the can. Compounds adsorbed on the turnout gear, activated charcoal strips, and ACL
that were contained in the can were extracted for analysis. Approximately 0.5 mL of low
benzene carbon disulfide (Thermo Fisher Scientific, Waltham, MA, USA) were added to
4 mL glass extraction vials (Thermo Fisher Scientific, Waltham, MA, USA) containing
each sample from the dosimeter apparatus and the suspended activated charcoal strip.
Extraction was allowed to proceed for 5 min without heating or sonication. The carbon
disulfide (CS2) was then removed from the extraction vials, and placed in 400 µL vial
inserts (Agilent Technologies, Santa Clara, CA, USA). The inserts were placed into 2 mL
vials (Thermo Fisher Scientific, Waltham, MA, USA) and sealed with 11 mm crimp seal caps
(Thermo Fisher Scientific, Waltham, MA, USA) to be analyzed by gas chromatography–
mass spectrometry (GC-MS). The experiments with vinyl siding and a railroad tie were
repeated in triplicate.

2.3. GC-MS Parameters

All analyses were performed on an Agilent 7890A gas chromatograph with a G45567A
series autosampler connected to a 5977E mass spectrometer. Chromatographic separation
was performed on a HP-1 methyl siloxane column (25 m length× 0.20 mm internal diameter
× 0.5 µm film thickness) with helium carrier gas at a constant flow rate of 0.77 mL/min.
The inlet liner used for this experiment was an ultra inert liner, splitless, single taper with
no wool (Agilent Technologies, Santa Clara, CA, USA). Sample injections of 1 µL were split
50:1 on injection into a 250 ◦C injection port. An initial GC oven temperature of 50 ◦C was
held for 3 min and then ramped at 10 ◦C/min to a final temperature of 280 ◦C and held for
4 min for a total run time of 30 min. The transfer line to between the GC and MS was held
at 280 ◦C. Mass spectra were collected over a scan range of 30–350 m/z. The quadrupole
temperature of the mass spectrometer was 150 ◦C and the source temperature was 230 ◦C.

2.4. Keyence Microscopy Parameters

A Keyence VHX-6000 digital microscope with a dual-objective zoom lens VH-ZST was
used for microscopic analysis of the ACL. A full ring light shift provided lighting of the
materials. A depth composition and 3D display function captured images of the materials
composing the ACL.

2.5. Compound Identification

The data analyzed for compound identification and frequency of occurrence in
this study was from the Ignitable Liquid Reference Collection (ILRC) and Substrate
databases [9,10]. The databases were developed by the National Center for Forensic
Science (NCFS) and the Technical/Scientific Working Group for Fire and Explosion Anal-
ysis (T/SWGFEX). The parameters for sample preparation and GC-MS analysis can be
found on the referenced database websites. The datasets contain 1047 ignitable liquids,
both weathered and unweathered, and 553 substrates burned for 2 min using the Modified
Destructive Distillation Method (MDDM). The sample name, filename, and ASTM subclass
(for ignitable liquids only) served as identifiers for each sample. Data organization and
compilation was performed in Microsoft Excel (Microsoft Corporation, Seattle, WA) and
a novel application was developed in R [15] to use target factor analysis (TFA) for the
automated detection and identification of compounds within each sample using target
factors comprised of the mass spectra from the NCFS library, as discussed below.

Peaks were detected in the total ion chromatogram (TIC) and extracted ion profiles
(EIPs) based on the second derivative with intensities that exceeded ±1 standard deviation
from the mean. Derivatives were numerically calculated using the Savitzky–Golay algo-
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rithm [16] implemented in the signal package in R [17]. The retention times (RTs) for the
chromatogram were converted to retention index (RI) using a cubic spline interpolation of
the retention times of the n-alkanes in ASTM E1618 Test Mix standard SRM 2285. The cubic
spline interpolation modeled the conversion of RT to RI over the entire range of retention
times, including the portions of the range before n-pentane and after eicosane. For a peak
to be identified as one of the 295 targeted compounds, the peak had to be within a retention
index range of ±30 RI units of the targeted compound and have a Pearson correlation
of 0.99 between the target compound mass spectrum and the mass spectrum recovered
from projecting the target mass spectrum into the principal component space derived from
analysis of spectra comprising the peak. Target factor analysis is discussed below.

The optimal values of: (1) the number of standard deviations from the mean of the
second derivative ∈ {1, 2, 3, 4, 5, 6, 7, 8}, (2) the retention index range ∈ {±5, ±10, ±15, ±20,
±25, ±30}, and (3) Pearson correlation for peak identification ∈ {0.701, 0.761, 0.884, 0.989,
0.990, 0.991, 0.992, 0.993, 0.994, 0.995, 0.996, 0.997, 0.998, 0.999, 1.00} were determined using
a full factorial analysis of these three factors. The true positive rate (TPR) was calculated for
each of the 720 combinations of the three factors. The correct identification of one of the five
major peaks identified previously in each sample in the NCFS databases was considered
a true positive, and the TPR was calculated by taking the total number of true positives
divided by the true positives and false negatives identified in the NCFS database samples.
The highest TPR of 0.752 was determined for the set of variables containing a Pearson
correlation of 0.99 or greater, ±1 standard deviation from the mean of the chromatographic
second derivative, and a retention index range of ±30 RI.

Compound identification was performed by analyzing 11 consecutive mass spec-
tral scans centered on a peak maximum. Identification was accomplished utilizing TFA,
a statistical method for determining whether an independent target test vector can be
excluded as a contributing factor in collection of data. TFA, as described in previous
literature [18–20], reduces the dimensionality of a data set and identifies abstract factors.
Abstract principal factors required to reproduce the data structure without reproducing
the noise are identified and then further transformed to identify individual factors that are
physically meaningful (i.e., spectra). The number of principal factors retained for TFA was
identified using the determination of rank by median absolute deviation (DRMAD) [21].
DRMAD identifies the error in the dataset by calculating the relative standard deviation of
the error eigenvalues.

The following equation shows how the composition of the data matrix [D] is expressed
in terms of a linear combination of abstract factors and error:

[D] =
[
R‡

][
C‡

]
+ [E] (1)

The data matrix [D] contains rows that correspond to each of the 11 consecutive scans
across a selected peak, and columns that correspond to nominal m/z ratios between 30
and 200 from each mass spectral scan. The matrices

[
R‡

]
and

[
C‡

]
contain the scores and

loadings for the number of principal factors derived from analysis of [D] and determined
by DRMAD. The error matrix, [E], contains the error or noise removed from the data after
determining the principal factors of the dataset. A target factor rotation is then used to
compare each of the 295 compounds from the NCFS library which fall within ±30 RI units
of the peak maximum. This process is repeated for each peak in the chromatogram. The
vector transformation is described in Equations (2)–(4) below.

[D] =
[
R‡

]
[T][T]−1

[
C‡

]
(2)

T′l =
=
Cl

[
C‡

]T
(3)

Cl= T′l
[
C‡

]
(4)
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In Equation (2), [T] is the transformation matrix used to produce a meaningful oblique
rotation of

[
C‡

]
and the error contribution, [E], has been dropped. It is generally not possi-

ble and not required to find the entire transformation matrix, [T]. Instead, it suffices to find
acceptable test factors (vectors) one at a time. In Equation (3), T′l is a transformation vector

for the lth row of [T]−1, and
=
Cl is the spectrum vector of one of the 295 target compounds

in the NCFS library which meets the RI proximity requirement. In Equation (3),
[
C‡

]T

is the inverse of
[
C‡

]
which is composed of an orthonormal set of vectors. Equation (4)

then calculates Cl from
=
Cl and a comparison of the two vectors determines if the vector

=
Cl projected into the abstract factor space lies within the space defined by the principal

factors. The comparison of Cl and
=
Cl was made by calculating the Pearson product moment

correlation. A Pearson correlation of 0.99 or greater was required to identify a compound

corresponding to
=
Cl as contributing to the chromatographic peak.

3. Results
3.1. Microscopic Analysis of ACL

The ACL was imaged using the Keyence VHX-6000 digital microscope to visualize
the physical structure of the material. The activated carbon material, previously reported
to be a highly porous material [22], was formed into threads approximately 5 µm in width.
The threads were then woven into a panel to create the cloth barrier used in the apparatus
(Figure 2).
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3.2. Carcinogenic Compound Identification and Frequencies
3.2.1. Frequency of Priority Pollutants

The 295 compounds in the NCFS library were compared to the Priority Pollutant
List [4] released by the United States Environmental Protection Agency (EPA). There
were 14 compounds common between the two lists that are listed in Table 1 along with
the occurrence frequencies of each of the compounds in the 1047 ignitable liquid and
553 substrate samples. The frequencies listed in Table 1 incorporate every occurrence of the
compound identified in a peak of sufficient intensity using TFA if the Pearson correlation
had a value above 0.99 and is ±30 RI units of the targeted compound. This method can
identify a peak as more than one compound if the criteria for each compound identification
is met. The frequencies in Table 1. Frequencies of priority pollutant compounds identified
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in 1047 ignitable liquids and 553 substrates found in ILRC and Substrate databases should
be regarded as upper limits.

Table 1. Frequencies of priority pollutant compounds identified in 1047 ignitable liquids and 553
substrates found in ILRC and Substrate databases.

Compound Frequency in Ignitable
Liquids (%)

Frequency in Substrates
(%)

Acrolein 1 1
Methylene chloride 1 1
1,2-Dichloroethane 0 1
Benzene 1 1 18
Toluene 1 30 83
Ethylbenzene 1 25 59
Bis(2-chloroethyl) ether 0 1
Phenol 1 23
Naphthalene 1 24 48
Acenaphthene 1 1 1
Diethyl phthalate 4 1
Fluorene 1 7 31
Anthracene 22 6
Dibutyl phthalate 0 3

1 Compounds identified in substrates used in this study.

The 14 compounds in Table 1 were used as a guideline to choose two substrates for the
MDDM burns which would produce multiple compounds from the table. Heating of vinyl
siding and a railroad tie were used because the vinyl siding produces benzene, toluene,
ethylbenzene, and naphthalene from the table above, while the railroad tie produces
naphthalene, 2-methylnaphthalene, acenaphthene, and fluorene. Partial combustion and
pyrolysis products from the two substrates cover a retention index range of 660–1575 which
proved useful in examining the diffusion of a range of compounds with different molecular
weights through the turnout gear.

3.2.2. Compound Identification

Compound identification was focused on seven major compounds from Table 1 in
the previous section: benzene, toluene, ethylbenzene, naphthalene, 2-methylnaphthalene,
acenaphthene, and fluorene. The following figures are normalized to the most intense peak
of the TIC.

The TIC of the CS2 extract from the activated charcoal strip suspended in the headspace
of the can with the identification of the seven compounds is shown in Figure 3 (full range)
and Figure 4 (area of interest).

The TIC from the GC-MS analysis of the extract of the turnout gear placed in the
dosimeter without the ACL is shown in Figure 5. No compounds were detected from the
turnout gear which is demonstrated from the background noise and column bleed. This
indicates that no chemical vapors were adsorbed onto the turnout gear. Similar results
were obtained for the turnout gear placed in the dosimeter with the ACL.
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The TIC of the extract from the activated charcoal strip in the dosimeter that did not
contain the ACL is shown in Figure 6. All seven compounds of interest were identified
indicating they diffused through the turnout gear and were adsorbed by the activated
charcoal strip.
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The TICs of the extracts from the ACL and the activated charcoal strip from the dosime-
ter containing the ACL are shown in Figures 7 and 8 respectively. All seven compounds
of interest were identified on the ACL using TFA. However, the lower molecular weight
compounds had a lower peak intensity in comparison to the higher molecular weight
compounds relative to the ratio that was calculated on the extract from the suspended
activated charcoal strip from Figure 4. Figure 8 shows the TIC for the extract from the
activated charcoal strip behind the ACL in the dosimeter. Three of the lighter molecular
weight compounds were identified on the activated charcoal strip. This result demonstrates
that the lighter molecular weight compounds diffused through the turnout gear and the
ACL before being sampled on the activated charcoal strip.
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When the experiments were repeated with an aluminum foil barrier behind the turnout
gear, analytes were not detected on either the ACL or activated carbon strip. This result
demonstrates proper performance of the dosimeter as an air-tight sampling device that
was not “leaking” analytes around the washers, see Figure 1.

Extraction of similar chemical components from the turnout gear was tested by ad-
dition of a 10 µL volume of a medium (C10–C15) naphthenic paraffinic ignitable liquid
(SRN 835 from the Ignitable Liquids Reference Collection and Database, see reference 9)
was added to a swatch of the turnout gear (all three layers) and allowed to stand for five
minutes in the face of a chemical fume hood prior to extraction. The turnout gear was
extracted following the same protocol used in the dosimeter experiments and the GC-MS
TIC was compared with that of the neat liquid. All components of the ignitable liquid
sample were recovered from the turnout gear.

4. Discussion
4.1. Frequency of Priority Pollutants and Fire Debris Compounds

The occurrence frequencies of the 14 compounds in Table 1 were calculated based on
the TFA analysis of 1047 ignitable liquids and 553 substrates from the ILRC and Substrate
databases. Seven of the compounds were identified in 10% or more of the ignitable
liquids or substrates in the databases. Examples of substrates from the Substrate database
containing these compounds can be found in Table 2 below.

Table 2. Examples of substrates from the Substrate data containing priority pollutant compounds that were contained in
10% or more of the ILRC and/or Substrate Database samples.

Compound Examples of Substrates

Benzene Cotton towel, vinyl siding, polystyrene ceiling tiles, automobile car seats, roofing paper
Toluene Polyester carpet, thermal paper, vinyl siding, polystyrene ceiling tiles, window blinds
Ethylbenzene Magazines, gel pens, vinyl siding, automobile tires, window blinds
Phenol Polyurethane mattress pads, bamboo hardwood, cotton paper, laminate flooring
Naphthalene Nylon carpet, cork tiles, yellow pine wood, vinyl siding, railroad tie, plastic clothesline
Fluorene Polyester carpet, railroad tie, polyester quilt batting, alder wood
Anthracene Polyester carpet, railroad tie

4.2. Compound Identification

The extract of the activated charcoal strip suspended in the can containing the heated
vinyl siding and railroad tie had the seven compounds of interest for this study (Table 1)
identified using TFA. None of the seven compounds of interest were identified from the
extracts of the turnout gear. All seven compounds of interest were identified in the extracts
from the ACL (where applicable) and the activated charcoal strip within the dosimeter not
containing the ACL. Three of the compounds, benzene, toluene, and ethylbenzene, were
identified in the extract from the activated charcoal strip behind the ACL.

The dosimeter without an ACL was used to determine whether chemical vapors were
being adsorbed onto the turnout gear or passing through to the firefighter. The extract
of the turnout gear from the dosimeter without the ACL did not contain any adsorbed
compounds from the heated substrates; however, the extract of the activated charcoal strip
within the dosimeter did contain all seven compounds of interest. Therefore, the turnout
gear in this study does not prevent carcinogenic chemical vapors from diffusing through
the fabric to a firefighter’s skin. This demonstrates that the retired turnout gear used in
this study, manufactured under NFPA 1971 [1], allows for diffusion of chemical vapors.
Additional studies need to be performed with new and used turnout gear from multiple
sources to confirm the generality of these results.

The dosimeter with an ACL was used to determine whether an ACL would adsorb
the chemical vapors and provide the firefighter with some protection. No compounds
were detected from the extract of the turnout gear demonstrating again that none of the
carcinogenic compounds adsorbed onto the turnout gear. All seven compounds of interest
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adsorbed onto the ACL placed behind the turnout gear; however, the relative abundance
between the compounds differed from the abundances observed from the suspended
activated charcoal strip in the can. Benzene, toluene, and ethylbenzene were identified in
the extract of the activated charcoal strip located behind the ACL. These results indicate
that the lower molecular weight compounds partially diffused through the ACL and were
adsorbed onto the activated charcoal strip behind the ACL. In the TIC for the CS2 extract
of the suspended activated charcoal strip (Figure 4) the peak ratio for benzene:toluene
is 3:1 and the ratio for benzene:naphthalene is 5:1. The same peak ratios are present in
the TIC for the extract of the activated charcoal strip in the dosimeter without an ACL
(Figure 6). In Figure 7 the TIC for the extract of the ACL has a peak intensity ratio for
benzene:toluene of 2:1 and benzene:naphthalene of 1:1. Figure 8 shows the TIC for the
extract of the activated charcoal strip in the dosimeter with the ACL and has a peak intensity
ratio for benzene:toluene of 10:1 while naphthalene is not present in the chromatogram.
The peak ratios obtained for Figures 7 and 8 further lead to the conclusion that heavier
compounds are being adsorbed onto the ACL completely, while a portion of the lighter
compounds are diffusing through, with benzene diffusing through the most. This could
potentially be due to the overloading effects of activated carbon which has been studied
previously [23]. In previous studies it was found that when activated carbon is being
overloaded with compounds, the lighter molecular weight compounds are displaced by
heavier molecular weight compounds. Compound displacement on the ACL could explain
a portion of the lighter molecular weight compounds having diffused through the barrier
to the activated charcoal strip. This is prominent when noting the differences in compound
intensities compared to one another in each chromatogram. Therefore, the ACL has the
potential to be used with turnout gear to prevent or decrease the quantities of carcinogenic
compounds diffusing through the turnout gear and onto the skin of firefighters. Activated
carbon, as a fabric, should be studied further to determine the strengths and limitations of
incorporating the fabric with turnout gear.

5. Conclusions

Turnout gear used as a passive sampling diffusion ‘membrane’ in this study allowed
for diffusion of chemical vapors, including carcinogens, present at a fire scene. It is impor-
tant to identify and study potential approaches to protect the firefighter from carcinogenic
compounds that may diffuse through turnout gear. Results from this study also demon-
strate potential benefits from an activated carbon layer.
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