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Machine learning predictive 
model for evaluating the cooking 
characteristics of moisture 
conditioned and infrared heated 
cowpea
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Cowpea is widely grown and consumed in sub-Saharan Africa because of its low cost and high mineral, 
protein, and other nutritional content. Nonetheless, cooking it takes considerable time, and there 
have been attempts on techniques for speeding up the cooking process without compromising 
its nutritious value. Infrared heating has recently been proposed as a viable way of preparing 
instantized cowpea grains that take a short amount of time to cook while maintaining desired sensory 
characteristics. Despite this, only a few studies have shown the impact of moisture, temperature, 
and cooking time on cooking characteristics such as bulk density, water absorption (WABS), and the 
pectin solubility of infrared heated cowpea precooked using this technology. Artificial neural network 
was used as a machine learning tool to study the effect of a prediction model on the infrared heating 
performance and cooking characteristics of precooked cowpea seeds. With R values of 0.987, 0.991, 
and 0.938 for the bulk density, WABS, and pectin solubility, respectively, the prediction model created 
in this study utilizing an artificial neural network (a type of machine learning) outperformed the 
traditional linear, 2-factor interaction, and quadratic models.

Cowpea (Vigna unguiculata) is among the leguminous crop mostly cultivated in Sub-Saharan Africa1. It is an 
affordable and sustainable plant source of protein, phytonutrients, and minerals, useful in combating protein-
energy malnutrition and food insecurity2. Cowpea remains a vital raw material used in making traditional dishes 
in various forms such as couscous (shô basi), fritters (akara), steamed pudding (moimoi)3,4. Cowpea is mainly 
consumed by cooking the whole grains in water for about 2 h, however this long processing time and as a result 
high energy consumption during food preparation remains the major limitation to its consumption in urban 
areas3. Several methods including soaking, precooking, and usage of alkaline salts treatments have been useful 
to decrease cooking time and enhancing the nutritional quality of pulses5–7. Recently, infrared heating, a novel 
thermal food processing technique has also been reported to significantly improved cooking characteristics of 
pulses such as cowpea8.

Infrared radiation heating uses electromagnetic radiation in the infra-red region within the wavelength 
of about 3 to 1000 µm to generate heat9. Infrared technology has been useful in many foods manufacturing 
processes, including drying, boiling, heating, roasting of food, cooking food and sterilization grains10. It is an 
environmentally friendly thermal treatment and considered as an advanced thermal process that can be exploited 
in food processing. Different studies on infrared heating of cowpea grains have shown that the combination of 
varying moisture level, infrared radiation temperature and time could reduce its cooking time by more than 50%, 
improve sensory properties including appearance and color and protein quality of the infrared treated cowpea 
grains3,8,11,12. These processing conditions causes an increase in solubility of pectin responsible for rapid water 
uptakes, separation of cells along the cell wall and other physicochemical and structural changes of starch and 
protein as a result facilitated softening of cowpeas and reduction in the cooking time8,11. Developing an optimi-
zation model has been useful in predicting and optimizing the parameters in grain processing to improve the 
pulses quality for instance cowpea grains8,13.
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Response surface methodology (RSM) is one of the utilized conventional optimization model techniques in 
pulses processing that has been useful in predicting and optimizing processing parameters such as germination14, 
drying15, extrusion16 and infrared heating8,13 of pulses to improve quality and developing new products. How-
ever, the performance of models developed using RSM is limited. Recently, with the advent of the 4th industrial 
revolution, artificial neural network (ANN) has been considered as a more efficient tool for model predictions of 
biodiesel production17 and even in food processing18. ANN is a mathematical algorithm which has the capability 
of relating the input and output parameters, learning from examples through iteration, without requiring a prior 
knowledge of the relationships of the process parameters18. ANN models have been used for process control in 
thermal food processing including modelling tool in several food processing applications like drying19,20, heat 
transfer and thermal process predictions18,21. Furthermore, artificial intelligence is one of the approaches which 
has proven to be efficient with improving the processing quality of grains like wheat in the development of food 
products22,23. Application of ANN for food processes such as legume processing have been reported24,25. None-
theless, to the best of our knowledge, there is still a dearth of information available on predicting the properties 
of pulses prepared by infrared heating using artificial intelligence, which is critical for improving the cooking 
characteristics of pulses such as cowpea, as an important source of protein. Therefore, this study aimed at devel-
oping a predictive model for evaluating the cooking characteristics of cowpea (specifically bulk density, water 
absorption capacity and pectin solubility) under varied processing parameters of moisture content, temperature, 
and time within a closed system of an infrared heater.

Materials and methods
Materials.  Cowpea (Vigna unguiculata: Agrinawa variety) seeds were received from the South African Agri-
cultural Research Council’s Institute for Tropical and Subtropical Crops in Nelspruit, South Africa. The seeds 
were manually selected to remove faulty seeds and kept at 4 °C until moisture preconditioning, and infrared heat 
treatment were done.

Experimental design and sample preparation.  Using Statistica version 7 statistical software, a series 
of experiments were statistically constructed based on RSM-central composite design (CCD) (StatSoft, Tulsa, 
USA). Level of moisture, infrared heating temperature, and time were the independent variables of pre-treat-
ments investigated, with intervals of 32–57%, 114–185 °C, and 2–18 min, respectively (Table 1). The selection 
of the parameter levels was based on other studies in the literature on the production of infrared heated cowpea 
seeds3,8,11,12. Bulk density, WABS, and pectin solubility were the dependent variables of pretreatments assessed 
in this study. The combination of variables resulted in the creation of fifteen (15) experimental runs, each of 
which was carried out in triplicate, resulting in the generation of 45 rows of experimental data (Table 2). The 
cowpea seeds were first soaked in water to attain 32, 40, 45, 54, and 57% moisture (dry basis) using the method 
reported by Mwangwela, Waniska11 and infrared heated using a closed system infrared heater power output 
3KW (MW184, Delphius Technologies, Pretoria, South Africa) for each experimental run (Table 2). A schematic 
diagram of the infrared heating system used in this study is shown in Fig. 1. It has three infrared emitters (Quartz 
tube infrared emitters) with power outputs ranging between 0 to 3 KW, short wave infrared with a wavelength 
peak emission at 2.9 µm. The samples produced were maintained at 4 °C in an airtight container until further 
analysis.

Analyses.  Bulk density of cowpea seed samples was determined using the method described by Alves, Da 
Silva et al.26. Water absorption capacity of cowpea seed samples was determined using the method described 
by Ogundele and Emmambux27. Soluble pectin, hot water-soluble pectin (HWSP) of cowpea seed samples was 
determined as described by Ndungu Emmambux and Minnar12. The experimental data obtained from the analy-
ses are presented in Table 2.

Artificial neural network (ANN) modeling.  ANN is a supervised form of machine learning driven by 
the availability of dataset, where raw dataset is the input into the neural system used in developing a predictive 
model, and subsequently a set of predicted outputs. The neural system consists of hidden layers of neurons that 
are useful in learning the patterns specific to the raw data and assists in producing possible related outputs28,29. 

Table 1.   Descriptive Property of Raw Data. The summary in Table 1. is for the 45 numbers of experiments 
(15*3replicates).

Properties

Predictors Actual responses

Moisture (%) Temp (°C) Time (min) Bulk-density (g/kg) WABS (%) Pectin Solubility (%)

Minimum 32.65 114.72 2.00 0.59 95.01 146.79

Maximum 57.34 185.27 18.58 0.67 128.95 253.23

Median 45.00 150.00 8.00 0.62 108.67 180.64

Mean 46.06 150.00 8.70 0.63 111.46 189.02

Standard Deviation 6.96 19.69 5.17 0.02 12.09 27.29

Standard Error 1.03 2.93 0.77 0.00 1.80 4.06
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A simple representation of the neural network structure used in our paper is presented in Fig. 2. Differences 
between the output value in the raw data and the new set of output produced after subjecting our data to ANN 
algorithm results in an error29.

Data cleaning.  The raw data was cleaned and utilized as the input for machine learning prediction using 
ANN. The predictive variables are moisture temperature and time, while the response variables are bulk density, 
WABS, and pectin solubility (Table 1). The descriptive property of the raw data is presented in Table 1, while the 
raw data used as input is presented in Table 2.

Table 2.   Experimental raw input data.

S/N

Moisture Temperature Time Bulk density WABS Pectin Solubility

(%) (°C) (min) (g/kg) (%) (%)

1 40.00 130.00 2.00 0.66 127.63 180.75

2 40.00 130.00 2.00 0.66 125.18 177.42

3 40.00 130.00 2.00 0.66 123.81 179.73

4 40.00 130.00 14.00 0.64 115.60 167.11

5 40.00 130.00 14.00 0.64 114.38 164.07

6 40.00 130.00 14.00 0.64 113.98 165.08

7 40.00 170.00 2.00 0.65 128.71 161.34

8 40.00 170.00 2.00 0.65 125.31 164.38

9 40.00 170.00 2.00 0.66 126.45 163.14

10 40.00 170.00 14.00 0.62 97.50 190.76

11 40.00 170.00 14.00 0.62 95.96 190.15

12 40.00 170.00 14.00 0.61 96.00 190.47

13 54.00 130.00 2.00 0.62 128.95 170.74

14 54.00 130.00 2.00 0.61 126.22 171.65

15 54.00 130.00 2.00 0.62 125.14 170.52

16 54.00 130.00 14.00 0.63 98.40 221.09

17 54.00 130.00 14.00 0.63 100.39 224.12

18 54.00 130.00 14.00 0.63 101.09 223.22

19 54.00 170.00 2.00 0.61 126.06 178.02

20 54.00 170.00 2.00 0.61 126.00 182.27

21 54.00 170.00 2.00 0.61 125.49 180.89

22 54.00 170.00 14.00 0.59 103.97 208.35

23 54.00 170.00 14.00 0.59 101.09 213.20

24 54.00 170.00 14.00 0.60 102.11 211.73

25 45.00 150.00 8.00 0.62 104.16 227.76

26 45.00 150.00 8.00 0.61 102.00 229.58

27 45.00 150.00 8.00 0.62 103.96 228.59

28 32.65 150.00 8.00 0.67 116.66 174.08

29 32.65 150.00 8.00 0.66 118.16 197.13

30 32.65 150.00 8.00 0.66 119.36 187.14

31 57.34 150.00 8.00 0.61 95.01 172.56

32 57.34 150.00 8.00 0.60 95.31 173.78

33 57.34 150.00 8.00 0.61 96.00 173.91

34 45.00 114.72 8.00 0.64 127.08 146.79

35 45.00 114.72 8.00 0.63 124.67 148.91

36 45.00 114.72 8.00 0.64 125.10 147.65

37 45.00 185.27 8.00 0.60 102.78 248.99

38 45.00 185.27 8.00 0.59 104.65 253.23

39 45.00 185.27 8.00 0.60 104.07 249.88

40 45.00 150.00 18.58 0.61 98.01 179.54

41 45.00 150.00 18.58 0.61 99.60 193.49

42 45.00 150.00 18.58 0.61 98.02 180.22

43 45.00 150.00 8.00 0.62 111.46 179.24

44 45.00 150.00 8.00 0.62 105.67 182.57

45 45.00 150.00 8.00 0.62 108.67 180.64
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Data processing.  The processing of data using ANN includes data training, data validation, and data test-
ing. For this research work, MATLAB software was used for ANN modeling. The algorithm used for data pro-
cessing is the Levenberg–Marquardt algorithm, owing to its swiftness and steadiness in convergence30. For data 
training, the raw data is given as input to the neural network system. During this stage, it fine-tunes the data 
in retrospect to the error produced. The validation process estimates network’s generalization, besides, signifies 
when the training process should stop once there is no more progress in data generalization, lastly, data testing 

Figure 1.   Schematic diagram of the infrared heating system.

Figure 2.   The structure of ANN utilized in the study.
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evaluates and offers a stand-alone measure of the network’s performance before, during and after data training. 
For data training, validation, and testing, the dataset was rationed in 70, 15, and 15% respectively. 10 hidden neu-
rons were used for deriving the best predictive model for bulk density and WABS, while three neurons (5,8, and 
10) were used for pectin solubility (Fig. 2). This was to produce improved predictive model for pectin solubility.

Performance of predictive model.  Understanding the performance of a model is key to improve predic-
tion accuracy. The performance indicators used to evaluate the accuracy of the predictive model developed in 
this work includes mean square error (MSE), coefficient of correlation (R) and coefficient of determination (R2). 
Besides, the performance of the ANN model developed was compared with the performance of conventional 
models such as linear, two factor interaction (2FI), quadratic and cubic model using R2. This was to affirm the 
accuracy of utilizing ANN for developing a predictive model for estimating the bulk density, WABS, and pectin 
solubility of cowpea precooked using infrared heating.

Ethical guideline statement.  The author (s) declare the plant material used in this research complied 
with relevant institutional, national, and international guidelines and legislation.

Result and discussion
A predictive model was developed using ANN for the bulk density, WABS and pectin solubility of cowpea pre-
cooked using infrared heating. Three main factors that influence the response were fed into the neural network 
as the independent variables, the experimental data of the process was cleaned and processed using fitnet ANN 
model. The MSE, R and R2 of the training, validation, and testing datasets are presented in (Table 3). However, 
the overall R and R2 value was utilized in selecting the best predictive model for each of the response variable. 
Besides, scatter plots with coefficient of correlation are presented in (Fig. 3).

The plot of the best validation performance, together with the actual, predicted response and error (difference 
between the predicted and actual response) plot are presented in Figs. 4 and 5 respectively. From the evaluation 
result, for the bulk density obtained after training, validating, and testing the model using 10 neurons, the overall 
R and R2 values are greater than 0.9, implying that ANN was efficient in developing a predictive model for the 
bulk density of cowpea prepared using infrared heating.

Specifically, the highest overall R and R2 values are 0.987 and 0.974 respectively with a validation MSE of 
1.06E-05. This was compared with the R2 obtained using linear, 2FI and quadratic model (Table 4). Compara-
tively, the R2 of the predictive model generated using ANN was approximately higher by 21%, 13%, and 3% for 
linear, 2FI and quadratic model respectively.

Table 3.   MSE, R and R2 Values obtained from Model Training, Validation and Testing.

1ST RUN 2ND RUN 3RD RUN 4TH RUN 5TH RUN

MSE R R2 MSE R R2 MSE R R2 MSE R R2 MSE R R2

Bulk Density (70 15 15 10 neurons)

Training 8.77E−06 0.99 0.981 9.87E−06 0.989 0.98 5.58E−06 0.991 0.983 5.36E−06 0.993 0.987 2.35E−05 0.978 0.957

Validation 1.29E−05 0.99 0.98 1.06E−05 0.981 0.962 5.32E−05 0.975 0.951 6.76E−05 0.951 0.904 1.49E−05 0.988 0.978

Testing
3.66E−05

0.956 0.915
2.38E−05

0.977 0.956
3.87E−05

0.965 0.932
4.93E−05

0.819 0.67
5.08E−05

0.97 0.942

Overall 0.985 0.971 0.987 0.974 0.981 0.963 0.962 0.926 0.978 0.956

WABS (70 15 15 10 neurons)

Training 0.418 0.839 0.705 1.67 0.993 0.987 1.64 0.994 0.988 2.53 0.99 0.98 2.34 0.991 0.983

Validation 0.01 0.905 0.82 9.79 0.979 0.958 6.37 0.971 0.944 6.55 0.981 0.963 3.75 0.988 0.976

Testing
0.025

0.721 0.52
3.24

0.992 0.985
3.91

0.99 0.981
7.43

0.981 0.962
2.67

0.994 0.988

Overall 0.752 0.565 0.989 0.978 0.99 0.981 0.986 0.973 0.999 0.998

Pectin Solubility (70 15 15 5 neurons)

Training 0.011 0.901 0.813 0.865 0.937 0.879 0.619 0.962 0.926 0.018 0.872 0.761 0.845 0.944 0.892

Validation 9.94 0.999 0.999 0.142 0.991 0.982 0.027 0.932 0.868 0.538 0.875 0.766 0.811 0.959 0.92

Testing 0.013 0.919 0.845
0.019

0.819 0.672
0.67

0.679 0.462
0.019

0.981 0.964
0.011

0.888 0.79

Overall 0.931 0.867 0.934 0.873 0.933 0.869 0.901 0.812 0.936 0.877

Pectin Solubility (70 15 15 8 neurons)

Training 0.013 0.903 0.816 0.011 0.91 0.828 0.825 0.935 0.874 0.954 0.927 0.86 0.011 0.93 0.865

Validation 0.74 0.956 0.914 0.141 0.998 0.997 0.01 0.966 0.933 0.013 0.947 0.896 0.017 0.91 0.829

Testing
0.021

0.869 0.756
0.483

0.733 0.538 0.997 0.938 0.879 0.292 0.978 0.956 0.532 0.957 0.917

Overall 0.903 0.817 0.936 0.877 0.937 0.879 0.935 0.875 0.918 0.844

Pectin Solubility (70 15 15 10 neurons)

Training 0.621 0.954 0.911 0.015 0.884 0.781 0.517 0.954 0.911 0.01 0.922 0.851 0.479 0.964 0.929

Validation 0.02 0.844 0.712 0.012 0.916 0.84 0.017 0.92 0.847 0.101 0.957 0.916 0.024 0.893 0.797

Testing
0.021

0.909 0.826
0.032

0.853 0.727
0.017

0.789 0.623
0.01

0.96 0.923
0.01

0.831 0.69

Overall 0.926 0.858 0.873 0.763 0.936 0.877 0.936 0.877 0.938 0.879
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For WABS, the overall R and R2 ranged between 0.5 and 0.9991. After repeated training, validation and 
testing (10 neuron), a significantly high R and R2 values were eventually obtained at the 5th iteration with R 
and R2 values of 0.999 and 0.998 respectively with a validation MSE of 3.75 Similar to the bulk density, the R2 
value was compared with that obtained using linear, 2FI and quadratic model (Table 4). Comparatively, the R2 
of the predictive model generated using ANN was approximately higher by 28%, 23%, and 11% for linear, 2FI 
and quadratic model respectively. Studies reported that ANN is an accurate and model with satisfactory predic-
tion. The training, testing and validation results model prediction obtained at about 6–15 neurons, regression 
of coefficient and lower error in prediction of about 0.9 and 0.02 respectively indicating better ANN prediction 
of the hydration behavior of green chickpea and soybean seeds at varying soaking temperature and time24,25.

For Pectin solubility, the coefficient of regression for the linear, 2FI and quadratic model for pectin solubil-
ity are very low, ranging from 0.30 to 0.49, however, using ANN, a high R and R2 was obtained after training, 
validating, and testing the model using three different neurons (5,8 and 10 neurons). The three different neurons 
employed for pectin solubility were utilized to obtain a significant overall model performance indicator (R and 
R2). The best overall R and R2 values were obtained using 10 neurons and at the 5th run, with values of 0.938 
and 0.88 respectively, and validation MSE of 245. Comparatively the R2 value of the model predicted using ANN 
was approximately higher by 64%, 54%, and 44% for linear, 2FI and quadratic model respectively. The predictive 
model developed using ANN are presented in equation. Although there is no report on using ANN for predicting 
pectin solubility of processed legumes making this finding the first report, however a study using hybrid ANN, 
RSM and genetic algorithm reported R2 value of about 0.94 for predicting percentage protein retention of soy-
beans subjected to optimization of soaking conditions and considered ANN as alternative to the time-consuming 
soaking process, extensively practiced in industries, in terms of process time economy25.

The results of comparison between the actual and predicted values as shown in Fig. 6, indicated that the 
values of the parameters measured in this study (bulk density, WABS and pectin solubility) are closely related. 
Reportedly, ANN has been utilized in various fields, nonetheless reports on using ANN for predicting the cooking 
properties of cowpea when moisture content, temperature and time are varied during infrared heating was not 
found. This study fills that gap by presenting a method of using artificial intelligence technologies (specifically 
ANN) for predicting the bulk density, WABS and pectin solubility of cowpea precooked via the use of infrared 
form of heating under varied independent parameters of moisture content, temperature, and time.

X comprises of the three dependent variables of moisture, temperature, and time , while y1 = Bulkdensity , 
y2 = WABS , y2 = Pectinsolubility . net stands for the neural network model developed using ANN after train-
ing, validating, and testing raw dataset obtained from the experiment carried out in this study.

(1)y1 = netX

(2)y2 = netX

(3)y3 = netX

(4)[X] = [XMXTXtime]

Figure 4.   Validation means square error graphs of the chosen models.
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Figure 5.   Predicted, actual response, and error for the cooking characteristics studied.

Table 4.   R and R2 values of Conventional and ANN models in the present study. M: Moisture, T: Temperature, 
t: time.

Response Bulk density WABS Pectin solubility

Variables M,T,t M,T,t M,T,t

Predictive Models Present Work Present Work Present Work

Linear[R2] 0.7700 0.7143 0.3140

2FI[R2] 0.8511 0.7653 0.4034

Quadratic[R2] 0.9477 0.8864 0.4904

ANN [R] 0.9874 0.9991 0.9380

ANN[R2] 0.9750 0.9982 0.8777
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Conclusion
Industry 4.0 epitomizes the fourth wave of industrial revolution and aims at applying computerized, artificial 
intelligent, and data-driven technologies to research and industrial operations in order to optimize productivity 
and efficiency. One of these technologies is artificial neural network that works on the principle of self-learning 
to develop accurate predictive models that can describe and predict the relationship and behavior of a system. 
For the first time, artificial neural network was utilized in this work to develop a model that predicts the behavior 
(bulk density, water absorption capacity and pectin solubility) of cowpea prepared using infrared heating). Unlike 
the traditional linear, 2FI and quadratic model, artificial neural network (ANN proved more accurate and devel-
oped a better predictive model in the model prediction with a highly significant model performance (R value of 
0.9874, 0.9991 and 0.9380 for bulk density, water absorption capacity and pectin solubility) of infrared-cooked 
cowpea. The predictive model generated can predict similar response variables subjected to similar or almost-
close process parameters (moisture content, temperature, and time) and paves the path for the optimization of 
the characteristics of infrared-cooked cowpea using artificial intelligence technologies.

Data availability
The datasets generated during and/or analyzed during the current study is available from the corresponding 
author on reasonable request.
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