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Oxidative stress is the result of the imbalance between reactive oxygen species (ROS) formation and enzymatic and nonenzymatic
antioxidants. Biomarkers of oxidative stress are relevant in the evaluation of the disease status and of the health-enhancing effects of
antioxidants. We aim to discuss the major methodological bias of methods used for the evaluation of oxidative stress in humans.
There is a lack of consensus concerning the validation, standardization, and reproducibility of methods for the measurement of
the following: (1) ROS in leukocytes and platelets by flow cytometry, (2) markers based on ROS-induced modifications of lipids,
DNA, and proteins, (3) enzymatic players of redox status, and (4) total antioxidant capacity of human body fluids. It has been
suggested that the bias of each method could be overcome by using indexes of oxidative stress that include more than one
marker. However, the choice of the markers considered in the global index should be dictated by the aim of the study and its
design, as well as by the clinical relevance in the selected subjects. In conclusion, the clinical significance of biomarkers of
oxidative stress in humans must come from a critical analysis of the markers that should give an overall index of redox status in
particular conditions.

1. Introduction

The redox equilibrium is important in preserving the correct
functionality of cellular vital functions [1]. Oxidative stress is
defined as the imbalance in the redox characteristics of some
cellular environment which can be the result of either bio-
chemical processes leading to the production of reactive
species, exposure to damaging agents (i.e., environmental
pollutants and radiations), or limited capabilities of endoge-
nous antioxidant systems [2–4]. Reactive oxygen and nitro-
gen species (ROS/RNS) produced under oxidative stress are
known to damage all cellular biomolecules (lipids, sugars,
proteins, and polynucleotides) [5, 6]. Thus, several defense
systems have been involved within the cells to prevent
uncontrolled ROS increase. These systems include nonenzy-
matic molecules (glutathione, vitamins A, C, and E, and sev-
eral antioxidants present in foods) as well as enzymatic
scavengers of ROS, with superoxide dismutase (SOD),

catalase (CAT), and glutathione peroxidase (GPX) being
the best-known defense systems [1].

Mitochondria are the predominant source of ROS in all
cell types [7]. Superoxide (O2

•−) is mainly generated at the
level of the mitochondrial electron transport chain and can
be converted to hydrogen peroxide (H2O2) by SOD or
undergo spontaneous dismutation [1]. In the presence of
transition metal ions, for example, iron and copper ions,
H2O2 can generate via Fenton reaction the highly reactive
hydroxyl radical (HO•). Reactive species may also be enzy-
matically produced by xanthine oxidase (XO), uncoupled
nitric oxide synthases (NOS), and NADPH oxidase (NOX).
ROS production is related not only to cell damage or death,
but physiological and signalling roles for ROS have also been
ascertained. Reactive species are the principal source of
defensive pro-oxidants generated in the respiratory burst of
neutrophils [8, 9]. Upon activation, neutrophils produce var-
ious ROS via myeloperoxidase (MPO) and RNS via inducible
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nitric oxide synthase (iNOS). MPO catalyzes the H2O2-
dependent formation of hypochlorous acid (HClO) while
iNOS produces nitric oxide (NO•), which then reacts with
O2

•− to form peroxynitrite (ONOO−) [10]. NOX associated
with cell membrane catalyzes the generation of superoxide
radicals that play a physiological role in cancer invasion, hyp-
oxia, and integrin signaling [11–13]. Furthermore, ROS can
modulate the expression of several genes through the redox
regulation of the nuclear factor-erythroid 2-related factor 2
(Nfr2) and the nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-kB) [1, 14]. A concerted modulation
of these pathways has been suggested in inflammation and
carcinogenesis [14].

During thepastdecade, researchhas revealed awidespread
involvement of oxidative stress in a number of disease pro-
cesses, including cancer, cardiovascular disease (CVD), ath-
erosclerosis, diabetes, arthritis, neurodegenerative disorders,
andpulmonary, renal, andhepaticdiseases [1, 5, 15–23].These
pathologic stateshave increased incidencewithage, andoxida-
tive stress is believed to be amajor factor in ageing and ageing-
associated diseases [24–26]. Thus, oxidative stressmarkers are
important tools to assess the biological redox status, disease
state andprogression, and thehealth-enhancingeffectsof anti-
oxidants in humans. Identifying markers of oxidative stress
has been the focus of many studies, and several markers from
various biomolecule sources have been proposed over the past
decades. However, for some of them, there is a lack of consen-
sus concerning validation, standardization, and reproducibil-
ity. We aim to discuss the major bias of these methods.

2. Measurement of Reactive Species in
Leukocytes and Platelets by Flow Cytometry

In humans, under physiological conditions, ROS and RNS
generated by leukocytes, through NOX and iNOS, have a role

in the innate immune response to infection [8, 9]. However,
ROS and RNS can induce lipid peroxidation of polyunsatu-
rated fatty acids (PUFAs), which propagate via peroxyl
radicals (ROO•) within the membrane, as well as in the
low-density lipoproteins (LDL) [5, 2721]. In particular, in
the context of metabolic syndrome and chronic inflamma-
tion, the oxidized LDL (oxLDL) activate leukocytes and/or
platelets to produce ROS and RNS [27–29].

The direct quantification of ROS/RNS is a valuable and
promising biomarker that can reflect the disease process.
However, given the short half-life of these species, their mea-
surement in biological systems is a complex task. Approaches
include electron spin resonance, fluorescence magnetic reso-
nance, and mass spectrometry techniques [30, 31], but their
use has been limited to cell cultures and other in vitro appli-
cations. Although free radicals’ production can be measured
by spectrophotometric or luminescence methods [32, 33], all
extracellular free radicals’ measurements are deeply affected
by cell count and viability.

On the other hand, flow cytometry is one of the most
powerful tools for single-cell analysis of the immune sys-
tem [34] and it is routinely used in the diagnosis and pro-
gression evaluation of blood cancers [35–38] and human
immunodeficiency virus (HIV) infection [39–41]. In addi-
tion to the role of oxidative burst evaluation by flow
cytometry in the diagnosis of chronic granulomatous dis-
ease [42], this instrumentation has been used for many
years to evaluate oxidative burst in many conditions, such
as autoimmune neutropenia [43] and asymptomatic HIV+
individuals [44].

Many fluorescent probes for the detection of reactive
species have been developed in the last years, with a different
degree of specificity and sensitivity [45]. The fluorescent
probes used for the detection of reactive species in blood cells
via flow cytometry are summarized in Table 1.

Table 1: Fluorescent probes used for the measurements of reactive oxygen and nitrogen species by flow cytometry.

Probe (localization) ROS/RNS Fluorescence Leukocytes Platelets Limitations and confoundings

DCFH-DA (intracellular)

HO•

ONOO−

ROO•

NO2
•

Indirect
H2O2

↑ green (DCF) Yes Yes

Hemolysis
Self-propagation of DCF radicals
MDR substrates or inducers

Esterase inhibitors
Plasma esterase in whole blood or PRP

EDTA and citrate
Antioxidants

DAF-2 DA/DAF-FM
DA (intracellular)

NO• ↑ green (DAF-Ts) Yes No
MDR substrates or inducers

Esterase inhibitors
Plasma esterase in whole blood

DHR123 (intracellular)
HClO
H2O2

ONOO−
↑ green (Rho123) Yes No

Self-propagation of DHR radicals
MDR substrates or inducers

Antioxidants

HE (intracellular) O2
•− ↑ red (ethidium) Yes No Intercalating agents

C11-BODIPY581/591

(membrane)
HO•

ROO• Shift from red to green Yes Yes
Hemolysis
Antioxidants

C11-BODIPY581/591: 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid; DAF-2 DA: 4,5-diaminofluorescein
diacetate; DAF-FM DA: 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate; DAF-Ts: triazolofluoresceins; DCF: 2′,7′-dichlorofluorescein; DCFH-DA:
dihydrochlorofluorescein diacetate; DHR123: dihydrorhodamine 123; EDTA: ethylenediaminetetraacetic acid, H2O2: hydrogen peroxide; HClO:
hypochlorous acid; HE: hydroethidine; MDR: multidrug resistance; NO•: nitrogen monoxide; NO2

•: nitrogen dioxide; O2
•−: superoxide radical; HO•: hydroxyl

radical; ONOO−: peroxynitrite; PRP: platelet-rich plasma; Rho123: rhodamine 123; ROO•: peroxyl radicals.
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For instance, intracellularly converted diacetate deriva-
tives of probes such as dihydrochlorofluorescein diacetate
(DCFH-DA), 4,5-diaminofluorescein diacetate (DAF-2 DA),
and 4-amino-5-methylamino-2′,7′-difluorofluorescein diace-
tate (DAF-FMDA)havewidelybeenused forROS/RNSdetec-
tion [32, 33, 45–47]. Once taken up by cells, these probes are
hydrolyzed by intracellular esterases, generating the nonfluo-
rescent and membrane-impermeable DCFH, DAF-2, or
DAF-FM. Subsequent oxidation by ROS/RNS results in the
formation of the fluorescent 2′,7′-dichlorofluorescein (DCF)
and triazolofluoresceins (DAF-Ts), respectively.

DCFH, the more commonly used probe, does not directly
react with H2O2 to form the fluorescent product. DCFH can
be instead oxidized to DCF by several one-electron-oxidizing
species including HO• radicals, products formed from perox-
idase or heme proteins reacting with H2O2, HClO, and
nitrogen dioxide (NO2

•) generated by myeloperoxidase and
peroxynitrite decomposition. DCFH oxidation can also be
promoted by Fe2+ in the presence of O2 or H2O2. The 1-
electron oxidation of DCFH generates the DCF semiquinone
anion radical (DCF•−). This intermediate can rapidly react
with O2 to form O2

•−, which in turn can dismutate yielding
additional H2O2 and establishing a redox-cycling mechanism
that leads to an artificial amplification of the fluorescence
signal [46].

While DCFH is used in both platelets and leukocytes,
dihydrorhodamine 123 (DHR123) and hydroethidine (HE)
are used only in the evaluation of the oxidative burst by poly-
morphonuclear leukocytes (PMN) (Table 1).

DHR123 is an uncharged nonfluorescent probe that
passively diffuses across cell membranes and is converted
upon oxidation to the fluorescent membrane-impermeant
rhodamine 123 (Rho123), which predominantly localizes in
the mitochondria [32, 33, 45, 47]. HE passively diffuses into
cells and is preferentially oxidized by O2

•− to ethidium, which
results in intercalation in DNA and consequently a significant
enhancement of its red fluorescence intensity [32, 33, 45, 47].

The 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-
3a,4a-diaza-s-indacene-3-undecanoic acid (C11-BOD-
IPY581/591) probe is the only lipophilic probe used to
evaluate ROS in leukocytes and platelets [48, 49]. C11-
BODIPY581/591 is a derivatized 11-carbon fatty acid in
which the boron dipyrromethene difluoride (BODIPY)
core is substituted by a phenyl group via a conjugated
diene [50, 51]. This conjugated diene interconnection is
oxidation sensitive, and when oxidized by HO• or ROO•,
disruption and shortening of the conjugated electron reso-
nance structures between the phenyl group and the BOD-
IPY core shifts C11-BODIPY581/591’s fluorescence from
red to green [50, 51]. Conversely, ONOO− induces not only
oxidation but also nitration of BODIPY, reducing red fluo-
rescence but not necessarily increasing green fluorescence
[52]. Although excimers of the oxidized form are red fluo-
rescent, labelling conditions up to 30 μMprovides sufficient
staining of the plasma and organelle membranes well below
the range in which self-quenching or excimer formation
occurs [51]. Therefore, excimers do not interfere with the
fluorescence of BODIPY and the measured red signal
depends only on the reduced form of the probe.

Furthermore, neither C11-BODIPY581/591 nor its oxidation
products are able to spontaneously leak from the lipid
bilayer [51] and the ratio of oxidized to nonoxidized
C11-BODIPY581/591 can be used to normalize probe incor-
poration in cells of different size (lymphocytes, mono-
cytes, and granulocytes) [49]. Only hemolysis and
antioxidants, in particular the end-product of purine
metabolism, uric acid (UA), could bias the measurement
of ROS generation [49, 53].

On the contrary,whenanalyzing the results of intracellular
probes, many factors must be taken into account (Table 1).

Ethidium displacement bymolecules, such as chemother-
apeutics [54] or flavonoids [47], could decrease the ethidium
fluorescence signal,making the interpretation of data difficult.

Artefactual amplification of the fluorescence intensity has
been suggested to occur via intermediate radicals for both
DCF and DHR [46], whereas the presence of quenching
and reducing antioxidants could either decrease [55] or
increase [56] the oxidation of probes without affecting ROS
production. Heme proteins and reduced iron (Fe2+) have
been shown to oxidize DCFH, and the suitability of DCFH-
DA for measuring intracellular ROS is increasingly being
questioned [46].

In addition to the aforementioned limitations, the fluo-
rescence signal is dependent not only on the oxidation of
the probe but also on its concentration. In this context, mul-
tidrug resistance- (MDR-) mediated transport has low sub-
strate specificity. Multidrug resistance-related protein 2-
(MRP2-) mediated DCF extrusion has been reported in
human leukocytes [57], and it is well known that Rho123
can be extruded by the MDR [47]. The inclusion of
H2DCF-DA in the dilution buffer in order to avoid dye leak-
age has been suggested [58]. However, overloading with
probe generates cell morphology changes and artifacts in
platelets [59, 60]. In this context, it should be pointed out that
lyophilic derivatives of intracellular fluorescent probes are
substrates of P-glycoprotein (Pgp) and MRP1 [47]. Further-
more, MDR expression is affected by intracellular variation
of glutathione (GSH) [61] and oxidative stress [62–65], as
well as by various dietary factors [66–69], inflammatory cyto-
kines [70–72], disease states [73–75], and drugs [76–81]. In
particular, aspirin, indomethacin, and ibuprofen are sub-
strates for MRP4 [76] and may interfere with fluorescent
probe staining. Most importantly, aspirin treatment over a
period of 15 days significantly increased MRP4 mRNA and
protein expression in platelets of healthy volunteers [78].
MRP4 is involved in the storage of cyclic nucleotides in dense
granules [82–84], and MRP4 inhibition impairs platelet
aggregation [85]. Besides the aforementioned effects, MRP4
also has a role, together with MRP1 [86], in the efflux of
leukotrienes [87]. Therefore, in addition to the potential
confounding effect on the fluorescence signal [88], the
presence of intracellular probes per se could reduce platelet
activation in vitro.

In addition, intracellular esterase activity was shown to be
impaired in damaged platelets and highly correlated with
ADP-induced aggregation [89], whereas plasma esterases
[59, 60] and/or inhibition of esterases [47] could potentially
interfere with probe staining and fluorescence signal
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intensity when using DCFH-DA, DAF-2 DA, and DAF-FM
DA in whole blood and platelet-rich plasma (PRP) methods.

Despite the fact that whole blood methods provide more
physiologically relevant data when evaluating ROS produc-
tion in leukocytes [32], washing impairs ADP-induced aggre-
gability of platelets [90] and alters their structure [91],
whereas ethylenediaminetetraacetic acid (EDTA) and citrate
increase DCFH oxidation [56].

Moreover, whole blood, PRP, and platelet-poor plasma
[92] also contain XO, and therefore, UA may be produced
during the incubation period with ROS-inducers, potentially
falsifying results. Urate crystals induced oxidative burst [27]
and the activation and lysis of platelets in vitro [93, 94].

With this in mind, it is well known that there is an
increased platelet destruction and production in some
patients with primary gout [95, 96] and that platelet apopto-
sis and microparticles derived from platelets, erythrocytes,
leukocytes, and/or endothelial cells are higher in subjects
with CVD [97–99], dyslipidemia [100], and metabolic syn-
drome [101]. On the other hand, lipid-lowering treatment
[100] and the XO inhibitor febuxostat [102] were shown
to decrease microparticle count. Gender differences have
been reported for microparticle count. Specifically, higher

levels of microparticles have been found in women
compared with men [103]. Endotoxin induced the forma-
tion of platelet microparticles [104], introducing potential
confounding factors in conditions of increased levels of lipo-
polysaccharide, such as the postprandial state [105] and
metabolic [106] and inflammatory diseases [107]. Spontane-
ous activation, generating both microparticles and inducing
microaggregation of platelets, occurs in type 2 diabetic
patients [108], increases with age in healthy subjects [109],
and is affected by blood collection and processing proce-
dures [109, 110]. On the other hand, platelet aggregates with
leukocytes are a marker of activated platelets in CVD
patients [111–114], potentially reducing the platelet count
in PRP. All these factors must be taken into account when
evaluating data from case-control studies that compared
ROS-production in unstimulated samples of disease and
healthy subjects.

The combination of fluorescently labeled antibodies
against targets such as the pan-leukocyte marker CD45 [49]
and the platelet marker CD61 [48] and/or physical properties
such as size (FS: forward scatter) and internal complexity (SS:
side scatter) can identify different leukocyte populations and
platelets (Figure 1).
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Figure 1: Gating strategies in the measure of free-radical production by flow cytometry. Different leukocytes populations (lymphocytes: L,
monocytes: M, and granulocytes: G) in whole blood can be identified by CD45 (b) in the live gate assigned in the forward scatter (FS) and
side scatter (SS) dot plot (a) by excluding dead cells and debris. Red blood cells (RBC) can be excluded as CD45 negative (b). Platelets (Pt)
can be identified by CD61 in platelet-rich plasma (PRP) (c). In activated samples, platelet microparticles (c) and leukocyte-platelet
aggregates (b: Pt-G and Pt-M) are formed and Pt-G are more prone to apoptosis (G-A). After platelet activation, FS increases due to
platelet aggregation inducing an increase in autofluorescence (d).
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In activated samples, platelet microparticles [103, 104,
115], platelet aggregates [116], and leukocyte-platelet aggre-
gates [117, 118] are formed (Figure 1). In particular, platelet
activation in whole blood induces the formation of platelet
conjugates with granulocytes or monocytes [119] and leuko-
cyte aggregates with platelets are more prone to apoptosis
after in vitro activation (Figure 1) [117].

Regarding the normalization strategies, stimulation
indexes calculated from the mean intensity fluorescence
(MIF) values and expressed as fold change relative to unsti-
mulated samples have been suggested for evaluating the pro-
duction of ROS in both granulocytes [120, 121] and platelets
[122, 123]. However, these methods do not take into account
probe leakage nor autofluorescence differences. While it is
well known that autofluorescence generates false-positive
monocytes [124], this aspect is neglected in platelet assays.
Despite controversy regarding the relationship between
CVD and platelet size, measured as mean platelet volume
(MPV) or FS [97, 125, 126], it is well known that FS increases
after platelet activation [127] and that large and small platelet
subpopulations have different autofluorescence profiles [128]
(Figure 1). Consequently, differences in autofluorescence in
unstimulated and stimulated samples imply that stimulation
indexes do not necessarily measure ROS production. There-
fore, it must always be taken into account that the fluores-
cence signals and not the radicals are measured and that
the oxidation of the probe is not always related to ROS
production. Overall, the reviewed potential bias and

confounding factors suggest that accurate gating and
normalization strategies must be applied in order to avoid
misinterpretation of the results.

3. Markers Based on ROS-Induced
Modifications

In addition to the measure of free-radical production, a dif-
ferent approach is measuring stable markers that may reflect
a systemic or tissue-specific oxidative stress. Such molecules
are modified by the interaction with ROS in the microenvi-
ronment [129] (Table 2).

Lipids, DNA, and proteins are examples of molecules that
can be modified by excessive ROS in vivo (Table 2) [129].
Some of these modifications are known to have a direct effect
on the function of target molecules, such as the inhibition of
an enzymatic function, but other modifications just reflect
the local degree of oxidative stress. This influences the clini-
cal applicability of several oxidative stress markers since the
functional significance or the causal role of oxidative modifi-
cations on biological functions is a key characteristic for the
validity of a biomarker (Table 2).

While measures of oxidative stress in spinal cord [130]
and tissues [131, 132] are restricted to particular disease
conditions, venous blood and urinary samples are the most
commonly used in clinical practice. In addition to urinary
samples [133–135], other noninvasive and low-cost tools
for the screening of oxidative stress, such as salivary

Table 2: Markers based on ROS-induced modifications.

Markers Methods Limitations and confoundings

Lipid oxidation

HNE HPLC, GC-MS Immunoassay

MDA, alkenals, alkadienals
Spectrophotometric/fluorimetric

(TBARS), HPLC (UV or fluorescence)
Immunoassay

Sugars, amino acids, bilirubin and albumin,
hemolysis

F2-IsoPs
Gas/liquid chromatography coupled with

mass spectroscopy techniques Immunoassay
Hemolysis Antibody specificity

DNA oxidation

8oxodG, 5-chlorocytosine,
5-chlorouracil, εdA, εdC

ELISA assays, HPLC-ECD, HPLC/GC-MS Antibody specificity

Protein oxidation

ALEs, AGEs
HPLC, Western blot after one-dimensional

or two-dimensional electrophoretic
separation, immunohistochemistry, ELISA

Structural heterogeneity of these
products Antibody specificity

Carbonils Spectrophotometric, HPLC, ELISA

3-NO-Tyr HPLC/GC-MS, ELISA

Possible nitration of tyrosine residues in the
sample by the presence of nitrite and the acid
conditions during protein precipitation and

hydrolysis Antibody specificity

AOPP MS, colorimetric assays

oxLDL Immunodetection (ELISA) Antibody specificity

IMA ABC test, immunodetection (ELISA)
Sensitive to pH changes, temperature, and
time of sample storage Antibody specificity

8oxodG: 7,8-dihydroxy-8-oxo-2′-deoxyguanosine; ABC test: binding capacity of albumin for cobalt; AGEs: advanced glycation end products; ALEs: advanced
lipoxigenation end products; AOPP: advanced oxidation protein products; F2-IsoPs: F2-isoprostanes; GC: gas chromatography; HNE: 4-hydroxy-2-nonenal;
HPLC: high-performance liquid chromatography; ECD: electrochemical detection; IMA: ischemia-modified albumin; MS: mass spectroscopy; MDA:
malondialdehyde; TBARS: thiobarbituric acid reactive substances.
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[136–138] or exhaled breath [139–141] analysis, have been
proposed. However, it has been reported that creatinine
urinary markers are not suitable in patients with impaired
renal function [135]. Therefore, the validity of a biomarker
depends on the choice of the sample that should be dictated
by subjects’ characteristics and the best cost-benefit ratio.

3.1. Lipid Oxidation Products. Lipid oxidation end product
determination is a widely used marker of oxidative stress.

The presence of unsaturated double bonds makes
PUFAs, mainly arachidonic acid (AA), highly susceptible to
oxidative damage in the presence of ROS or free radicals
[5]. Lipids peroxidation may also occur through enzymatic
reactions, catalyzed by lipooxygenase and cyclooxygenase
(COX), which oxidize AA into prostaglandins, prostacyclin,
tromboxane, and leukotrienes. Free radical-mediated oxida-
tion involves an autocatalytic chain reaction triggered by
ROS, mainly HO• and ROO•, which catalyze a hydrogen-
atom subtraction at the unsaturated bonds generating a car-
bon radical that can further react with oxygen producing a
lipid peroxyl radical. The chain reaction proceeds with lipid
peroxyl radical acting as chain-carrying radicals and the for-
mation of lipid hydroperoxydes. In the presence of transition
metals, lipid hydroperoxides may generate lipid alkoxyl and
ROO• as well as HO•, which can further sustain the chain
oxidation reaction to produce short-chain oxidation prod-
ucts, including a variety of different aldehydes, alkanes, and
alkenes. Malondialdehyde (MDA) and 4-hydroxy-2-nonenal
(HNE) represent the most investigated end product of lipid
oxidation [142]. HNE can be detected by high-performance
liquid chromatography (HPLC) directly or as a derivatized
product with 2,4-dinitrophenylhydrazine or 1,3-cyclohexa-
nedione, by gas chromatography coupled with mass
spectroscopy (GC-MS), and by means of immunological
techniques using specific anti-HNE antibodies [142–144].
However, when 4-HNE aldehydes were determined using
GC-MS system, they were significantly different in plasma
and urine of patients with rheumatoid arthritis compared
to healthy subjects, but differences between patients with
low and high disease activity can be detected only in plasma
samples, suggesting that only this sample is useful to monitor
the progression of this autoimmune disease [145].

MDA,alkenals, andalkadienals constitute the thiobarbitu-
ric acid reactive substances (TBARS),which can reactwith two
equivalents of thiobarbituric acid (TBA) to give a pink adduct
complex, easily measured by a colorimetric or fluorimetric
assay (Table 2). Despite TBA test for MDA determination
being themost frequently usedmethod to evaluate lipidperox-
idation, it shows several pitfalls andhasbeencriticized asbeing
too unspecific and prone to artifacts [146–148]. TBA can react
with several compounds, including sugars, aminoacids, biliru-
bin, and albumin, producing interferences in the measure-
ment (Table 2). There is a further MDA generation, which
occurs during the procedure itself that may be prevented by
adding an antioxidant, like butyl hydroxytoluene (BHT), and
by reducing the heating time. An additional pitfall is the inter-
ference of hemolysis that falsely increases themeasuredMDA
levels (Table 2).Thus,manyprotocols andmodificationsof the
TBA test are available in the literature, andwhile directMDA-

TBA adductmeasurement has a low significance, the determi-
nation byHPLC combined with UV or fluorescence detection
is amore reliable and reproduciblemethod [149–151].Despite
themethodological bias, MDAmeasurement could have clin-
ical relevance due to the potential pathogenic role of MDA on
to the induction of IL-17 producing cells [152] and a possible
link between lipid-peroxidation and T-helper 17 (Th17) cell-
mediated diseases, such as inflammatory bowel diseases [153].

F2-isoprostanes (F2-IsoPs), chemically stable
prostaglandin-like isomers generated by the reaction of poly-
unsaturated fatty acids in membrane phospholipids and free
radicals or ROS, represent another reliable marker assessing
oxidative stress status in vivo [154–156]. In fact, they are ini-
tially formed in lipid membranes as a consequence of oxida-
tive stress and then released in free form by phospholipase
action. F2-IsoPs are unaffected by lipid content in diet and
thus their measurement in biological fluids as well as exhaled
breath condensate can provide an estimation of total body
production, whereas measurement of F2-IsoPs esterified in
tissues of interest can provide information to localize and
quantify the specific oxidative stress. Despite these observa-
tions, the utility of F2-IsoPs as biomarkers of oxidative stress
is highly limited since their reliable quantification is costly
requiring gas/liquid chromatography coupled with mass
spectroscopy techniques (HPLC/GC-MS). It must be taken
into account that also measures of both MDA and 15(S)-8-
iso-PGF(2alpha) by GC-MS/MS in plasma samples may be
markedly compromised by hemolysis [154]. Immunoassay
techniques, based on specific antibodies, are under develop-
ment, but their application is limited since the obtained
results do not correlate well with mass spectrometry deter-
mination [155–157]. In addition to the methodological con-
siderations, it must be taken into account that in some
inflammatory conditions, the enzymatic product of arachi-
donic acid prostaglandin F2α (PGF2α) must be evaluated
with nonenzymatic oxidation products (F2-IsoPs) in differ-
ent tissues [158]. In fact, it has been recently reported that
PGF2α levels, but not F2-IsoPs, were higher in cerebrospinal
fluid of patients with multiple sclerosis (compared with con-
trols); however, in plasma, both F2-IsoPs and PGF2α were
lower in patients with progressive disease and decreased
with increasing disability score [158]. A good approach
could be to study the profiling of eicosanoid metabolome,
as recently suggested in animal models of rheumatoid
arthritis [159, 160].

3.2. Markers of DNA Oxidation. Oxidation of DNA compo-
nents by ROS/RNS is the major source of induced DNA
damages leading to several types of DNA modifications
including nucleotide oxidation, strand breakage, loss of
bases, and adduct formation [161, 162]. The HO• radical
can react with all purine and pyrimidine bases, as well as
deoxyribose backbone, generating various products, the most
common one being 7,8-dihydroxy-8-oxo-2′-deoxyguanosine
(8oxodG) [163].

Oxidatively generated lesions can lead to decomposition
in base fragments and the formation of carbon-centered
radicals, which give rise, in most cases, to DNA strand
breaks. Exposure of DNA to RNS can promote deamination
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of DNA bases and conversion of guanine into xanthine, oxa-
nine, and 8-nitroguanine, which is rapidly lost from DNA by
spontaneous depurination. The major end products of HClO
include 5-chlorocytosine and 5-chlorouracil. These modified
bases have been detected at sites of inflammation and are
indicative of HClO-mediated DNA damage in vivo [164].

DNA damage may also be caused by the attack of reactive
products resulting from ROS-induced modifications of other
molecules, such as lipids. In this case, etheno-DNA adducts,
such as 1,N(6)-etheno-2′-deoxyadenosine (εdA) and 3,N(4)-
etheno-2′-deoxycytidine (εdC), are formed and can be used
as biomarkers of oxidative stress [165] andmay serve as poten-
tialmarkers for assessing progression of inflammatory cancer-
prone diseases [166]. Elevated etheno-DNA adducts were
found in tissues of patients suffering from chronic inflamma-
tory processes [167]while increased levels of urinary εdAwere
observed in subjects and workers exposed to diesel engine
exhaust [168]. Etheno-DNA adducts can be measured by
HPLC/MS-based techniques [165, 169].

It has been estimated that several thousands of 8-oxodG
lesions may form daily in a mammalian cell, representing
5% of all oxidative lesions, and for this reason, 8-oxoG is
the most commonly used biomarker of DNA oxidation to
measure oxidative stress [170–172]. However, analysis of 8-
oxodG and other oxidized purines and pyrimidines has been
hampered for a long time by the occurrence of several draw-
backs associated with their measurement. Optimized assays
are now available, and the most reliable is represented by
chromatography coupled with mass spectroscopy, even if
commercial ELISA assays based on specific antibodies are
available [173, 174]. Although ELISA methods are less spe-
cific compared to HPLC with electrochemical detection
(HPLC-ECD) and HPLC/GC-MS, some kits with specific
antibodies resulted appropriate for urine samples [175].

The oxidized nucleotides are excreted into the urine, and
their measurement has been proved to be predictive of the
development of several diseases. High level of DNAoxidation,

measured as urinary excretion of 8oxodG, is predictive for the
risk of breast and lung cancer, atherosclerosis, and diabetes
[176–179]. RNA oxidation, measured as 7,8-dihydroxy-8-
oxoguanosine (8oxoGuo), has been recently introduced as a
marker of diseases, particularly neurodegeneration and diabe-
tes, and high level of RNA oxidation has been also associated
with breast cancer development in diabetic females [180].

3.3. Protein Oxidation Products. Proteins represent a wide
target for ROS and RNS generated under normal or oxida-
tive stress conditions and can be considered as general
scavengers of these species. Several amino acidic residues
can undergo oxidative modifications including oxidation
of sulphur-containing residues, hydroxylation of aromatic
and aliphatic groups, nitration of tyrosine residues, nitrosy-
lation and glutathionylation of cysteine residues, chlorination
of aromatic groups and primary amino groups, and conver-
sion of some amino acid residues to carbonyl derivatives
[181, 182] (Figure 2).

Oxidation can also lead to the cleavage of the polypeptide
chain and to the formation of cross-linked protein aggregates
[183, 184] (Figure 2).

Oxidation of iron-sulphur centers by O2
•− is irreversible

and leads to enzyme inactivation. In addition, metals bound
to the protein can generate, through the Fenton reaction,
HO• radicals that rapidly oxidize the neighbor amino acid
residues of the protein [185].

If the oxidative modifications of protein residues are not
properly repaired or removed, they could affect the three-
dimensional structure and physicochemical properties of
the protein that may also become toxic.

Irreversible modifications of proteins include carbonyla-
tion, nitrosilation, breaking of the histidine and tryptophan
rings, and hydrolysis of the peptide bond in the presence of
proline [186]. The latter mainly occurs in the collagen, rich
in proline and hydroxyproline, which is particularly dam-
aged under oxidative stress conditions [187].

ROS

ROS/RNS

ROS/HClO

ROS/glycoxidation

ROS/lipid peroxidation

C = O

Tyr-NO 3-nitro-tyrosine

Tyr-Cl Cl-tyrosine
(AOPP)

Glycoxidation
adducts (AGEs)

Lipid peroxidation
adducts (ALEs)

Loss of function
Aggregation

Degradation

Protein
carbonyls

Figure 2: Irreversible oxidative modifications of proteins. AGEs: advanced glycation end products; ALEs: advanced peroxidation end
products; AOPP: advanced oxidation protein products; HClO: hypochlorous acid; RNS: reactive nitrogen species; ROS reactive oxygen species.
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Determination of protein oxidation has a biological
significance and a good clinical relevance. A specific profile
of oxidized proteins may be formed as a consequence of
different oxidative stress or age-related diseases [188–190].
Biological significance of protein oxidation may also result
from its chemical stability and high yield formation. Sample
availability is an important factor that limits the reliability
of a biomarker. Protein oxidation may be determined in
blood and urine samples, although determination in specific
tissue or cell samples may give more precise information. It
must be noted that protein oxidation may occur during the
analytical process thus generating some artefacts [191]. The
rates of oxidation reactions are critically dependent on the
sample temperature, its physical form, and the presence of
oxygen and catalysts (metal ions and light) [192]. For these
reasons, measurement of protein oxidation may be a useful
marker, as long as it is characterized by a high reproducibil-
ity, sensitivity, and specificity.

Several methods have been developed for the detection
of the different kinds of protein modifications. However,
the biological and clinical relevance of protein oxidation
as a biomarker is still limited by the availability of meth-
odologies able to identify and quantify specific protein
oxidative modifications.

3.3.1. Protein Carbonyls, ALEs, and AGEs. Carbonyl groups
can be generated by many different mechanisms, as the oxi-
dative cleavage of the protein backbone, in particular at the
level of glutamyl side chains, and the oxidative deamination
of lysine. Also, the attack of HO• radicals on proline, lysine,
arginine, and threonine side chains generates carbonyl
groups [193].

The measure of carbonyl levels in proteins is the most
widely used marker of oxidative protein damage, and tissues
injured by oxidative stress generally contain increased con-
centrations of carbonylated proteins [186, 194]. Moreover,
this biomarker has some advantages in comparison with
the measurement of other oxidation products because of
the relative early formation and the relative stability of carbo-
nylated proteins. Protein carbonyl levels increase with age
and are elevated in several pathologic conditions including
neurodegenerative diseases, obesity, or diabetes [195, 196].

Methods based on ELISA and HPLC are the most used
in clinical assessments because of high throughput and
standardization. Detection of protein carbonyl groups gen-
erally involves the derivatization of the CO group with
2,4-dinitrophenylhydrazine (DNPH) with the formation of
a stable dinitrophenyl (DNP) hydrazone product. The latter
can be detected by several methods which include the direct
spectrophotometric measurement of DNP adducts, as well
as more specific techniques based on anti-DNP antibodies,
like ELISA, Western blot after one-dimensional or two-
dimensional electrophoretic separation, immunohistochem-
istry, and HPLC [197–199].

Functional groups of proteins can react with several
products resulting from the ROS-induced oxidation of
PUFAs and carbohydrate, generating inactive adduct deriva-
tives classified as advanced peroxidation end products
(ALEs) and advanced glycation end products (AGEs),

respectively [200, 201] (Figure 2). In particular, lysine, histi-
dine, and cysteine residues can react with lipid peroxidation
products (HNE, MDA), through a Michael addition reaction,
while lysine ε-amino groups can react with reducing sugars
and their oxidative products, to generate several carbonyl
derivates [202, 203].

AGEs are a heterogeneous group of molecules with
carboxymethyl lysine, carboxymethyl valine, and pentosidine
as the main protein products, while carboxymethyl lysine is a
product of both lipid peroxidation and glycoxidation
reactions [204–206].

AGEs increase with aging and their formation has been
related to the level of carbohydrates; so, they have been linked
to diabetes and obesity [207], as well as other diseases includ-
ing atherosclerosis, Alzheimer’s disease, and renal insuffi-
ciency [208, 209]. Mass spectrometry-based techniques
represent a key method in identifying protein adducts and
the specific site of modification but their use is still limited
in routine clinical analysis [210, 211]. To address this, AGEs’
assays are mostly based on the use of specific antibodies or
spectrofluorimetric measurements based on the fluorescent
properties of AGEs [212, 213]. Although promising results
came from studies on skin autofluorescence in diabetic
patients [214, 215], the serum fluorescence AGE (F-AGE)
method did not distinguish women with gestational diabetes
from the healthy controls [216].

The availability of polyclonal and monoclonal antibodies
directed against different HNE-protein adducts (involving
cysteine, lysine, or histidine residues) allowed the formula-
tion of immunodetection methods which are commercially
available. For example, specific antibodies are used to detect
HNE-histidine adducts in tissues or biological samples and
HNE-modified tau protein has been associated with neurofi-
brillary tangles in Alzheimer’s disease [217].

The reliability of immuno-based methods is mostly
dependent on the specificity of the antibodies utilized, that
may lead to differences between the available commercial
kits. A fructosamine assay for the detection of ketamine
formed via a nonenzymatic glycation reaction of serum
protein, and the HPLC measurement of furosine, a specific
product obtained after hydrolysis of epsilon-amino-
fructose-lysine, are also alternative biomarkers [218, 219].

Specific AGEs, as pentosidine and carboxymethyl lysine,
can be measured by HPLC [220, 221]. However, their use
as biomarkers and the development of specific assays in clin-
ical application are hampered by the structural heterogeneity
of these products, due to different mechanisms of formation,
and because few AGEs have been characterized.

In addition to the role as marker of oxidative stress, the
clinical relevance of AGE is indicated by their pathogenic role
in immune- and inflammatory-mediated diseases.

First of all, the role of the receptor for advanced glyca-
tion end products (RAGE)-NF-kB axis in neuroinflamma-
tion is in line with the nonenzymatic glycosylation theory
of aging, suggesting a central role of the AGEs in the age-
related cognitive decline [17]. Besides, the soluble receptor
for advanced glycation end products (sRAGE) plays an
important role in the pathogenesis of the acute respiratory
distress syndrome [222].
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On the other hand, Turk et al. suggested a role for AGE-
immune complexes in the pathogenesis of atherosclerosis.
Compared to healthy subjects, both diabetic and nondiabetic
patients with coronary artery disease had a higher concentra-
tion of circulating immune complexes containing the AGE
moiety as antigen, whereas only diabetics had higher anti-
AGE antibodies [223]. Autoantibodies to IgG-AGE were
detected in patients with rheumatoid arthritis, suggesting
that glycation of IgG results in the generation of new immu-
nogenic epitopes, potentially inducing circulating autoanti-
bodies [224]. Therefore, AGEs could be one of the links
between metabolic syndrome and immune activation.

3.3.2. Nitrotyrosine. 3-nitro-tyrosine (3-NO-Tyr) is the
main product of tyrosine oxidation which may occur either
within a polypeptide or in free tyrosine residues. This mod-
ification can be generated through several pathways that
include the reaction with ROS and RNS like ONOO− and
NO2

• [225–227] (Figure 2). NO• generated by NOS can
react with O2

•− to form ONOO− that, at acidic pH, is pres-
ent as protonated form (ONOOH) which is believed to
decompose into HO• and NO2

• to an extent of ~30% [10].
Generally, tyrosine oxidation is a two-step process with
the formation of a tyrosine radical, generated by different
oxidative steps, followed by the reaction with NO2

•. Accu-
rate determination of 3-NO-Tyr in biological samples
requires gas or liquid chromatographic techniques coupled
to mass spectrometry [228–230], conditions that are not
feasible for high throughput in clinical analysis. For a better
determination, protein extracts from biological samples can
be completely hydrolyzed before quantification of 3-NO-
Tyr by chromatography. A pitfall in this technique is the
possible nitration of tyrosine residues in the sample by the
presence of nitrite and the acid conditions during protein
precipitation and hydrolysis [231].

ELISA assay based on specific antibodies are also available,
but their use is limited by the different affinity of antibodies for
different nitrated proteins and the low sensitivity [232, 233].
3-NO-Tyr has been described as a stable marker of oxidative/
nitrative stress in inflammatory diseases [234, 235], but its
utility as clinical biomarker is still questioned. Some studies
showed that 3-NO-Tyr plasma levels are increased in several
conditions, such as asthma, diabetes, and cardiovascular dis-
eases, and reduced following therapeutic treatments [236,
237]. Moreover, an involvement of 3-NO-Tyr in age-related
neurodegenerative diseases has been suggested [238, 239].

3.3.3. Advanced Oxidation Protein Products (AOPP). The
reaction of proteins with chlorinated oxidants such as hypo-
chlorous acid results in chlorination of amino acid residues
and formation of 3-chloro-tyrosine (3-Cl-Tyr) and 3,5-
dichloro-tyrosine as main products. These oxidation prod-
ucts are generally classified as advanced oxidation protein
products (AOPP) (Figure 2) and include protein aggregates
by disulphide bridges and/or tyrosine cross-linking. AOPP
is a marker of oxidative stress that reflects the chronic kidney
failure and has been identified as a marker of inflammation in
many diseases [240–250]. Chloro-tyrosine, as well as 3-nitro-
tyrosine, can be produced by reaction with ipochlorous acid

and ONOO− both generated during inflammation, and it
has been observed that AOPP may act as a mediator of the
inflammation process and monocyte activation [240]. AOPP
levels result as elevated in diseases such as diabetes, uremia,
systemic sclerosis, atherosclerosis, and cardiovascular dis-
eases and in patients with renal complications, increasing
with the progression of chronic renal failure [241–244].

AOPP level can be measured by colorimetric tests using a
chloramine standard or human serum albumin derivatives
[245]. 3-Cl-Tyr is a highly specific biomarker that can be
detected with very sensitive methods such as mass spectrom-
etry [231, 246]. 3-Cl-Tyr has been detected in patients with
atherosclerosis [247] and rheumatoid arthritis [248], in chil-
dren with cystic fibrosis [249], and in the airways of preterm
infants [250].

3.3.4. oxLDL. Low-density lipoproteins can undergo oxida-
tive modification, and this has been correlated with athero-
sclerosis and cardiovascular diseases [251, 252].

The most common test makes use of specific antibodies
that recognize selected modifications of LDL amino acidic
residues (i.e., aldehyde-modified lysine residues or oxidized
phospholipid-modified residues). However, the use of oxLDL
as a biomarker of oxidative stress has been criticized because
of the heterogeneity of oxidation products, the low specificity
of the antibodies, and the different results obtained depend-
ing on the assay utilized [253, 254].

In addition, the clearance of oxLDL and the formation of
immunocomplexes must be taken into account. Patients with
ischemic stroke with intracranial atherosclerosis had a higher
baseline level of oxLDL and a greater decline after a standard-
ized fat meal compared to those that presented extracranial
atherosclerosis, indicating an increase of the clearance of
the oxLDL after meal [255]. An increase in the uptake of
oxLDL has been observed also in macrophages from type 2
diabetes (T2D) patients [256], potentially inducing foam cell
formation and atherosclerosis. oxLDL may also induce mat-
uration of dendritic cells and regulate the shift from classical
(M1) to alternative (M2) macrophage activation and from T
helper 1 (Th1) to T helper 2 (Th2) response, suggesting that
these could act as a bridge between innate and adaptive
immunity, involved in plaque development [27]. The Th2-
induced response could account to the presence of anti-
oxLDL antibodies in subjects with T2D and impaired glucose
tolerance [257], as well as to the anti-MDA-LDL IgGs found
in serum of patients undergoing off-pump and on-pump cor-
onary artery bypass grafting [258]. Therefore, oxLDL are not
only a marker of oxidative stress but also a pathogenic factor
whose values should be evaluated in the context of a global
clinical examination.

3.3.5. Ischemia-Modified Albumin. Albumin, the most abun-
dant protein in serum and other body fluids, is a carrier of
many biomolecules. Albumin is susceptible to oxidation
and carbonylation and may also act as an antioxidant system
through the reversible oxidation of its cysteine residues. For
this reason, it can be considered a general oxidative bio-
marker in several human diseases.
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Myocardial ischemia results in structural changes to the
N-terminus of the serum albumin related to the production
of ROS [259, 260]. These changes reduce the ability of albu-
min to bind transition metals, particularly cobalt cations,
which can be detected by the albumin cobalt-binding
(ACB) test [261–263]. Besides the N-terminal cobalt-
binding site, albumin contains two additional sites that are
negatively modulated by fatty acids binding to albumin.
Therefore, it has been hypothesized that the release of fatty
acids in myocardial ischemia is responsible for the lower
cobalt-binding capability [264]. The ABC test indirectly
detects Ischemia Modified Albumin (IMA) by measuring
the decreased binding capacity of albumin for cobalt [265]
and has been carried out by the Food and Drug Administra-
tion (FDA) to detect myocardial ischemia. Growing evidence
suggest that IMA is not only specific for cardiac ischemia, but
its elevated levels are also reported in patients with liver
cirrhosis, pulmonary embolism, diabetes mellitus, cerebro-
vascular disease, and Alzheimer’s disease [266–269]. Thus,
measurements of IMA serum levels could be a new marker
of oxidative imbalance. However, ACB test is sensitive to
pH changes, altering the metal-binding capacity of the
albumin, as well as temperature and time of sample storage.
Analysis should be performed within 2 h or the serum should
be separated and frozen [270, 271]. Recently, several immu-
noassays based on specific antibodies anti-IMA have been
introduced in the market.

4. Redox Proteomic and Markers Based on
Cysteine and Redox Enzymes

The powerful strategy offered by the mass-proteomic
approach makes it now possible to reach high sensitivity and
specificity in determining oxidative modifications of selected
proteins. If fact, redox proteomic can provide information on
both the identification of the oxidized protein and the extent
of oxidative damage occurring at the protein level [272–274].
Proteins may become reversible oxidized in response to a
redox signalling, but irreversible oxidative modifications are
associated with disorders and pathologies [275, 276]. Thus, a
profile of oxidative modification of plasma or tissue sample

proteins is a promising approach that will help in clinical
determination of several human diseases and pathological
states [189, 276, 277]. This will also make the identification
of novel biomarkers and therapeutic targets for different
human diseases possible.

In particular, components whose deregulation can result
in oxidative stress, such as the ROS-generating enzymes, and
antioxidant defence systems, which change in response to
increased redox stress, can be used to assess the redox state
of the body or specific tissues and cells in health and disease.

In the context of redox proteomic, major players are cys-
teine residues (including the GSH system), antioxidant
(SOD, CAT, and GPX), and ROS-generating enzymes, as
well as the transcription factors involved in their regulation
[278] (Table 3).

Surface-exposed cysteine residues are particularly
sensitive to oxidation by ROS and RNS and are the most
vulnerable among all amino acids [240].

Although the reactivity of thiol groups toward H2O2 is
very low, the nucleophilicity and reactivity toward several
ROS species, including HO•, HClO, O2

•−, and NO•, increase
when the sulfur atom of the thiol group becomes deproto-
nated. Solvent exposure of the cysteine residue and the pres-
ence of neighbour polar residues exert a great influence on
thiol group pKa. Thus, cysteine oxidation by ROS depends
on the protein context and provides the basis for selective
and specific modifications [279, 280].

The primary product of cysteine residue oxidation by
H2O2 is the sulfenic acid (−SOH), whose stability and further
reactivity may be influenced by the presence or availability of
a proximal thiol group, resulting in the formationof a disulfide
bond[281, 282] (Figure 3).Additionally, sulfenic acidmay fur-
ther reactwithH2O2 to produce sulfinic (−SO2H) and sulfonic
(−SO3H) acids (Figure 3). Cysteine residues may also react
with HO• and O2

•− species, resulting in the formation of a
highly reactive radicalic sulfur atom (RS•), which can fur-
ther react with another thiol residue generating a disulfide,
while the reaction with NO• produces a S-nitrosylated
cysteine [283].

Oxidation of cysteine residues is reversible, with the
exception of sulfinic and sulfonic acids products; it may be

Table 3

Reversible cysteine modifications Methods Limitations and confoundings

S-glutathionylation GSH/GSSG SH
MS, ELISA, WB
Spectrofotometric

For an accurate quantification, a specialized
instrumentation is required

ROS-regulated transcription factors Methods Limitations and confoundings

Nrf-2, NF-kB Immunological techniques, RT-PCR

ROS-generating enzymes Methods Limitations and confoundings

NOX, MPO, XO, NOS
Immunological techniques, WB, PCR,

RT-PCR, enzymatic

Antibody specificity
Different percentages of leukocytes’

populations

Antioxidant enzymes Methods Limitations and confoundings

SOD, CAT, GPX, GR
Immunological techniques WB, PCR,

RT-PCR, enzymatic

Antibody specificity
Different percentages of leukocytes’

populations

CAT: catalase; GPX: glutathione peroxidase; GR: glutathione reductase; GSH: glutathione; MPO: Myeloperoxidase; MS: mass spectroscopy; NOS: nitric oxide
synthases; NOX: NADPH oxidase; PCR: reverse-transcription polymerase chain reaction; SOD: superoxide dismutase;WB:Western blot; XO: xanthine oxidase.
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reversed to the thiol form by reaction with GSH and/or spe-
cific enzymatic activities (thioredoxins, glutaredoxins, and
protein disulfide isomerases) [284–286] (Figure 3).

The reversible protein oxidation is an important feature
for the antioxidant defence systems, which can efficiently
help in reducing the intracellular levels of oxidized proteins,
produced upon cell exposure to damaging agents, and
prevent the accumulation of misfolded or self-aggregating
proteins [190, 273, 287–289] (Figure 3).

Reversible protein modifications may be also an impor-
tant feature for signalling pathways involving ROS and RNS
through the chemical modification of selected substrate
proteins. This provides the basis for several redox-regulated
cellular processes and enzymatic functions which imply
redox-dependent modifications [290–292]. So, protein
oxidative modifications can be a consequence of oxidative
or nitrosative stress as well as the reflection of redox-
regulated processes [273, 293].

4.1. Protein Glutathionilation. Reversible protein-S-
glutathionylation can occur either under physiological condi-
tions, within redox signalling pathways, or as result of GSH
antioxidant activity through the reduction of oxidized
cysteine residues and the formation of mixed disulfide
protein-glutathione (PSSG). Cysteine- (SOH-) glutathionila-
tion may act as a protective mechanism preventing further
irreversible oxidation to sulfinic or sulfonic acids [294].
Reduction of PSSG can take place spontaneously, when the
GSH/GSSG ratio is high, or can be catalyzed by protein
thiol-disulfide oxidoreductases, such as glutaredoxins, pro-
tein disulfide isomerases, thioredoxin, peroxiredoxins, and
sulfiredoxins [295]. Recent advances in redox proteomic
techniques have led to the identification of many S-
glutathionylated proteins and their involvement in redox-
regulated pathways. Reversible protein-S-glutathionylation
in monocytes and macrophages has emerged as a new and
important signalling paradigm, which provides a molecular

basis for the well-established relationship between metabolic
disorders, oxidative stress, and cardiovascular diseases [296].

Measurement of S-glutathionylation of functional impor-
tant proteins is a promising biomarker. However, this is
hampered by complexity in the methodologies (accessing tis-
sue samples and procedural artefacts) which requires special
care in sample handling and preparation [297]. A simpler
approach is analyzing S-glutathionylation of proteins in cir-
culating cells. Glutathionylation of haemoglobin has been
proposed as a marker of oxidative stress, and an increase in
protein modification has been reported in patients with
diabetes, hyperlipidaemia, and renal failure [298, 299].

Although S-glutathionylation can be easily measured by
Western blotting under nonreducing conditions, the use of
more effective approaches is required for an accurate quanti-
fication. MS techniques are valid but require specialized
instrumentation. In addition, ELISA tests using monoclonal
anti-glutathione antibody have been developed [300–302].

4.2. Glutathione and Cysteine. GSH is a tripeptide represent-
ing the most abundant nonprotein thiol present in the cell,
where its concentration can reach the millimolar range
[303, 304]. GSH acts as an antioxidant defense system by
its ability to scavenge ROS through the reversible oxidation
to GSSG (Figure 3). GSSG can be enzymatically reduced to
GSH by the activity of glutathione reductase (GR) and the
reducing power of NADPH. Glutathione is mainly stored
within the cytosol, where the ratio GSH/GSSG is ranging
from 30 to 100 [305]. This ratio is ten times lower in the
serum and in the endoplasmic reticulum and decreases in
the presence of oxidative stress. Glutathione synthesis
depends on the availability of cysteines, the rate-limiting pre-
cursor, and this makes its use as a marker of oxidative stress
questionable. Besides, diurnal variation in GSH and cysteine
has been reported [306]. However, several studies relate the
GSH levels and GSH/GSSG ratio to pathological conditions
[254]. The measurement of GSH, GSSG, and their ratio in
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blood has been considered an index of the redox status in the
whole-organism and a useful marker of diseases in humans
[307, 308]. Several methods have been used to determine
the GSH in biological samples (spectrophotometry, HPLC,
capillary electrophoresis, nuclear magnetic resonance, and
mass spectrometry) [307]. However, GSH and its oxidate
form GSSG do not represent powerful biomarkers of oxida-
tive stress because of some methodological artifacts. For
instance, sample acidification for protein precipitation leads
to an increase in GSSG levels [308].

4.3. Nrf-2 and NF-kB. As mentioned above, oxidation of
selected cysteine residues present in specific proteins may
result in the regulation of cellular response to oxidative stress.
This is the case for Nrf-2, a conserved transcription factor
that is a master regulator of the antioxidant response system
controlling the expression of more than 250 genes. Nrf-2 is
normally sequestered into the cytoplasm complexed to the
protein Keap1 (Kelch-like ECH-associating protein 1), which
facilitates its polyubiquitination and proteasome-mediated
degradation [309]. Keap1 contains specific cysteine residues
sensitive to oxidation in the presence of oxidants or other
electrophiles (Figure 4). Thus, Keap1 functions as a specific
sensor of stress that upon oxidation, and resulting conforma-
tional change, releases Nrf-2 allowing its translocation into
the nucleus.

Nrf-2 promotes the transcriptional activation of a specific
set of target genes containing the antioxidant response
elements (AREs) in their promoter regions and encoding
antioxidant and detoxifying enzymes (i.e., glutathione S-
transferase, glutathione synthetase, heme oxygenase 1, and
NAPH-oxidoreductase) (Figure 4). Thus, Nrf-2 is related to
the cellular defence against ROS and it has been observed
that its activity declines with age as well as with degenerative
disorders [310].

On the other hand, an increased Nrf-2 activity has been
observed in transformed cells [311], where it provides a
reduced sensitivity both to the large amounts of ROS gener-
ated during the active proliferation and to chemotherapeutic
drugs, whose enzymatic elimination requires enhanced levels
of NAPDH. For these reasons, Nrf-2 can be considered a
valid biomarker and its levels in tumour samples, quantified
by immunological methods or by RT-PCR, may have a clin-
ical significance. Recently, the determination of Nrf-2 levels,
in combination with measuring high-mobility group box-1
(HMGB1) expression, might represent a useful tool in the
early detection of post-trauma complications [312].

Whereas Nrf2 has a primary role in antioxidant enzymes
gene expression, NF-kB is involved in the transcription of
ROS-generating and inflammatory enzymes (Figure 4). As
observed for Nrf2, some cysteine residues are involved in
the translocation of NF-kB to the nucleus (Figure 4). In par-
ticular, cysteine 179 of Iκ kinases (IKK) is a target of the S-
glutathionylation-induced inactivation and glutaredoxin
reverses this effect [313]. Furthermore, electrophilic modifi-
cations of cysteine 179 of IKK inhibit NF-kB activation and
have been suggested as one of the mechanisms involved in
the anti-inflammatory and COX-inhibitory effects of nutra-
ceuticals [314, 315]. Similarly, antioxidants with catechol
and electrophilic moieties induce the Nrf2-mediated gene
expression of antioxidant enzymes acting as pro-oxidants
rather than antioxidants [316, 317].

4.4. Enzymes. ROS-generating enzymes are involved in sev-
eral cell functions and their alteration may result in imbal-
anced redox status (Figure 5).

Theestablishedrole indiseases ofXO[318]andNOX[319,
320] suggested their pharmacological inhibition in thepreven-
tion and treatment of pathologies related to oxidative stress.

Some ROS-generating enzymes can be found in the cir-
culation and thus can be used as markers of oxidative stress,
such as NOS and NOX (Figure 5) involved in oxidative burst.

It has been shown that high levels in the circulations of
MPO, a heme peroxidase abundant in granules of human
inflammatory cells, which catalyzes the conversion of H2O2
to HClO with the production of ROS (Figure 5), are associ-
ated with cardiovascular disease [321], chronic obstructive
pulmonary disease [322], and Alzheimer’s disease [323].

Oxidant species derived from MPO lead to the produc-
tion of specific oxidation products, such as 3-Cl-Tyr. This
can be used as biomarker in several diseases [324], as above
described, and its levels correlate with MPO. However,
expensive equipment are required to detect the levels of
MPO-dependent specific biomarkers and this represents a
limitation in their use. Moreover, the concentration of these
biomarkers in biological samples is low, which complicates
accurate measurement.

XO catalyzes the oxidation of hypoxanthine and xanthine
to UA in the terminal steps of purine nucleotide metabolism
[325], which also leads to the production of O2

•− [326]
(Figure 5). Given that XO produces ROS in stoichiometric
quantities along with UA, it represents one of the major
sources of free oxygen radicals in human physiology. Upregu-
lation of XO activity may lead to an increase in UA serum

COX, iNOS

NFkB-IkB Nrf2----Keap1

NFkB Nrf2

SOD, CAT, GPX

ROS

IKK SH

Figure 4: Cysteine-regulated gene expression. CAT catalase; COX:
cyclooxygenase; GPX: glutathione peroxidase; IKK: Iκ kinases;
iNOS: inducible nitric oxide synthase; Keap1: Kelch-like ECH-
associating protein 1; Nfr2: nuclear factor-erythroid 2-related
factor 2; NF-kB: nuclear factor kappa-light-chain-enhancer of
activated B cells; ROS: reactive oxygen species; SH: thiol; SOD:
superoxide dismutase.
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levels, oxidative stress, andendothelial dysfunction [327–329].
XO exists in two interconvertible forms, XO (that oxidizes
xanthine toUAusing oxygen as the electron acceptor andpro-
duces superoxide or H2O2) and xanthine dehydrogenase
(XDH) (that carries out the same reaction but uses NAD+

and generates NADH). XDH is the predominant form in
well-oxygenized tissue [330], but it can be converted to XO
under various conditions [331, 332]. Inflammatory or hypoxic
conditions promote XDH expression in tissues and vascular
endothelial cells and stimulate XDH release into the circula-
tion [333]. Once in the circulation, XDH is quickly converted,
by reversible oxidation of the sulfhydryl residue or by irrevers-
ible proteolysis, into XO which binds to the endothelial sur-
face, resulting in amplified XO-derived ROS formation
[334]. This XO-induced oxidative stress has been detected in
renal andcardiovasculardiseases, suchasheart failure, chronic
obstructive pulmonary disease, pulmonary hypertension,
sickle cell disease, and diabetes [334]. An increase in XO activ-
ity has been reported in patients with heart failure [326, 335],
whereasXOactivity and its plasma levels are raised inpresence
of inflammatory agents and interferon [336] and seems to play
a key role in ischemia-reperfusion injury [337].

As described for MPO, an indicator of the enzyme activ-
ity in vivo could be the detection of a metabolite or a reaction
product. Serum levels of UAmay reflect XO activity, but they
are also dependent on dietary intake, and purine metabolism,
and renal filtration and reabsorption, as well as endothelia
dysfunctions. Higher UA levels are associated with meta-
bolic, cardiovascular, and renal abnormalities, and UA has
been recently proposed as a biomarker and therapeutic target
in diabetes [338–340]. UA is a powerful antioxidant in
plasma and can scavenge O2

•− and HO•, and allantoin is its

oxidative product of which formation is independent of
changes in UA levels [341–343]. This makes allantoin a
promising biomarker of oxidative status, considering also
its stability regardless of the storage or sample preparation,
but its quantitative determination requires specific instru-
mental techniques as liquid/gas chromatography and mass
spectrometry [344–346].

The most important antioxidant enzymes are SOD, CAT,
and glutathione-dependent enzymes, such as GPX, GR, and
glutathione transferases (GSTs) (Figure 6).

SODs are a family of enzymes catalyzing dismutation of
superoxide into oxygen and H2O2. There are three isoforms
of SOD, with a different cellular localization and metal cofac-
tor: homodimeric Cu/Zn-SOD localized in the cytosol and in
the mitochondrial intermembrane space, homotetrameric
Cu/Zn-SOD with an extracellular distribution, and homote-
trameric Mn-SOD localized in the mitochondria [347].
SOD acts also as pro-oxidant producing H2O2; therefore,
other antioxidant enzymes such as CAT and GPX are
required and an imbalance in their ratio may be dangerous.

SOD activity can be measured analyzing the inhibition in
the rate of reduction of a tetrazolium salt by O2

•− generated
through a xanthine/XO enzymatic system [348, 349].

CAT, which catalyzes the conversion of H2O2 into water
and oxygen, is a homotetrameric protein containing four
iron heme and largely located in the peroxisomes. CAT activ-
ity can be measured by several colorimetric/spectrophoto-
metric assays [349, 350].

GSH redox cycle is regulated by GPX and GX. GPXs are a
family of selenium-dependent isozymes that catalyze the
reduction of H2O2 or organic hydroperoxides to water and
alcohols through the oxidation of GSH to GSSG. GR then

NOS

2 Arginine
3 NADPH

2NO

NADPH

NOX
O2 O2

NADP+ H+

Ipoxanthine

XO
O2

Xanthine

Xanthine Uricacid

O2+
H2O

MPO
H2O2 + Cl‒ H2O + HClO

4 O2

2 Citrulline
3NADP+ H+

–

+ 4H2O

–/H2O2

Figure 5: ROS generating enzymes. H2O2: hydrogen peroxide; HClO: hypochlorous acid; MPO: myeloperoxidase; NOS: NO synthase; NOX:
NADPH oxidase; O2

•−: superoxide; XO: xanthine oxidase.
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GR

NADPHNADP+ H+
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2
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Figure 6: Antioxidant enzymes. CAT: catalase; GPX: glutathione peroxidase; GR: glutathione reductase; H2O2: hydrogen peroxide; O2
•−:

superoxide; SOD: superoxide dismutase.
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reconverts GSSG to GSH using the reducing power of
NADPH [351]. GPX activity can be measured using cumene
hydroperoxide and GSH as substrates in a coupled reaction
with GR [352]. The GSSG formed after reduction of hydro-
peroxide is recycled to its reduced state by GR in the presence
of NADPH. The oxidation of NADPH is accompanied by a
decrease in absorbance at 340nm proportional to GPX activ-
ity. GR activity can be measured in a similar manner using
GSSG and NADPH as substrates [353].

Differently from ROS-generating enzymes, conflicting
results came from human studies that evaluated the relation-
ship between diseases or ageing and antioxidant enzymes.
Despite meta-analyses suggesting that polymorphisms of
antioxidant enzymes are associated with T2D [354] and
hypertension [355], decreased or increased activities (or
levels) have been reported for SOD, catalase, GPX, and/or
GR in these diseases [356–367]. Activity of SOD or CAT
was significantly higher in elderly hypertensives [356] and
T2D [360, 361, 368] when compared with healthy controls.
Increased SOD activity has been reported also in coronary
artery disease patients [369] and in women with the polycys-
tic ovary syndrome [370]. In patients with Crohn’s disease,
SOD and GPX increase during the active phase and return
to normal during the remission phase [371]. It has been sug-
gested that the increase in antioxidant enzymes may repre-
sent a compensatory upregulation in response to increased
oxidative stress [361, 368]. Results of Karaouzene et al. sug-
gest that this response depends on age [372]. Erythrocyte
SOD and CAT activities were enhanced in obese young
patients but reduced in obese older men [372]. The ARE/
Nrf2 pathway is the major player in the induction of the
expression of antioxidant genes [309]. However, although
phytochemicals contained in fruits and vegetables are known
to induce Keap1/Nrf2 system [373] in a meta-analysis [374]
of randomized controlled trials, no significant differences
were observed between fruit or vegetable juices and placebo
in SOD and CAT, despite the reduction of MDA.

In order to understand the contrasting results in human
studies, some methodological considerations must be made.
Conventional methods for measuring enzymes are enzyme
activity, protein content (Western blots and immunological
techniques), or gene expression (reverse-transcription poly-
merase chain reaction (RT-PCR)) (Table 3) [129]. First of
all, it must be taken into account that different samples have
different antioxidant content. In a meta-analysis, decreased
activities of SOD and GPX were observed in plasma/serum
of postmenopausal women with osteoporosis, but the activi-
ties of SOD in erythrocytes and of CAT in plasma/serum
were not statistically different from the control group [375].
Concerning the measure of cellular enzymes, it must be con-
sidered that processing and cryopreservation procedures
could affect peripheral blood mononuclear cell (PBMC) gene
expression [376, 377]. In addition, PBMC exclude from the
analysis the neutrophils that are the major component of
the full blood count [378], reducing the clinical relevance of
this sample compared to whole blood RNA. On the other
hand, the different cell types present in blood have a different
content of enzymes. In whole-blood iNOS, RNA was
expressed predominantly in monocytes [379]. Although the

presence of MPO in lymphocytes has been recently reported,
it is very low compared to neutrophils/monocytes [380].
Concerning antioxidant enzymes, neutrophils have higher
levels of SOD and catalase transcripts compared to mono-
cytes [381]. On the other hand, GSH content and GPX
transcript and activity are higher in monocytes [381]. In this
context, results from meta-analysis document that
neutrophil-to-lymphocyte ratio [382–387] and lymphocyte-
to-monocyte ratio [388, 389] were related to clinical oncolog-
ical outcomes in cancer patients. Also, coronary artery
disease is associated with altered ratio of leukocytes [390],
the expansion of monocytes, and the reduction of the CD4/
CD8 T cell ratio, and B cell lymphopenia can be observed
in end-stage renal disease [391]. Furthermore, also in heathy
subjects, the normal ranges of the different leukocyte popula-
tions are very large [392]. Probably, the use of cell marker
coding genes (CD4, CD8, CD14, etc.) as housekeeping genes
could normalize the results for the physiologically or patho-
logically different content of cells between subjects [378].
This approach could also help in conditions, such as hyper-
glycemia, that can influence the expression of housekeeping
genes [393].

5. Measuring the Nonenzymatic Antioxidant
Capacity in Body Fluids

The nonenzymatic antioxidant capacity (NEAC), also named
total antioxidant capacity (TAC), is definedas themolesofoxi-
dants neutralized by one liter of body fluids [278, 394–396]. In
plasma, nonenzymatic antioxidants include endogenous (e.g.,
UA, bilirubin, and thiols) and nutritional (e.g., tocopherols,
ascorbic acid, carotenoids, and phenolics) compounds [278,
394]. Various assays for NEAC [129, 397–412]measure either
their radical scavenging or reducing capacity. Reaction
mechanisms include hydrogen atom transfer (HAT) and sin-
gle electron transfer (SET) (Table 4).The latter reports onanti-
oxidants’ reductive capacity, including its metal reducing
power, and could be considered an “indirect assay,” whereas
the former is a “direct assay” (competitive) inwhich the inhibi-
tionof the oxidation of an indicator substance is determined as
a measure of the antioxidant capacity [406, 407]. The most
commonHATmethods are oxygen radical antioxidant capac-
ity (ORAC) and the total radical-trapping antioxidant param-
eter (TRAP), performed in aqueous solutions with 2,2′-
azobis(2-methylpropionamidine) dihydrochloride (AAPH)
as a thermolabile stoichiometric and water-soluble azo-
radical generator (Table 4).

The Crocin bleaching assay can be performed under both
hydrophilic and lipophilic conditions by using AAPH or 2,2′-
azobis 2,4-dimethylnaleronitrile (AMVN), which is AAPH’s
lipophilic equivalent. Aldini et al. [401] monitored the oxida-
tion of the lipid compartment of plasma by using 2,2′-azo-
bis(4-methoxy-2,4-dimethylvaleronitrile) (MeO-AMVN), as
lipid soluble radical initiator and C11-BODIPY581/591 as lipo-
philic fluorescence probe. The MeO-AMVN-C11-BOD-
IPY581/591-based total antioxidant performance (TAP) assay
was reported to be sensitive to plasma antioxidants localized
in both the lipophilic and hydrophilic compartments [400].
In all HAT methods, ROO• reacts with the target
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compound resulting in changes of fluorescence or absorbance
of probe (Table 4).

Area under the curve (AUC), lag phase, or Stern-Volmer-
like relation are used in order to measure the competition
reaction and the standard antioxidant Trolox is used as refer-
ence (Table 4). NEAC values are reported as Trolox equiva-
lents (TEAC) also in the total antioxidant status (TAS)
assay and in the competitive (Randox) SET-based 2,2′-
azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS)
assay, both based on the production of HO• via Fenton reac-
tion [399]. In other SET assays, using the stable radical cation
ABTS•+ or 2,2-diphenyl-1-picrylhydrazyl (DPPH), the target
compound extracts an electron from the antioxidant and
changes color (Table 4). In these assays, it is assumed that
antioxidant activity is equal to reducing capacity [406]. Other
SET methods measure the reducing power of antioxidants
through redox reaction with iron (ferric reducing antioxidant
potential (FRAP)) or copper (cupric reducing antioxidant
capacity (CUPRAC)) (Table 4). The latter has been applied
to both lipophilic and hydrophilic fractions of serum [398].

However, as for Crocin bleaching assay, bilirubin and carot-
enoids that absorb at the wavelength of determination could
interfere with the results (Table 4). Similarly, the oxidation
product of bilirubin (biliverdin) absorbs at the wavelength
of determination of FRAP method (Table 4). Although
NEAC assays present the advantage of integration of the
individual antioxidant actions of different compounds and
their additive, synergistic, or antagonistic interactions, many
limitations have been pointed out previously [129, 403–407]
(Table 4). Different NEAC assays can give different results,
both in disease states [396] and after dietary supplementation
with antioxidant-rich plant foods and beverages [394, 412,
413]. In a meta-analysis, Lettieri et al. [394] reported that
TRAP, ORAC, and FRAP, but not TEAC, displayed an
increase in plasma NEAC in both acute and chronic studies.
From that, the authors [394] suggested that FRAP could be
more sensitive than the TEAC assay within the SET methods
to assess plasma NEAC. Accordingly, Carrión-García et al.
[414] found a statistically significant positive correlation
between plasma FRAP and dietary FRAP, either derived

Table 4: Common used methods for NEAC measurements.

Method Reaction and quantification Limitations and confoundings

HAT
ORAC

AAPH—induced:
R-phycoerytherin (red) or fluorescein (green)

fluorescence decay
Competitive reaction kinetic, AUC

Lipophilic antioxidants not included
Proteins

HAT
TRAP

AAPH—induced:
R-phycoerytherin fluorescence decay (red)
DCFH ➔ DCF fluorescence increase (green)

Competitive reaction kinetic, lag phase

Lipophilic antioxidants not included
Not all the antioxidants give a lag phase

Self-propagation of DCF radicals

HAT
Crocin bleaching

AAPH- or AMVN-induced absorbance
decay (450 nm)

Competitive reaction kinetic, Stern-Volmer-like
relation

Bilirubin and carotenoids that absorb at the
wavelength of determination

HAT
TAP

MeO-AMVN induced
C11-BODIPY fluorescence increase (green)

Competitive reaction kinetic, AUC

TAS
Fenton reaction-induced dianisidyl radical

absorbance increase (444 nm)
Competitive, endpoint, TEAC

SET (Randox)
Fenton reaction-induced ABTS radical

formation (734 nm)
Competitive reaction, endpoint, TEAC

SET
ABTS•+

Absorbance decay (734 nm)
Noncompetitive, endpoint, TEAC

SET
DPPH•

Absorbance decay (515 nm)
Noncompetitive, endpoint, EC50

Carotenoids that absorb at the wavelength of
determination

SET
FRAP

Absorbance increase (593 nm)
Noncompetitive, endpoint

SH not included
Biliverdin absorb at the wavelength of

determination

SET
CUPRAC

Neocuproine absorbance increase (450 nm).
Noncompetitive, endpoint

Bilirubin and carotenoids that absorb at the
wavelength of determination

AAPH: 2,2′-azobis(2-methylpropionamidine) dihydrochloride; ABTS: 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid); AMVN: 2,2′-azobis 2,4-
dimethylnaleronitrile; AUC: area under the curve; CUPRAC: copper-reducing assay; DCFH: 2′,7′-dichlorodihydrofluorescein; DPPH: 2,2-diphenyl-1-
picrylhydrazyl; EC50: efficient concentration (EC), the amount of antioxidant necessary to decrease by 50%; FRAP: ferric reducing antioxidant power; HA:
T hydrogen atom transfer; MeO-AMVN: 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile); NEAC: nonenzymatic antioxidant capacity; ORAC: oxygen
radical antioxidant capacity; SET: single electron transfer; SH: thiols; TAC: total antioxidant capacity; TAP: total antioxidant performance; TAS: total
antioxidant status; TEAC: Trolox equivalent antioxidant capacity; TRAP: total radical-trapping antioxidant parameter.
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from the food frequency questionnaire (FFQ) and/or from a
24-hour recall (24-HR), whereas plasma ORAC without pro-
teins, but not plasma ORAC, was related with 24-HR-based
dietary ORAC, suggesting that proteins rather than dietary
antioxidants have a primary role in plasma antioxidant
defences. Despite FRAP appearing to be the more sensitive
method to evaluate the effects of antioxidant-rich foods on
NEAC, it must be taken into account that reduced iron is
the major player in the Fenton reaction. Therefore, an
increase in the iron reducing power could be more likely det-
rimental than beneficial in conditions of high levels of iron
and low levels of antioxidant enzymes [364, 396, 415–420].
On the other hand, an increase in antioxidant enzymes as
adaptive response to oxidative stress has been observed in
T2D [358, 359, 363, 368]. Simultaneously with increased
MDA levels, significantly higher activities or levels of SOD
and/or CAT were found [358, 359, 363, 368]. Some studies
reported unchanged or decreased CAT and/or GPX and
elevated SOD and lipoperoxidation markers in T2D [360,
361, 412] and CVD [369, 421]. The balance between SOD
and CAT and/or GPX dictates H2O2 levels that may poten-
tially react with reduced metals. As previously pointed out,
in NEAC assays the contribution of the antioxidant
enzymes is neglected [405, 406]. Therefore, the lower total
antioxidant status in these cases must be interpreted with
caution [421, 422].

Despite a correspondence between the effect on F2-IsoPs
(the golden standard of oxidative stress) and NEAC has been
reported in 67% (14/21) of the interventions with foods and
in 77% (10/13) of the interventions with galenics [413] of
human studies in a systematic review, in the majority of the
cases the correspondence was the lack of change for both bio-
markers, whereas increases in NEAC and decreases in F2-
IsoPs were observed only in 9.5% (2/21) of interventions with
foods and 30.7% (4/13) of interventions with supplements
[413]. Furthermore, despite gas chromatography mass spec-
trometry or liquid chromatography mass spectrometry tech-
niques giving a more reliable and precise measure of F2-
IsoPs, in the majority of these studies (5/6), enzyme-linked
immunosorbent assay-based methods were used [413]. Last,
but not least, in one of these studies [423], the increase in
NEAC and the decrease in F2-IsoPs were not associated with
lipid and glucose metabolism markers, nor with renal and
liver functionality markers in uremic patients after 4 weeks
of supplementation with Emblica officinalis extract, suggest-
ing a low clinical relevance of NEAC in certain conditions. In
this context, the major bias of all methods is that, despite
hyperuricemia being detrimental and associated with CVD
[424–426], UA is the major contributor of NEAC measured
in plasma (60–80%), saliva (70%), and urine (75%) [395]. In
case-control studies, there was an accordance between UA
concentration and NEAC, as well as between salivary or uri-
nary NEAC and plasma or serum NEAC [395]. On the other
hand, only in 44% of the interventions with antioxidant foods,
beverages or supplements urinary NEAC was related to UA,
probably due to the excretion of phenolic metabolites.

In order to avoid the UA interference, methods for UA
independent NEAC have been proposed in both plasma
and urine [427–430]. In particular, the consumption of

500 g of strawberries daily for 9 days had no effect on circu-
lating phenolics and plasma NEAC, whereas it increased
UA-independent NEAC and urinary metabolites of polyphe-
nols [431]. Furthermore, it has been suggested that urinary
UA-independent NEAC normalized for creatinine could
provide more reliable information about the antioxidant sta-
tus in children and adults with Down syndrome [429].

Although UA-independent NEAC could be a good
approach also for salivary NEAC, it has been observed that
salivary NEAC was affected by emotional and psychological
factors [432]. The latter could induce hyperactive sympa-
thetic nervous system and the activation of platelets [433],
potentially changing the plasma NEAC. In this context, it
has been suggested that plasma and not serum should be pre-
ferred for NEACmeasurement, in order to avoid ROS gener-
ation by platelets during processing (aggregation) [434].
However, platelets’ activation can occur during the time
course of NEAC methods in plasma samples and, alterna-
tively, vigorous vortexing produces platelets microparticles
further confounding the results.

In fact, sample type, collection, processing, and method-
ological limitation must be taken into account when measur-
ing NEAC. Despite the fact that the use of a refrigerated
microcentrifuge to rapidly prepare plasma could avoid any
thermal stress and instability of antioxidants in biological
samples [434], recent results indicate that centrifugation at
room temperature is the preferred option for many applica-
tions, giving lower microparticles and less hemolysis in
plasma [435]. Hemolysis could bias many NEAC methods,
and the presence of platelets and microparticles in the reac-
tion mixture could affect the results. Considering that micro-
particle count is lower in serum compared with plasma after
centrifugation at both room temperature (1.73× 10^7/ml
versus 3.72× 10^7/ml) and 4°C (1.33× 10^7/ml versus
7.4× 10^7/ml) [435], probably serum and not plasma could
be the better sample for NEAC evaluation.

On the other hand, although NEAC of saliva or urine has
led to increasing interest, due to simple and noninvasive
collections,many factors could give spurious results. In partic-
ular, blood contamination, periodontal diseases, bacterial
counts and flow rate must be evaluated in order to avoid mis-
interpretation of the results of salivary NEAC and normalize
for dilution [395, 436]. Also, urinary samples require normal-
ization for dilution [395]. Despite results are normalized for
the creatinine excretion, age, sex, muscle mass, renal diseases,
and diet all have an influence on creatinine excretion [395].

From the mentioned above limitations and potential con-
founding, it appears that a clear association between increase
in NEAC and health benefit is difficult to evaluate [405, 406].
Therefore, as previously suggested, each study requires a
careful design of the experimental protocol and caution
should be taken in the interpretation of results.

6. Conclusion

A clinically useful biomarker, besides being correctly
measured, must be diagnostic, have prognostic value, and
correlate with the disease degree. It must also be reasonably
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stable, present in an easily accessible specimen, and its
measurement should be cost-effective.

In order to evaluate the redox status in particular condi-
tions (smoking habit, disease states), ex vivo free-radical
production and oxidative stress in body fluids are measured.
These methods are used also in human intervention studies
to associate the levels of ingested antioxidants (by foods or
supplements) with improvement of the body antioxidant
status. Despite the fact that it has been suggested that
nutraceuticals are capable of improving health, significant
methodological bias must be taken into account in the inter-
pretation of data from the measurement of reactive species in
leukocytes and platelets by flow cytometry, from the evalua-
tion of markers based on ROS-induced modifications, from
the assay of the enzymatic players of redox status, and from
the measurement of the total antioxidant capacity of human
body fluids.

It has been suggested that the bias of each method could
be overcome by the evaluation of oxidative stress by using
more than one criterion [129, 404]. In this context, indexes
of redox status have been proposed [437, 438].

The OXY-SCORE [437] was computed by subtracting
the protection score (GSH, alpha- and gamma-tocopherol
levels, and antioxidant capacity) from the damage score
(plasma free and total malondialdehyde, GSSG/GSH ratio,
and urine F2-IsoPs). The oxidative-INDEX [438] was calcu-
lated by subtracting the OXY (the antioxidant capacity mea-
sured with the OXY adsorbent test) standardized variable
from the ROM (the reactive oxygen metabolites measured
with the d-ROM) standardized variable.

These scores are related to CVD, age, gender, and smok-
ing habit [437–442]. The oxidative-INDEX has been success-
fully used also in case-control studies (liver diseases and
cancers) [443–445] and in a human intervention study with
antioxidant [446].

More recently, a multiple factor analysis (MFA) that
allows for simultaneous analysis of multiple parameters, clas-
sified according to their physiological meaning in athletes
following strenuous endurance exercise, was applied [447].
This integrative approach reveals a close relationship
between the oxidative index, the inflammatory IL-8, and
the cardiac marker N-terminal pro-B-type natriuretic pep-
tide (NT-proBNP). Athletes that showed a higher improve-
ment of the oxidative index after the race, presented small
changes in NT-proBNP and IL-8 levels, whereas subjects
with minimal variation in the oxidative index had a marked
postrace increase in NT-proBNP and IL-8 concentrations.

On the other hand, in some diseases, the choice of the
markers that must be considered in the global index should
dictate the clinical relevance in the subjects selected.
Condezo-Hoyos et al. [448] measured an array of oxidative
stress biomarkers (SH, GSH, UA, ORAC, MDA-bound pro-
tein, protein carbonyls, AOPP, 3-nitrotyrosine, CAT, XO,
and MPO) in patients with chronic venous insufficiency
(CVI) and used for the OXyVen index calculation the nor-
malized and standardized plasma parameters which showed
a significant statistical difference between CVI patients and
controls (SH, MDA-bound protein, protein carbonyls, and
CAT activity).

In conclusion, the clinical significance of biomarkers of
oxidative stress in humans must come from a critical analysis
of the markers that should be dictated by the study aim and
design and should give overall an index of redox status in
particular conditions.
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