
E148	 J Psychiatry Neurosci 2022;47(2)

© 2022 CMA Impact Inc. or its licensors

Editorial

Does stimulant drug–induced sensitization occur  
in primates?

Marco Leyton, PhD

Drug-induced sensitization is said to occur when a drug regi-
men leads to larger responses to the same dose or measurable 
responses to a previously ineffective low dose. Sensitization 
hypotheses of problematic substance use further propose that 
these effects facilitate the development of incentive responses 
to drug-paired cues.1 These effects are well-established in 
rodents,2–5 but, in some circles, it remains controversial 
whether they occur in primates (Box 1). What is the evidence?

Stimulant drug–induced behavioural 
sensitization in healthy humans

The first 2 attempts to demonstrate stimulant drug–induced 
behavioural sensitization in humans were unsuccessful.42,43 

Both administered low doses of d-amphetamine (5 or 10 mg, 
orally). In comparison, 80 % of studies (8 of 10) administering 
at least 20 mg of d-amphetamine found evidence of sensitiza-
tion.44–51 Among the 6 studies that administered at least 
3 doses of 20 mg or more, 100 % found an effect.44–47,49,50 The 
most consistent changes were to the drug’s behaviourally 
energizing effects12,13 with augmented responses continuing 
for at least a year49 (Table 1).

Stimulant drug–induced behavioural 
sensitization in nonhuman primates

There is consistent evidence of cocaine and amphetamine-
induced behavioural sensitization in nonhuman primates.54–69 
As in humans, augmented responses have been seen for 
psychomotor stimulation, but psychosis-like phenomena can 
emerge following high-dose regimens. The effects can last for 
more than 2 years60 (Table 2).

Stimulant drug–induced behavioural 
sensitization in people with addictions

Clinical observations at least raise the possibility that people 
with stimulant drug addictions exhibit behavioural sensitiza-
tion; e.g., markedly elevated incentive (drug-seeking) re-
sponses to small doses of the drug and drug-related cues. 

These observations noted, perhaps the most compelling 
demonstration that extensive substance use can lead to sensi-
tization in humans investigated alcohol. In this 10-year pro-
spective study, young adult drinkers (n = 163) received an 
alcohol challenge (0.8 g/kg, orally) at baseline and 5 and 
10 years later.38 Among those who developed an alcohol use 
disorder (AUD; n = 39), the self-reported alcohol-induced 
“wanting” and “stimulation” responses became progres-
sively larger. The larger the wanting and stimulation 
responses, the greater the likelihood of developing an AUD 
and the greater the number of AUD symptoms.

Stimulant drug–induced dopamine 
sensitization in healthy humans

Based on studies in rodents, 2 neurotransmitters have been 
implicated in drug-induced sensitization: dopamine2–4,70 and 
glutamate.70–73 In humans, the transmitter release literature is 
both smaller and limited to dopamine, but evidence of 
amphetamine-induced sensitization has been found in all 
3 studies that administered at least 3 doses (0.3–0.4 mg/kg, 
orally).44,22,49 Correlational research suggests that these aug-
mentations could continue to accumulate through to 150 uses 
or more.20 The drug use histories that yield sensitization can 
also lead to conditioned dopamine release.16,74

Stimulant drug–induced dopamine 
sensitization in nonhuman primates

Two studies giving 10–50 stimulant drug exposures found 
sensitized dopamine responses in nonhuman primates;75,76 
4 studies with more extensive regimens did not.64,68,77,78 A 
number of explanations have been offered for the negative 
findings, including (1) small sample sizes (n = 4–6), particu-
larly since, in both rodents and humans, only some develop 
an enlarged response;13,49 (2) the absence of drug-related cues 
during testing, an important feature since the expression of 
sensitization can become context-dependent;12,79,80 (3) the use 
of isoflurane,81 an anesthetic that can alter dopamine cell 
firing and release; (4) evidence that drug-induced dopamine 
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sensitization is readily expressed following modest substance 
use75 but not following the ingestion of greater quantities 
with only brief abstinence periods before testing;77,82 (5) the 
possibility that, following many drug use sessions and the 
development of highly trained associations, dopamine cell 
reactivity comes to be influenced by reward-prediction errors 
(RPE; i.e., larger responses to unexpected drug delivery);21 
and (6) for cocaine, sensitized glutamate release might be 
more important than dopamine.70

Stimulant drug–induced dopamine 
sensitization in people with addictions

In people with addictions, there is some evidence of dopa-
mine sensitization. Compared with healthy controls, people 
who used methamphetamine showed larger amphetamine-
induced dopamine responses in extrastriatal regions.83 Within 
the striatum, 1 study found larger responses to ethanol in 
people with an AUD39 while another study84 found larger re-
sponses to amphetamine in people with a gambling disorder. 
These studies noted, the most common finding in people with 
cocaine85–88 and amphetamine use disorders89 has been an 
absence of sensitized responses and even significantly 
reduced responses. These blunted responses may be specific 
to the testing conditions rather than evidence of ubiquitous 
dopamine deficits.12,79,80,90 Indeed, there is well-replicated evi-
dence that people with stimulant use disorders exhibit robust 
dopamine responses to drug-related cues.15,17–19,91 Moreover, 
those with a cocaine use disorder can also exhibit larger 
stimulant drug–induced striatal dopamine responses than 
healthy volunteers when drug administration is unexpected.21 
Together, these findings indicate that, in this population, 
there remains only modest evidence of dopamine sensitiza-
tion per se, but the potential for large dopamine responses is 
retained, differing only in when it is expressed.

Conclusion

This brief analysis yields 3 main conclusions. First, despite 
occasional claims to the contrary, there is overwhelming evi-
dence of stimulant drug–induced behavioural sensitization 
in both human and nonhuman primates (18 of 19 studies ad-
ministering at least 3 doses of at least 0.25 mg/kg of amphet-
amine or high-dose cocaine). Second, there is compelling evi
dence of dopamine sensitization in primates (5 of 5 studies 
administering 3–50 drug doses). Third, behavioural sensi
tization following extended high-dose drug use occurs, but 
more work is needed to understand the mediating neuro
biology and when the augmented responses are expressed. 
Answering these questions will require thoughtful study de-
signs. For laboratory research, this includes (1) testing awake 
subjects in the same environment where the drug was previ-
ously given, (2) administering the drug intermittently92,93 
with abstinence periods long enough to promote the incuba-
tion of both conditioned and sensitized responses, (3) testing 
how the influence of drug-paired cues (conditioning) and ex-
pectations (RPE) might change with progressively greater 
substance use, and (4) testing samples large enough to cap-
ture individual differences in susceptibility. Among those 
who are susceptible to drug use problems, features 1 and 2 
resemble the early substance-use patterns that typically lead 
to a problem. This might not be a coincidence.
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Box 1. Controversies

Contrary voices
Some well-respected researchers have expressed doubts that 
stimulant drug–induced sensitization develops in primates; e.g., “there 
is minimal evidence of sensitization in humans6,” and “sensitization…
does not appear to happen in primates.7” Curiously, the latter 
statement was made when commenting on a study that was not about 
sensitization. Rhesus monkeys had self-administered cocaine for 
100 days but were tested without drug and in an environment that had 
been paired with the absence of drug.8

History of the controversy
The debate about sensitization in primates primarily reflects 2 related 
issues. First, questions remain about the mediating neurobiology 
following extensive drug use. Second, it has been suggested that the 
low dopamine responses seen in people with substance use disorders 
under some testing conditions are the primary driver of addiction-
related behaviours.9 In comparison, this writer and others propose that 
low dopamine states aggravate the clinical picture of addiction, but 
this does not include the ability to activate drug-seeking.10–13 To the 
contrary, there is considerable evidence for the converse.10,11,14 
Dopamine release in humans is increased by all relapse triggers 
tested to date, including drug-related cues,15–19 small quantities of the 
drug,20,21 stress,22,23 and, in people with long histories of opioid use, 
drug withdrawal.24,25 As sagely noted by David Epstein,26 no one 
feature is likely to account for all clinically relevant aspects of 
addiction. Claims that sensitization is not one of the critical elements 
are likely misguided.

Implications for clinical practice
The incentive sensitization model proposes that repeated, intermittent 
exposure to strong rewards progressively increases their ability to elicit 
approach.4,12,13 These processes can become tied to either healthy or 
unhealthy pursuits.13,27,28 There is little evidence that the effects can be 
reversed, but, among those with addictions, there is evidence that 
sensitization-influenced reinforcement processes can be redirected 
toward healthy ones; e.g., the financial rewards provided in 
contingency management therapy.13,29

The evidence of drug-induced sensitization in humans has also 
raised concerns about prescribing stimulant medications to youth with 
attention deficit/hyperactivity disorder. There is little evidence that 
standard continuous exposure regimens of low to moderate doses lead 
to sensitization, but problems might arise in some,30 especially those 
who have been prescribed amphetamines as opposed to 
methylphenidate.31 This requires further study.

Sensitization to nonstimulant drugs in primates
Few studies have tested whether “non-stimulant” drugs can produce 
sensitization in primates precluding confident conclusions. This noted, 
both alcohol and opioids can have stimulant effects and these effects 
can become sensitized in rodents.32–34 In humans, there is preliminary 
evidence that striatal dopamine responses to alcohol35,36 and alcohol-
paired cues37 are larger in high- than in low-risk drinkers, and alcohol 
use problems are associated with larger ethanol-induced stimulant 
responses38 and striatal dopamine release.39 Opioid sensitization in 
primates is less studied, and the relation to increased drug use remains 
less clear.32 There is, however, some evidence that repeat morphine 
administration can lead to behavioural sensitization40 and, in humans, 
early-life trauma is associated with increased risk of opioid use 
disorders and augmented morphine reward.41
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Table 2: Stimulant drug–induced behavioural sensitization in nonhuman primates

Study No. of doses Stimulant regimen Sensitization*

Tatum et al54 ≤ 120 Cocaine, 5–30 mg/d, s.c. (1.67–10 mg/kg) for up to 4 mo Yes — rhesus macaques (~3 kg) showed progressively 
greater excitement and susceptibilities to seizures.

Ellinwood55 ≤ 111 Methamphetamine, 1–20 mg/d, i.m. 4–7 d/wk for 4–6 mo Yes — rhesus monkeys showed progressively greater 
stereotypies that, with higher doses, became constricted 

and bizarre.

Garver et al56 12–46 d-Amphetamine, 2.0 mg/kg, n.g. twice daily for up to 3 wk 
followed by 3 wk abstinence

Yes — stumptail macaques developed increased activity, 
checking, stereotypies, harmful grooming and psychosis-

like behaviours.

Post et al57 ≤ 48 Cocaine, ≤ 16 mg/kg, i.p., twice daily Yes — progressively increasing excitatory, stereotypic and 
psychosis-like behaviours.

Ellinwood et al58 ≤ 180 Amphetamine, 1–25 mg/kg/d for 6 mo Yes — progressively increasing, stereotypies and dyskinesias.

Ridley et al59 111 Amphetamine, 1–4 mg/kg, p.o. for 60 d  
Amphetamine plus haloperidol for 51 d

Yes — marmosets developed destructive grooming habits. 
The activating effects were reduced by haloperidol.

Post et al61 ≤ 260 Cocaine, 10 – 17 mg/kg, i.p. twice daily 5 d/wk for up to 
6 mo

Yes — rhesus monkeys showed progressively greater 
stereotypies, and increased susceptibilities to seizures, 

catalepsy, and abnormal visual tracking and staring.

Ridley et al62 35 d-amphetamine, 4–12 mg/kg/d, i.v. Yes — vervet monkeys developed stereotypies followed by 
psychosis-like behaviours and over-responsiveness to stimuli.

Farfel et al63 56 Cocaine, 3.0–4.0 mg/kg, i.m. 4 times/d for 14 d Yes — rhesus macaques developed stereotypies, visual 
tracking and splayed legs.

Castner et al60 120 S(+)-amphetamine, 0.1 mg/kg, i.m. escalating to 
1.0 mg/kg, i.m. twice daily 5 d/wk for 12 wk  

Challenge doses (0.4–0.46 mg/kg, i.m.) were given following 
6, 9, 12, and 28 mo abstinence

Yes — rhesus macaques developed increased pacing and 
stereotypies.

Castner et al64 60 d-amphetamine, 0.1–1.0 mg/kg, i.m. twice daily 5 d/wk for 6 
wk

Yes — rhesus macaques developed increased fine-motor and 
oral stereotypies, parasitotic-like grooming, static posturing, etc.

Castner et al65 60 d-amphetamine, 0.1–1.0 mg/kg, i.v. twice daily 5 d/wk for 
6 wk  

Challenge doses (0.4 mg/kg, i.v.) were given following 21 d 
and 6.5–8 mo abstinence

Yes — rhesus macaques developed increased fine-motor 
and oral stereotypies and hallucination-like behaviours.

Rodriguez et al66 660 Methylphenidate, 0.15–27 mg/kg, p.o. twice daily 5 d/wk for 
66 wk

No change in rhesus monkeys on measures of
executive function.

Gill et al67 365 Extended-release methylphenidate, ≥ 20 mg/d, p.o. for 
12 mo

No change in the proportion of rhesus monkeys that 
acquired cocaine self-administration.

Soto et al68 182 Methylphenidate (12–16 mg/kg, p.o.) or d,l-amphetamine 
(0.7–0.8 mg/kg, p.o.) twice daily for 18 mo

No change in rhesus monkeys on measures of response 
speed or executive function.

Martelle et al69 365 Extended-release methylphenidate, ≥ 20 mg/d, p.o. for 
12 mo

No change in methylphenidate self-administration.

i.m. = intramuscular; i.p. = intraperitoneal; i.v. = intravenous; n.g. = nasogastric; p.o. = oral; s.c. = subcutaneous.
*Contrary to the expectations of those writing the early papers, repeated stimulant drug administration did not lead to drug tolerance. As seen in laboratory rodents, lower doses produced 
behavioural hyperactivity while higher doses elicited stereotypies. With repeated administration, the behavioural responses became progressively greater and more disturbed, with higher 
doses eventually eliciting psychosis-like phenomenology, seizures, and dyskinesias. These effects were consistently observed for cocaine and amphetamines but not methylphenidate.

Table 1: Stimulant drug–induced behavioural sensitization in humans

Study No. of doses d-Amphetamine regimen Sensitization*

Johanson et al42 5 5.0 mg, p.o. No — mood, no. of  tablets chosen

Kelly et al43 6 10.0 mg, p.o. No — speech rate, smoking, stimulant effects, liking

Kegeles et al52 2 ~20 mg, i.v. (0.30 mg/kg) No — euphoria, restless, anxiety

Wachtel et al53 2 20.0 mg, p.o. No — subjective and psychomotor effects

Strakowski et al46 3 ~20 mg, p.o. (0.25 mg/kg) Yes — energy, eye-blink

Strakowski et al47 3 ~20 mg, p.o. (0.25 mg/kg) Yes — energy, euphoria

Strakowski et al48 2 ~20 mg, p.o. (0.25 mg/kg) Yes — energy, eye-blink, mood, speech rate

Boileau et al49 4–5 ~20 mg, p.o. (0.30 mg/kg) Yes — energy, eye-blink

O’Daly et al50 4 ~20 mg, p.o. (0.30 mg/kg) Yes — energy, euphoria

Childs et al51 2 20 mg, p.o. No — stimulation, craving

Weidenauer et al44 4 ~30 mg, p.o. (0.40 mg/kg) Yes — lively, outgoing

Smart et al45 4 ~20 mg, p.o. (0.30 mg/kg) Yes — mind-racing, speech

i.v. = intravenous; p.o. = oral.
*There is consistent evidence of amphetamine-induced behavioural sensitization in humans administered a minimum of 3 doses ≥ 0.25 mg/kg (6 of 6 studies).44–47,49,50
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