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Abstract: We used stable water suspensions of copper oxide particles with mean diameter 

20 nm and of particles containing copper oxide and element copper with mean diameter 

340 nm to assess the pulmonary phagocytosis response of rats to a single intratracheal 

instillation of these suspensions using optical, transmission electron, and semi-contact 

atomic force microscopy and biochemical indices measured in the bronchoalveolar lavage 

fluid. Although both nano and submicron ultrafine particles were adversely bioactive,  

the former were found to be more toxic for lungs as compared with the latter while evoking 

more pronounced defense recruitment of alveolar macrophages and especially of neutrophil 

leukocytes and more active phagocytosis. Based on our results and literature data,  

we consider both copper solubilization and direct contact with cellular organelles (mainly, 
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mitochondria) of persistent particles internalized by phagocytes as probable mechanisms of 

their cytotoxicity. 

Keywords: ultrafine copper-containing particles; bronchoalveolar lavage; cytotoxicity 

 

1. Introduction 

Nanoparticles (NPs) of metals and of their oxides are of special interest for industrial toxicologists 

because, along with engineered metal-containing NPs, there exists usually a substantial fraction of 

nanoscale (“ultrafine”) particles of the same or chemically close substances within the particle size 

distribution of condensation aerosols generated by arc-welding and metallurgical technologies. In these 

aerosols, concomitant fractions are typically represented by micrometer particles (MPs) including 

submicron ones with dimensions >100 nm. In our experience, just such a situation is characteristic of 

workroom air pollution in copper smelters and copper refineries, as illustrated in Figure 1. 

Figure 1. Percentage distributions of particles by size in the submicron range on filters 

through which the ambient air of a copper smelting and casting facility was drawn:  

(a) anode (crude) or (b) cathode (refined) copper (N—number of particles of a given 

diameter, N0—total number of particles). 

 

Which fraction of such aerosols (0–100 or >100–500 nm) is more noxious when deposited in the 

lungs? We put aside the probable difference of the deposition itself, which for both submicron 

fractions, being due to the diffusion mechanism, depends on particle size, irrespective of its density 

and, thus, its chemical nature. The latter, however, is of the highest importance as a determinant of a 

deposited particle’s biological toxicity, and this intrinsic bio-aggressivity (toxicity) should be assessed 

for specific NPs and MPs containing particular metals. 

Although engineered copper and copper oxide NPs with Cu to O ratios in their composition were 

demonstrated to produce toxic effects in a number of published studies [1–15], the relevant literature is 

short of in vivo toxicity assessments on laboratory mammals. Recently we [16] demonstrated that  

20 nm copper oxide particles, when injected intraperitoneally to rats at a dose of 10 mg/kg (0.5 mg  



Int. J. Mol. Sci. 2014, 15 21540 

 

 

per mL of deionized water) 3 times a week up to 19 injections, induced shifts in various functional and 

biochemical indices of the organism’s status as well as pathological changes in liver, spleen, kidneys 

and brain microscopic structure and augmented DNA fragmentation in cells of these organs as 

measured by the RAPD (Randomly Amplified Polymorphic DNA) test. The CuO nanoparticles used in 

that experiment, whilst being highly stable in a suspension on deionized water, were found to dissolve 

very quickly if normal saline or a biological fluid was added to it; moreover, some findings of our 

toxicological experiments were in agreement with the important role of Cu-ion release assumed by 

some authors as the main cause of the high cytotoxicity of copper oxide nanoparticles [2,4–6]. 

In this connection, it should be noted that the cytotoxicity characteristic cited as a major  

harmful property of various metal-containing nanoparticles, including copper and copper oxide ones,  

is typically based on the findings of experiments in vitro carried out on cell cultures of various  

stable lines [1,4–6,12,13]. On the contrary, in our previous studies, the cytotoxicity of magnetite  

(Fe3O4) [17–20], silver and gold [21] NPs was assessed in vivo by changes in free cellular populations 

of deep airways after single intratracheal instillations of these materials. We studied cells of 

bronchoalveolar lavage fluid (BALF) obtained 24 h after intratracheal (i.t.) instillation to rats of  

small doses of nanoparticles (NPs) or of their micrometric counterparts (MPs) using optical (OM), 

transmission electron (TEM) and semi-contact atomic force (sc-AFM) microscopy. In this way,  

the i.t. model provides natural objects for studying the phagocytic activity of pulmonary (alveolar) 

macrophages and polymorphonuclear leukocytes, as well as intracellular localization of NPs engulfed 

by them and ultrastructural damage caused to the cell by internalized NPs. 

The results thus obtained might be regarded as comparable with those obtained by other researchers 

in experiments on cell cultures, but we maintain that the former provided a valuable addition to in vitro 

assessments of particle cytotoxicity even if only because in vivo interaction between cells and particles 

occurs in a microenvironment which is not reproducible by any artificial culture medium. 

Besides, quantitative characterization of BALF cells permits one to compare the ability of NPs and 

MPs to be recognized and dealt with by one of the most important physiological defense mechanisms 

against pulmonary deposition of any particles, namely the phagocytic response. The adequacy of this 

model for solving these problems is above any serious doubt as it has been shown repeatedly that the 

important qualitative and quantitative patterns of the response under consideration (in particular,  

its dependence on the cytotoxicity of deposited particles) observed in inhalation exposures to dusts are, 

in principle, the same in the case of their i.t. administration [22–25]. 

Specifically, it has become evident from our previous studies on iron oxide and silver particles [17–21] 

that both the recruitment of phagocytes toward the free surface of lower airways evoked by the 

deposition of metallic NPs and the phagocytic activity of these cells were more pronounced than 

similar responses to the deposition of even small (1 mcm) MPs, while damage to cells induced by NPs 

was more pronounced than that induced by such MPs. Our data also suggested that both the defense 

mechanism and the cytotoxic action depend on both NP dimensions and their chemical characteristics. 

It was too early, however, to affirm that these dependences might be considered as a general 

nanotoxicological pattern. For the purpose of demonstrating to what extent they could be related to 

copper-containing NPs as well, we present in this article the data of a similar study involving specially 

prepared copper-containing ultrafine particles modeling various fractions of the above-mentioned 

industrial aerosols formed during copper smelting and casting. 
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2. Results and Discussion 

2.1. Optical Microscopy Data 

Table 1 presents the results of estimating shifts in a BALF cell population in response to 

intratracheal (i.t.) instillation of suspensions of copper-containing NPs and submicron MPs in 

comparison with the BALF of rats instilled with the same de-ionized water on which these suspensions 

were prepared (see Section 3). It can be seen that (1) both NPs and MPs cause a substantial increase 

over the control value in the number of neutrophil leukocytes (NL) as well as a significant but less 

pronounced increase in the number of alveolar macrophages (AM) in the BALF and, thus, a sharp 

increase in the NL/AM ratio; (2) this ratio is considerably and statistically significantly higher for NPs 

as compared with MPs due to both a much higher NL count and a somewhat lower AM count. 

Table 1. Number of cells in the bronchoalveolar lavage fluid (BALF) 24 h after the 

intratracheal instillation of 1 mL suspension of copper-containing particles to rats at a dose 

of 0.5 mg per rat (x ± Sx). 

Particles 
Administered 

Number of Cells * (×106) 

NL/AM 
Total 

Neutrophil 
Leukocytes (NL) 

Alveolar 
Macrophages (AM) 

Nanoparticles 12.42 ± 1.89 *,● 9.8 ± 2.16 *,● 2.44 ± 0.38 * 4.76 ± 1.39 *,● 
Submicron particles 6.79 ± 1.28 * 3.64 ± 0.90 * 3.06 ± 0.86 * 1.39 ± 0.16 * 

None (controls) 1.06 ± 0.14 0.052 ± 0.01 0.95 ± 0.18 0.06 ± 0.01 

Statistically significant difference * from control group; ● from submicron particles group (p < 0.05 by 

Student’s t-test). 

Recruitment of phagocytizing cells into the lower airways, manifesting itself in an increased 

number of BALF cells, is a typical reaction to the deposition of particles in them. Both the total cell 

count and the shift towards polymorphonuclear (mainly neutrophil) leukocytes (NL) become the more 

marked, the stronger the damaging action of cytotoxic particles on alveolar macrophages (AM) [22–25]. 

The dependence of both indices on the number of destroyed AMs was experimentally modeled by:  

(1) intratracheal instillation of aseptically obtained peritoneal macrophages destroyed (without  

pre-incubation of these cells with any particles) by repeat freezing/thawing, or by ultrasonication;  

and (2) lipids extracted from these macrophage breakdown products. Such a dose-dependent imitation 

of the pattern of phagocyte recruitment toward cytotoxic particles with the help of macrophage 

breakdown products, on the one hand, and the good rank correlation (demonstrated in the same 

studies) between the above NL/AM shift and in vitro estimates (with the trypan blue exclusion test) of 

the capacity of different particulates to damage cultured peritoneal macrophage, on the other hand, 

justifies the usage of NL/AM ratio as a circumstantial, but rather informative comparative in vivo 

index for particle cytotoxicity. 

It was also shown [22,23] that macrophage breakdown products less actively stimulated the 

recruitment of viable AMs compared with the recruitment of NLs. This may explain why under the impact 

of highly cytotoxic particles the resultant AM count is usually less increased over the control level as 

compared with the increase in the NL count, or is not increased at all, or sometimes is even decreased. 
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Thus the most obvious inference from the data presented in Table 1 is that the copper-containing 

NPs tested are much more cytotoxic than submicron MPs. It is more difficult, however, to attribute this 

difference definitely to the difference in particle diameter (20 and 340 nm, respectively) than it was in 

our studies comparing NPs of iron oxide [17] or silver [21] with chemically identical 1 μm MPs.  

As is shown in Section 3 below, copper-containing NPs and MPs are not strictly identical in their 

chemical composition: the former are composed entirely of copper oxide (nominally, CuO) while the 

latter have a metallic (elemental Cu) core and an 80 nm thick surface layer of another copper oxide 

(nominally, Cu2O). In our earlier studies of NPs of other metals we showed that the cytotoxicity of 

NPs of the same chemical nature increased with a decrease in their size, whereas that of NPs of the 

same size depended on their chemical nature. We believe that in the new case study discussed in this 

paper it would be justified to suggest that both factors had a part to play. A derivative of both factors is 

a significant difference in the solubility of NPs and MPs (see Section 3). Note also that a lot of 

researchers maintain that CuO nanoparticle intracellular solubilization with the release of Cu2+ ions 

plays the most important part as a mechanism of their cytotoxicity [2,4–6]. 

As for the other aspect of the NL recruitment towards the free surface of the lower airways in 

response to the deposition of particles, nanoscale ones included, this recruitment is quite often 

described as “inflammation” and, thus, as a pathological phenomenon. However, there are fairly strong 

reasons for considering this response to be an important mechanism of partial compensation for the 

damage caused by cytotoxic particles to the alveolar macrophage, the main effector of pulmonary 

clearance [22–24]. Our experiments with Fe3O4 (magnetite) [17], gold and silver [21] nanoparticles 

confirm that NL recruitment and phagocytic activity played the same useful role as was evidenced, 

among other things, by a marked internalization of all NPs studied within both NLs and AMs. In the 

case of copper-containing NPs, similar evidence is presented and discussed below (sub-Section 2.3). 

However, before proceeding to that part of this discussion, we propose discussing the shifts in some 

biochemical characteristics of the cell-free BALF, which also may testify to a higher bio-aggressivity 

of CuO-NPs as compared with submicron Cu2O/Cu MPs. 

2.2. Some Indices of BALF Biochemistry 

Cytotoxic damage to phagocytizing cells by particles is also indicated by shifts in some biochemical 

characteristics of BALF. Judging by the data in the scientific literature, the oft-used biochemical 

criterion of the comparative cytotoxicity of inhaled or instilled particles is the increased activity of 

lactate dehydrogenase (LDH) in the supernatant of BALF, which is usually explained by the release  

of this enzyme as a result of damage caused to the phagolysosomes of macrophages and of epithelial 

cells into the cytoplasm, and then on into the extracellular fluid, as according to the data of [26],  

for example. LDH concentration in the BALF 24 h after an instillation of highly cytotoxic DQ12 

standard quartz particles was raised to a greater extent than after an instillation of TiO2 nanoparticles 

but to a much lower extent than after an instillation of Co and, especially, Ni nanoparticles. The same 

researchers found that three days after an intratracheal instillation 20 nm nickel particles caused a 

substantially higher increase in the LDH concentration (along with that of total protein and tumor 

necrosis factor-alpha) than 5 µm particles did [27]. 
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As can be seen from the data presented in Table 2, copper-containing particles caused a similar 

effect, the increase in the LDH concentration being accompanied by an increase in the concentrations 

of three others lysosomal enzymes (amylase, alkaline phosphatase, and gamma-glutamyl transferase), 

which may be explained similarly. 

Table 2. Some biochemical characteristics of the supernatant of the fluid obtained by 

bronchoalveolar lavage (BALF) of rats 24 h after intratracheal instillation of 0.5 mg of 

copper-containing NPs or submicron MPs in 1 mL of water suspension (x ± Sx). 

Indices 
Groups of Rats Instilled Intratracheally with 

Water (Control) Nanoparticles Submicron Particles 

Glucose, mmol/L 0.56 ± 0.00 1.36 ± 0.25 *,● 0.56 ± 0.00 
Urea nitrogen, mmol/L 0.36 ± 0.00 0.68 ± 0.10 *,● 0.36 ± 0.00 

Uric acid, µmol/L 14.67 ± 0.33 16.75 ± 0.50 *,● 14.25 ± 0.25 
Amylase, mcmol/L·min 30.00 ± 0.00 140.25 ± 3.50 *,● 30.00 ± 0.00 
Alkaline phosphatase, 

mcmol/L·min 
20.33 ± 2.60 29.75 ± 3.77 27.00 ± 1.68 

ALT, mcmol/L·min 21.33 ± 0.67 25.25 ± 0.29 *,● 22.00 ± 0.41 
AST, mcmol/L·min 7.33 ± 1.20 39.75 ± 2.29 *,● 19.50 ± 1.66 * 

De Ritis ratio 0.34 ± 0.05 1.57 ± 0.08 *,● 0.88 ± 0.07 * 
γ-Glutamyl transferase, 

mcmol/L·min 
5.33 ± 0.33 14.50 ± 0.87 * 10.25 ± 0.63 * 

Lactate dehydrogenase, 
mcmol/L·min 

166.67 ± 30.33 821.50 ± 9.50 *,● 601.75 ± 54.65 * 

Calcium, mmol/L 0.12 ± 0.00 0.25 ± 0.02 *,● 0.12 ± 0.00 
Magnesium, mmol/L 0.12 ± 0.00 0.16 ± 0.01 *,● 0.12 ± 0.00 
Phosphorus, mmol/L 0.14 ± 0.01 0.25 ± 0.02 *,● 0.14 ± 0.00 

Iron, µmol/L 0.40 ± 0.00 0.83 ± 0.21 *,● 0.40 ± 0.00 

Statistically significant difference * from control group; ● from submicron particles group (p < 0.05 by 

Student’s t-test). 

As follows from the same table, a statistically significant difference from the control values under 

the effect of NPs was also observed for a number of other indices, whereas under the effect of 

submicron MPs, corresponding shifts were either absent or less marked, inter-group differences being, 

as a rule, statistically significant. Indices that had no differences from the controls (total protein, 

albumin, creatinine, creatine kinase, and lipase) are not included in the Table 2. 

Besides the cytotoxic action of NPs, another cause of all these shifts may be acute inflammatory 

changes in the pulmonary tissue induced by the copper, including by that released as ions, and related 

increase in vascular permeability. The latter mechanism is convincingly suggested by a rise in the 

concentration of all 4 measured cations, and the same mechanism of increase in BALF concentration  

is also most likely for glucose, urea and uric acid. At the same time, it is interesting that increased 

aminotransferases levels (ALT and, even to a greater degree, AST) were accompanied by an increase 

in their ratio (de Ritis coefficient). Such shifts cannot be well explained only by enhanced penetration 

of blood enzymes into BALF due to the increased vascular permeability; moreover, they correspond  

to the shifts in ALT and AST that are usually observed in the blood under a variety of chronic 
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intoxications and are considered to be one of the markers of liver damage. It is difficult to assume, 

however, that such damage to the liver could have developed within only 24 h after intratracheal 

instillation of a low dose of NPs, all the more so that repeated i.p. administrations of the same NPs 

were not observed to cause any significant shifts in aminotransferase activities in blood serum.  

The ALT activity in controls was 52.80 ± 3.65 and in the exposed rats 49.25 ± 2.66, respective values 

for the AST activity were 254.70 ± 16.78 and 234.8 ± 13.29 mmol/h·L [17]. 

Further, the higher biological aggressivity of the copper-containing NPs tested by us in comparison 

with submicron MPs manifesting itself in response to a single intratracheal administration is 

demonstrated by the entire body of both cytological and biochemical data presented in Table 1 and 2. 

2.3. Semi-Contact Atomic Force Microscopy (sc-AFM) and Transmission Electron Microscopy (TEM) Data 

Semi-contact AFM investigation of BALF cells from rats administered the particles under study 

revealed numerous pits on their surface compared with the virtually smooth surface of cells from 

control rats. The number of such pits was markedly larger after the instillation of NPs while the 

prevailing sizes of the pits were smaller than after that of submicron MPs. This visual assessment as 

illustrated by Figure 2 is confirmed by the statistics. Indeed, the mean pit diameter correlates with  

the mean diameter of phagocytized particles, being equal to (mean ± SE) 25.2 ± 0.9 nm in rats 

administered NPs and to 290 ± 14 nm in those administered MPs, the average number of pits per unit 

surface area (mcm2) being equal to 74.40 ± 5.30 and only 1.85 ± 0.50, respectively (for counts within 

small 2 × 2 µm scans ensuring the highest image resolution). 

Figure 2. Alveolar macrophage surface topography visualized by the sc-AFM: (a) controls; 

(b) after instillation of 340 nm copper oxide-copper particles and (c) after instillation of  

20 nm copper oxide particles. Typical pits are pinpointed by arrows. 
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As is well known, the starting point for the engulfment of a particle by a phagocytic cell 

(endocytosis) is close contact between them, as a result of which a subjacent portion of the plasma 

membrane is as though indented (the so-called invagination) and then is pinched off forming a 

membrane-bound vesicle called an endosome or phagosome. 

We proceeded from the assumption that the invagination process changes the topography of the 

phagocyte’s surface (be it of an alveolar macrophage or of a neutrophil leukocyte), leading to the 

formation of “a pit”. We demonstrated that this was indeed a fact first in experiments with nano- and 

microparticles of iron oxide Fe3O4 (magnetite) [17,18]. It was shown that both the quantity and the size 

of these pits depended on the predominant dimension of the particles being engulfed and on the 

phagocytic activity of the cell, which, in turn, depended on the particle’s cytotoxicity and thus, 

inversely, on its diameter again. This inverse dependence of phagocytic activity upon particle size was 

also demonstrated by assessing the internalized iron oxide particle load of AMs and NLs under  

optical microscopy [17,18]. 

Later on, we observed the same “pitting” phenomenon in a comparative experiment with nanosilver 

and nanogold suspensions [21]. In this case the NPs compared had virtually one and the same average 

diameter, and so the pit dimensions proved to be independent of the NPs’ chemical nature. However,  

the pit count per unit area of cell surface was much higher for more cytotoxic nanosilver than for less 

cytotoxic nanogold. 

Assuming that each pit is a mark left by a single particle or by a small aggregate of particles that 

have just been engulfed by a cell, one may regard the average surface concentration of such marks as  

a comparative estimate of a cell’s phagocytic activity. Thus, the sc-AFM data suggest that NPs which, 

judging by the NL/AM index are more cytotoxic (due to a smaller size as in experiments with 

nanomagnetite, or to the chemical nature as in the case of nanosilver, or to both factors as in the 

present case of CuO) are engulfed more avidly. This phenomenon can be explained by the 

experimentally proven fact that macrophage breakdown products stimulate not only the recruitment 

but also the phagocytic activity of viable macrophages [25]. 

The additional importance of the sc-AFM data is that they indirectly confirm the presence of 

phagocytized CuO nanoparticles on the free surface of the lower airways immediately before the 

lavage was carried out 24 h after the pulmonary deposition of these particles. Meanwhile, as shown in 

Section 3, they were not to be discovered in vitro by the optical absorption method as soon as an hour 

and a half after the addition of the BALF supernatant to a highly stable water suspension of the same 

NPs (in a ratio of 1:3), which points to almost complete dissolution of these NPs. Thus, no such 

complete dissolution takes place in vivo even over a much longer time. This fact is of particular 

importance in the light of the above-mentioned debate as to whether nano-CuO cytotoxicity is 

associated with the action of particles as such or with that of Cu-ions released by their dissolution. 

The presence of such persisting NPs inside AMs 24 h after instillation (added to which should be 

another 1.5 h lag between obtaining BALF and the fixation of the cell sediment with glutaraldehyde) is 

demonstrated expressly by the TEM data. However, the importance of these data is associated with 

estimating not only endocellular particles localization but also ultrastructural damage to phagocytizng 

cells caused by them. A typical damage to alveolar macrophages is illustrated by Figure 3, and we did 

not find any noticeable differences between macrophages and neutrophil leukocytes, in this respect. 

The TEM images of BALF cells obtained from control rats were normal. 
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Judging by the numerous data summarized in an extensive review [28], the targets for the cytotoxic 

action of various nanoparticles are the cell membrane (Ag, Au, CeO, SiO2, TiO2, iron oxide, quantum 

points), the nucleus (Ag, Au, CeO, SiO2, TiO2, ZnO), mitochondria (Ag, SiO2, ZnO), lysosomes  

(CeO, TiO2, ZnO), endoplasmic reticulum (Ag, SiO2), cytoskeleton (Ag, Au, CeO, SiO2, TiO2, quantum 

points), and, possibly, even the Golgi apparatus (TiO2, iron oxide). Usually, specific sites are suggested 

for the action of each type of NP. It should be stressed, however, that the above list of ultrastructural 

cell damage-inducing NPs is not exhaustive. For instance, our experiments with iron oxide [17,18],  

silver and gold [21] nanoparticles revealed in all the three cases damage to the nuclear membrane and 

particularly, to mitochondria. 

Note that the review [28] does not mention copper containing NPs. Meanwhile, in our study 

transmission electronic microscopy of both AMs and NLs clearly revealed ultrastructural damage to 

the cell (in particular, to mitochondria, as well as to cellular and nuclear membranes) even where  

a very small number of particles were detected in it as illustrated by Figure 3. 

Figure 3. Alveolar macrophage from the BALF of a rat administered copper oxide NPs 

(TEM, magnification ×22,000). There is a solitary NP close to the nuclear membrane 

(arrow 1). Note that in the particle localisation area the membrane is blurred and lacks its 

double contour image. The mitochondrion near this particle (arrow 2) partly lacks cristae 

and the electron density of its matrix is reduced; the remaining cristae show signs of 

destruction, and the mitochondrial membrane is blurred, partly broken, and lacking double 

contour in some places. There is nearby a solitary nanoparticle within the “shadow” of  

a destroyed mitochondrion (arrow 3). 
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3. Experimental Section 

The animal experiments were carried out on outbred white female rats from our own breeding 

colony with the initial body weight of 150 to 220 g, with a minimum of 12 animals in different 

exposed and control groups. Rats were housed in conventional conditions, breathed unfiltered air,  

and were fed standard balanced food. The experiments were planned and implemented in accordance 

with the “International guiding principles for biomedical research involving animals” developed by  

the Council for International Organizations of Medical Sciences (1985) and approved by the Ethics 

Committee of the Ekaterinburg Medical Research Center Medical for Prophylaxis and Health 

Protection in Industrial Workers. 

For this animal experiment, we prepared stable suspensions of copper oxide nanoparticles (NPs) 

and submicron microparticles (MPs). 

NPs engineered by the method of laser ablation followed by concentration strengthening by partial 

evaporation proved necessary to enable the administration of effective doses to rats in minimal 

volumes of water. A plate of copper with a metal content of 99.99% was placed on the bottom of  

a dish with deionized water. Metal ablation was performed using an Fmark-20RL laser material 

processing system (by Laser Technology Center, Ekaterinburg, Russia), based on ytterbium-doped 

pulsed fiber laser (pulse length 100 ns, repetition rate 21 kHz, wavelength 1064 nm). The energy 

density was 80 J/cm2. The target was irradiated in scanning mode with a rate of the laser ray of  

270 mm/s (the first 7 cycles of such scanning served to prepare the target’s surface). 

The concentration of the primary suspensions obtained by ablation was 0.08 mg/mL. An increase in 

concentration to 0.5 mg/mL was achieved by drying the suspensions for 5 h at 50 °C, which was  

not accompanied by nanoparticle aggregation. Particle images were obtained after concentrating by 

scanning electron microscopy (SEM) with the AURIGA CrossBeam Workstation (Carl Zeiss, Jena, 

Germany), which enabled us to identify their spherical form (Figure 4). The average particle  

diameter (±SD) obtained through statistical processing of hundreds of SEM images was 20 ± 10 nm,  

the distribution being symmetrical. 

Figure 4. (a) Scanning electron microscopy (SEM) images of nanoparticles prepared for 

the experiment and (b) particle size distribution function obtained by analysis of SEM 

images (N—number of particles of a given diameter, N0—total number of particles). 

   

(a) (b)  
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No essential changes took place 30 days after the preparation of the suspension in either zeta 

potential or the form and position of the plasmon resonance peak, providing evidence of its high 

stability. For studying the kinetics of NP dissolution in an ionic medium or in a model liquid biological 

medium, we measured change in optical absorption at 620 nm wave length corresponding to maximum 

optical absorption of copper nanoparticles. Before measurement, the suspension of copper oxide 

nanoparticles with a concentration of 0.5 mg/mL was diluted fourfold by normal saline or by 

supernatant of a fluid obtained through bronchoalveolar lavage (BALF) of intact rats. Absorption 

spectra were measured by means of an UV-1650 spectrophotometer. Before each measurement,  

the solution was sonicated. We found that nanoparticles would completely vanish (presumably dissolving) 

within 20 min after the addition of normal saline and within 90 min after the addition of BALF. 

The chemical composition of the nanoparticles was determined by X-ray energy dispersion analysis 

using an Auriga CrossBeam scanning electronic microscope (Carl Zeiss, Jena, Germany) equipped 

with an X-Max X-ray detector (Oxford Instruments, Oxford, UK). Analysis of the characteristic X-ray 

radiation resulting from the bombardment of a target surface with a beam of accelerated electrons 

makes it possible to determine the element composition in the area of interaction between electrons 

and the substance to a depth of several micrometers. Measurements were performed with an accelerating 

voltage of 5 kV and averaged over an area of 100 × 100 µm. The composition of the nanoparticles  

(in terms of the number of atoms) was found to be equal to 53% ± 5% of Cu and 47% ± 5% of O,  

i.e., actually to 1:1, which corresponds to the chemical composition of nanoparticles in workroom air 

during the casting of refined copper (see Introduction) and is close to CuO. However, it should be 

noted that in both cases the NPs were unlikely to consist of CuO as a chemical compound, since it is 

characteristic of particles formed during vapor condensation, and generally of condensed phases, to display 

substantial deviations from stoichiometry. Most likely, these NPs consisted of a mix of various copper 

oxides, which are impossible to identify individually. 

Submicron MPs (Figure 5) were obtained by levigating under ultrasonication a water suspension of 

powder produced by electric explosion of a copper wire of the same 99.99% purity. The average particle 

diameter (±SD) obtained through statistical processing of hundreds of SEM images was 340 ± 168 nm. 

Figure 5. (a) Scanning electron microscopy (SEM) images of microparticles prepared for 

the experiment and (b) particle size distribution function obtained by analysis of SEM 

images (N—number of particles of a given diameter, N0—total number of particles). 

a b  
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Using X-ray energy dispersion analysis we found that the 80 nm surface layer of a submicron MP 

had a Cu:O atomic ratio corresponding to copper(I) oxide (Cu2O), while the nucleus of the particle was 

the element copper (Cu). In suspension on de-ionzied water, MP keeps this structure for a long time. 

Meantime, in a suspension with the supernatant of BALF from intact rats added to it (in a ratio of 1:3) 

it loses the copper oxide layer within 24 h through dissolution, which results in a reduced mean 

particle diameter to 175 nm, while the remaining metallic nucleus practically does not dissolve. 

Bronchoalveolar lavage (BAL) was carried out 24 h after the i.t. instillations of the NP or MP 

suspension or reference water. A cannula connected to a Lüer’s syringe containing 10 mL of normal 

saline was inserted into the surgically prepared trachea of a rat under hexenal anesthesia. The BAL 

fluid (BALF) entered the lungs slowly under the gravity of the piston, with the animal and syringe 

positioned vertically. Then the rat and the syringe were turned 180°, and the fluid flowed back into  

the syringe. The extracted BALF was poured into siliconized refrigerated tubes. An aliquot sample of 

the BALF was drawn into a WBC count pipette together with 3% acetic acid and methylene blue.  

Cell count was performed in a standard hemocytometer (the so-called Goryayev’s Chamber). Along 

with optical and transmission electron microscopy of cells sedimented by centrifuging the BALF,  

we examined the topography of the BALF cell surfaces with the help of semi-contact atomic force 

microscopy (sc-AFM) reputed as a unique technique allowing one to obtain 3D visualizations of the 

surface topography of biological objects with a nanometric spatial resolution. Transmission electron 

microscopy (TEM) was used to study the localization of different NPs within the BALF phagocytes 

and to visualize damage to the cells at ultra structural level that may be attributed to the cytotoxic 

effect of NPs.  

For optical microscopy, the BALF was centrifuged for 4 min at 1000 rpm before the fluid was 

decanted, and the sediment was used for preparing smears on 2 microscope slides. After air-drying,  

the smears were fixed with methyl alcohol and stained with azure eosin. The differential count (under 

an optical microscope with immersion at a magnification of 1000×) for determining the percentage of 

alveolar macrophages (AM), neutrophil leukocytes (NL) and other cells was conducted up to a total 

number of 100 counted cells. Allowing for the total number of cells in the BALF, these percentages 

were recalculated in terms of absolute AM and NL counts. The supernatant of the centrifuged BALF 

was used for biochemical testing, the results of which are given in Table 2. 

For performing TEM, BALF was centrifuged for 30 min at 3000 rpm. The cell sediment was fixed 

in 2.5% solution of glutaraldehyde with subsequent additional fixing in 1% solution of osmium 

tetroxide for 2 h. Then it was washed in 0.2 M phosphate buffer and passed through alcohols of 

increasing concentration and through acetone for dehydration. Then the sample was placed for 24 h in 

a mixture of araldite and acetone at a ratio of 1:1, following which it was polymerized in araldite at  

37 °C for 1 day and at 50–60 °C for the next 2–3 days. Ultrathin sections were obtained on a Leica EM 

UC6 ultra microtome (Leica Microsystems GmbH, Wetzlar, Germany), contrasted with lead citrate 

and examined on a Morgagni 268 electron microscope (FEI Company, Eindhoven, The Netherlands). 

For sc-AFM, the BALF was centrifuged for 4 min at 1000 rpm, and a 3 μL aliquot of the BALF 

sediment was precipitated on a fresh cleavage of mica. After 60 s, the excessive suspension was 

removed with a paper filter, and the sample was dried by blowing with clean, dry air or nitrogen for 30 s. 

It should be noted that the drying of the BALF on a mica surface results in the formation of salt 

microcrystals, which were removed by washing the sample twice. For washing, the sample was kept 
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for 60 s on the surface of a drop of deionized water (with the working side down). The liquid was then 

removed with the help of a paper filter. After repeating the washing, the sample was dried by blowing 

with clean, dry air or nitrogen for 30 s. Investigation of the cell surface morphology was performed by 

sc-AFM with the help of an NTEGRA Therma scanning probe platform produced by the NT-MDT 

Company (Zelenograd, Russia) using semi-contact atomic force microscopy mode with NSG01 probes 

by the same producer. The height of the probes was about 15 μm, and the tip curvature radius was  

less than 10 nm. For statistical processing and analysis of measurement results, we used specialized 

software, SPIP (Image Metrology, Horsholm, Denmark) and SIAMS Photolab (SIAMS Company, 

Ekaterinburg, Russia). The procedures developed made it possible to reveal the pits in the images of 

cell surfaces and to measure the diameter of each pit. The results of the image analysis were used for 

plotting the histograms of the pit dimensions for the cells of all groups of rats. The sc-AFM gives no 

reliable distinction between AMs and NLs. Since taking all cells of lesser dimensions as neutrophils 

would be too arbitrary, we took as alveolar macrophages only the largest BALF cells (and present in 

this paper only pits measured and counted on their surface). 

4. Conclusions 

The presence of ultrafine (submicron) particles having sizes both within the conventional  

nano-range and over its upper boundary (100 nm) in the aerosols polluting the workplace air at  

high-temperature metallurgical technologies (in particular, copper smelting and casting) makes it 

important to compare the health impact of such particles. The findings of our study based on the 

intratracheal instillation of particles in sterile water suspensions provide evidence that both fractions  

of copper-containing ones, but of nanoparticles especially, evoke an active recruitment of alveolar 

macrophages (AM) and, to a greater extent, of neutrophil leukocytes (NL). These cells feature a high 

phagocytic activity in relation to submicron particles and, to a much greater extent, to nanoparticles.  

At the same time, the latter cause a substantially higher increase in the NL/AM ratio, along with 

biochemical shifts in the bronhoalveolar lavage fluid, testifying to their higher cytotoxicity and, 

possibly, higher toxicity for the pulmonary tissue in general (pulmonary toxicity). 

We believe that the cytotoxic effect is likely to be only partly associated with particle dissolution 

which, in the case of nanoparticles, is more intensive, since electron microscopy reveals explicit 

association between the ultrastructural damage to the cell and intracellular localization of persisting 

particles. In particular, the pronounced damage to the mitochondria is in agreement with the 

widespread concept stressing the role of oxidative burst as an important mechanism of the cytotoxic 

action of metallic, including copper-containing, nanoparticles. 
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