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Abstract: The existing studies indicate that the application of piezoelectric polymers is becoming
more and more extensive, especially in the analysis and design of sensors or actuators, but the
problems of piezoelectric structure are usually difficult to solve analytically due to the force–electric
coupling characteristics. In this study, the bending problem of a piezoelectric cantilever beam
was investigated via theoretical and experimental methods. First, the governing equations of the
problem were established and non-dimensionalized. Three piezoelectric parameters were selected as
perturbation parameters and the perturbation solution of the equations was finally obtained using
a multi-parameter perturbation method. In addition, the relevant experiments of the piezoelectric
cantilever beam were carried out, and the experimental results were in good agreement with the
theoretical solutions. Based on the experimental results, the effect of piezoelectric properties on the
bending deformation of piezoelectric cantilever beams was analyzed and discussed. The results
indicated that the multi-parameter perturbation solution obtained in this study is effective and it may
serve as a theoretical reference for the design of sensors or actuators made of piezoelectric polymers.

Keywords: multi-parameter perturbation method; piezoelectric polymers; experimental verification;
cantilever beam; force–electric coupling characteristics

1. Introduction

Piezoelectric polymers have been widely used in sensors, actuators, electronic information and
intelligent structures because of its great force–electric coupling characteristics [1–6]. The piezoelectric
polymers usually participate in the work of piezoelectric instruments in the form of piezoelectric sheets
which usually are simplified to a piezoelectric cantilever beam [7–9].The problems of piezoelectric
cantilever beams are usually difficult to be solved analytically due to the existence of the force–electric
coupling constitutive relation. It is known that the design of piezoelectric instruments often requires
the analytical expression of the problem of piezoelectric cantilever beams as a theoretical reference.
Therefore, it is necessary and meaningful to find an efficient analytical method for solving the problem
of piezoelectric cantilever beams and giving their analytical solutions.

In the past twenty years, many researchers have studied the problem of piezoelectric cantilever
beams and obtained some corresponding solutions. Wang and Chen [10] obtained a general solution of
the control equation for the three-dimensional problem of transverse isotropic piezoelectric material by
means of a set of new potential functions representing displacement component and potential function,
and solved the problem of spatial piezoelectric material under the action of concentrated transverse
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shear force. Lin et al. [11] derived the analytical expressions of displacement, potential, and stress
distribution of piezoelectric beams which were simply supported at both ends under a uniform load.
According to the plane stress problem, Mei and Zeng [12] directly derived the equation of state of
piezoelectric beams from the piezoelectric physical equation, and on this basis, the exact state equation
solution of electromechanical coupling effect of simply supported piezoelectric beams at both ends under
a uniform load was given. On the basis of three-dimensional constitutive equations and their simplified
equations of elastic piezoelectric materials, Zhu [13] derived the analytic solution to a piezoelectric
cantilever beam with concentrated force at the free end in terms of displacements and voltage. For
the orthotropic piezoelectric plane problem, Ding et al. [14–16] solved a series of piezoelectric beam
problems and obtained the corresponding exact solutions with the trial and error method on the
basis of the general solution in the case of three distinct eigenvalues, and expressed all displacements,
electrical potential, stresses, and electrical displacements by three displacement functions in terms of
harmonic polynomials. Yang and Liu [17] investigated the bending of transversely isotropic cantilever
beams under an end load, and derived the simplified linear elastic equations of piezoelectric cantilever
beams according to the characters of the problem. Pang et al. [18] manufactured a typical Li- and
Ta/Sb-modified, alkaline niobate-based, lead-free piezoelectric ceramics by two-step sintering and
investigated the sintering condition dependence of dielectric constants and piezoelectric properties.
Zhu et al. [19] studied the active vibration control of piezoelectric cantilever beams, where an adaptive
feed forward controller (AFC) was utilized to reject the vibration with unknown multiple frequencies.
Peng et al. [20] presented time-delayed feedback control to reduce the non-linear resonant vibration
of a piezoelectric elastic beam and examined three single-input linear time-delayed feedback control
methodologies: displacement, velocity, and acceleration time-delayed feedback. Liu and Yang [21]
studied the bending problem of a cantilever beam made of a transversely isotropic piezoelectricity
medium under uniformly distributed loads. Shi et al. [22,23] studied the analytical solution of a density
functionally gradient piezoelectric cantilever under axial and transverse uniform loads and applied DC
voltages and then, solved the force–electric coupling plane strain problem of simply supported beams
under a uniform load by the inverse method. Wang et al. [24] dealt with the vibration analysis of a
circular plate surface bonded by two piezoelectric layers, based on the Kirchhoff plate model. Recently,
Lian et al. [25] studied the problem of a functionally graded piezoelectric cantilever beam under
combined loads, but non-dimensionalization was not considered in solving the problem. There is still
a lot of research performed in this field, which will not be elaborated here. The summation of results of
existing research shows that there are still some unsolved problems. First, non-dimensionalization was
not considered in the existing research. We know that piezoelectric materials have not only mechanical
properties, but also electrical properties. So, there are both mechanical units and electrical units to
be solved, which may lead to computational errors. Second, the existing research basically provides
theoretical solutions, but there are a few related experimental verifications. Therefore, the reliability of
theoretical solutions cannot be guaranteed. Besides, there has been no unified and effective method for
solving the problems of piezoelectric structure.

Parameter perturbation method is a general analysis method for solving approximate solutions
of non-linear mechanical problems. It has been successfully applied to various fields of non-linear
structural analysis, such as non-linear bending and post-buckling, and has become a powerful tool for
solving non-linear problems of structures. Generally speaking, the perturbation method is based on
a selected small parameter. In order to solve the problem of parameter selection, Chen and Li [26]
put forward the concept of free parameter perturbation method, that is, there is no need to point out
the physical meaning of perturbation parameters during perturbation, which provides a new idea
for solving the parameter selection problem of parameter perturbation method. Lian et al. [27] solved
the Hencky membrane problem without a small-rotation-angle assumption by the single-parameter
perturbation method. The successful application of perturbation method depends, to a large extent,
on the reasonable choice of small parameters, but the selection of perturbation parameters does not
have a set of step-by-step procedures, which can only rely on deep understanding and multiple
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attempts. To avoid the difficulty in the selection of perturbation parameters, researchers can select
multiple parameters, that is, the so-called "multi-parameter perturbation method". For multi-parameter
perturbation method, Nowinski and Ismail [28] solved the cylindrical orthotropic circular plate
problem under a uniform load by using the two-parameter perturbation method. The application
of the multi-parameter perturbation method in beam problem was proposed by Chien [29] in 2002,
the classical Euler–Bernoulli equation of bending beams was solved by using load and beam height
differences as perturbation parameters. Later, He and Chen [30] simplified the bending moment
by using the quasi-linear analysis method, so that the parameter perturbation process was directly
aimed at the algebra equation rather than the integral equation, and the two-parameter perturbation
solution of the large deflection bending problem of a cantilever beam was obtained, and the integrity
of the two-parameter perturbation solution was analyzed. Recently, He et al. [31,32] comprehensively
analyzed the large deflection problem of beams with height difference under various boundary
conditions, put forward the so-called "two-parameter perturbation method", and successfully applied
this method to the solution of bimodular von-Kármán thin plate equation. But so far, the perturbation
method of three or more parameters has only a few reports.

In this study, we will derive the theoretical solution of the bending problem of piezoelectric
cantilever beams by the multi-parameter perturbation method. The whole paper is organized as
follows. In Section 2, the mechanical model of the problem solved here will be established, and the
governing equations will be given and dimensionless. In Section 3, the three piezoelectric parameters
will be selected as perturbation parameters, and the dimensionless governing equations will be solved
by the multi-parameter perturbation method. The solution presented in this paper will be compared
with the existing analytical solution from Yang and Liu [17] in Section 4. Next, in Section 5, we will
show the related experiments of the piezoelectric cantilever beam, compare the experimental results
with the solution presented here, and also discuss the effect of the piezoelectric properties on the
deformation of piezoelectric cantilever beams. According to the results mentioned above, some main
conclusions will be drawn in Section 6.

2. Mechanical Model and Basic Equations

In this study, the mechanical model of the transversely isotropic piezoelectric cantilever beam is
established by using two-dimensional elastic beam theory and neglecting shear deformation. As shown
in Figure 1, an transversely isotropic piezoelectric cantilever beam is fixed at its right end and subjected
to a uniformly distributed load q on its upper surface, a concentrated force P and a bending moment M
at its left end, in which l, b, and h denote the length, width, and height of the beam, respectively, and O
denotes the origin of the coordinates. A rectangular coordinate system is introduced with the upper
and lower surfaces of the beam lying in z = −h/2 and z = h/2.
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Supposing that the polarization direction is the forward direction of the z-axis, let us take a
microelement in the piezoelectric cantilever beam, and from the balance of the force, we may obtain,
by neglecting the body force  ∂σx

∂x + ∂τzx
∂z = 0

∂τzx
∂x + ∂σz

∂z = 0
, (1)

where σx, σz and τzx are the stress components. The equation of Maxwell electric displacement
conservation is

∂Dx

∂x
+
∂Dz

∂z
= 0, (2)

where Dx and Dz are the electric displacement components. The constitutive equations of piezoelectric
polymeric materials considered are

εx = s11σx + s13σz + d31Ez

εz = s13σx + s33σz + d33Ez

γzx = s44τzx + d15Ex

Dx = d15τzx + λ11Ex

Dz = d31σx + d33σz + λ33Ez

, (3)

where εx, εz, and γzx are the strain components; and Ex and Ez are the electric field intensity components.
The geometric equations of the piezoelectric cantilever beam are

εx =
∂u
∂x

, εz =
∂w
∂z

,γzx =
∂u
∂z

+
∂w
∂x

, (4)

where u and w are the displacement components. From Equation (4), the strain consistency equation is
obtained as follows:

∂2εx

∂z2 +
∂2εz

∂x2 −
∂2γzx

∂z∂x
= 0. (5)

The relationship between electric field intensity and electric potential are

Ex = −
∂φ

∂x
, Ez = −

∂φ

∂z
, (6)

where φ is the electric potential function. By introducing the Airy stress function U(x, z), the stress
components can be expressed as

σx =
∂2U
∂z2 , σz =

∂2U
∂x2 , τzx = −

∂2U
∂z∂x

. (7)

The boundary conditions of the problem of the piezoelectric cantilever beam are
∫ h/2
−h/2 τzxdz =

∫ h/2
−h/2

∂2U
∂z∂x dz = −P

b ,∫ h/2
−h/2 σxdz =

∫ h/2
−h/2

∂2U
∂z2 dz = 0,∫ h/2

−h/2 zσxdz =
∫ h/2
−h/2 z∂

2U
∂z2 dz = M

b

, at x = 0, (8)

σz =
∂2U
∂x2 = 0, τzx = −

∂2U
∂x∂z

= 0, at z = h/2, (9)

σz =
∂2U
∂x2 = −q, τzx = −

∂2U
∂x∂z

= 0, at z = −h/2, (10)∫ h/2

−h/2
Dxdz = 0, at x = 0 and x = l, (11)
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Ez =
∂φ

∂z
= 0, at z = ±h/2, (12)

and
u = 0, w = 0,

∂w
∂x

= 0, at z = 0 and x = l. (13)

Substituting Equations (3), (6), and (7) into Equations (2) and (4), we may obtain two equations of
the stress function U(x, z) and the potential function φ

d31
∂3U
∂z3 + d33

∂3U
∂x2∂z

− d15
∂3U
∂x2∂z

= λ33
∂2φ

∂z2 + λ11
∂2φ

∂x2 (14)

and

s11
∂4U
∂z4

+ (2s13 + s44)
∂4U
∂x2∂z2 + s33

∂4U
∂x4

= d31
∂3φ

∂z3 + d33
∂3φ

∂x2∂z
− d15

∂3φ

∂x2∂z
. (15)

Equations (14) and (15) are usually called governing equations. Let us introduce the following
dimensionless quantities:

X = x
h , Z = z

h , S13 =
s13
s11

, S33 = s33
s11

, S44 = s44
s11

, d31 =
d31
√

s11λ11
, d33 = d33

√
s11λ11

, d15 =
d15
√

s11λ11
,

Φ =
φ
√

s11λ11
h ,λ33 = λ33

λ11
, P = P

h2 s11, b = b
h , M = M

h3 s11, q = qs11, u = u
h , w = w

h , U = Us11
h2

(16)

From Equation (16), Equations (14) and (15) can be transformed into

d31
∂3U
∂Z3 + d33

∂3U
∂X2∂Z

− d15
∂3U
∂X2∂Z

= λ33
∂2Φ
∂Z2 +

∂2Φ
∂X2 (17)

and
∂4U
∂Z4

+ (2S13 + S44)
∂4U

∂X2∂Z2 + S33
∂4U
∂X4

= d31
∂3Φ
∂Z3 + d33

∂3Φ
∂X2∂Z

− d15
∂3Φ
∂X2∂Z

. (18)

The boundary conditions can be transformed into∫ 1/2

−1/2

∂2U
∂Z∂X

dZ = −
P

b
,
∫ 1/2

−1/2

∂2U
∂Z2 dZ = 0,

∫ 1/2

−1/2
Z
∂2U
∂Z2 dZ =

M

b
, at X = 0, (19)

∂2U
∂X2 = −

∂2U
∂X∂Z

= 0, at Z = 1/2, (20)

∂2U
∂X2 = −q,−

∂2U
∂X∂Z

= 0, at Z = −1/2, (21)∫ 1/2

−1/2
(−d15

∂2U
∂Z∂X

−
∂Φ
∂X

)dZ = 0, at X = 0 and X = l/h, (22)

∂Φ
∂Z

= 0, at Z = ±1/2, (23)

and

u = 0, w = 0,
∂w
∂X

= 0, at Z = 0 and X = l/h. (24)

3. Multi-parameter Perturbation Solution

Equations (17) and (18) are two partial differential equations which are usually difficult to solve
analytically. Here, we use the multi-parameter perturbation method to solve them. The piezoelectric
coefficients are usually very small [33], thus, they can be selected as perturbation parameters to meet
the requirement of convergence in perturbation expansions. From the point of view of the perturbation
idea, if the cantilever beam without piezoelectric properties is regarded as an unperturbed system, the
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piezoelectric cantilever beam can be looked upon as a perturbed system. Selecting d31, d33 and d15 as
the perturbation parameters, the Φ and U can be expanded as

Φ = Φ0
0 + ΦI

1d31 + ΦI
2d33 + ΦI

3d15 + ΦII
1 (d31)

2
+ ΦII

2 (d33)
2

+ΦII
3 (d15)

2
+ ΦII

4 d31d33 + ΦII
5 d31d15 + ΦII

6 d33d15

(25)

and
U = U

0
0 + U

I
1d31 + U

I
2d33 + U

I
3d15 + U

II
1 (d31)

2
+ U

II
2 (d33)

2

+U
II
3 (d15)

2
+ U

II
4 d31d33 + U

II
5 d31d15 + U

II
6 d33d15

, (26)

where Φ0
0 and U

0
0, ΦI

i and U
I
i (i = 1, 2, 3), and ΦII

i and U
II
i (i = 1, 2, . . . , 5, 6) are unknown functions of X

and Z.
First, we solve the zero-order perturbation equations. Substituting Equations (25) and (26) into

Equations (17) and (18) and comparing the coefficients of (d31)
0
, (d33)

0
and (d15)

0
, we may obtain the

zero-order perturbation equations
λ33

∂2Φ0
0

∂Z2 +
∂2Φ0

0
∂X2 = 0

∂4U
0
0

∂Z4 + (2S13 + S44)
∂4U

0
0

∂X2∂Z2 + S33
∂4U

0
0

∂X4 = 0
. (27)

The corresponding boundary conditions are

∫ 1/2

−1/2
(−
∂2U

0
0

∂Z∂X
)dZ = −

P

b
,
∫ 1/2

−1/2

∂2U
0
0

∂Z2 dZ = 0,
∫ 1/2

−1/2
Z
∂2U

0
0

∂Z2 dZ =
M

b
, at X = 0, (28)

∂2U
0
0

∂X2 = −
∂2U

0
0

∂X∂Z
= 0, at Z = 1/2, (29)

∂2U
0
0

∂X2 = −q,−
∂2U

0
0

∂X∂Z
= 0, at Z = −1/2, (30)∫ 1/2

−1/2
(−
∂Φ0

0

∂X
)dZ = 0, at X = 0 and X = l/h (31)

and
∂Φ0

0

∂Z
= 0, at Z = ±1/2. (32)

Suppose,  Φ0
0 = X2g0

1(Z) + Xg0
2(Z) + g0

3(Z)

U
0
0 = X2

2 f 0
1 (Z) + X f 0

2 (Z) + f 0
3 (Z)

, (33)

where g0
i (Z) and f 0

i (Z) (i = 1, 2, 3) are unknown functions of Z which can be determined by
Equations (27) and (33), please see Appendix A.

Next, let us solve the first-order perturbation equations. Comparing the coefficients of (d31)
1
,(d33)

1

and (d15)
1
, we may obtain the first-order perturbation equations as follows.

For term (d31)
1
: 

∂3U
0
0

∂Z3 − λ33
∂2ΦI

1
∂Z2 −

∂2ΦI
1

∂X2 = 0

∂4U
I
1

∂Z4 + (2S13 + S44)
∂4U

I
1

∂X2∂Z2 + S33
∂4U

I
1

∂X4 −
∂3Φ0

0
∂Z3 = 0

, (34)
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for term (d33)
1
: 

∂3U
0
0

∂X2∂Z = λ33
∂2ΦI

2
∂Z2 +

∂2ΦI
2

∂X2

∂4U
I
2

∂Z4 + (2S13 + S44)
∂4U

I
2

∂X2∂Z2 + S33
∂4U

I
2

∂X4 −
∂3Φ0

0
∂X2∂Z = 0

, (35)

and for term (d15)
1
: 

−
∂3U

0
0

∂X2∂Z = λ33
∂2ΦI

3
∂Z2 +

∂2ΦI
3

∂X2

∂4U
I
3

∂Z4 + (2S13 + S44)
∂4U

I
3

∂X2∂Z2 + S33
∂4U

I
3

∂X4 +
∂3Φ0

0
∂X2∂Z = 0

. (36)

The corresponding boundary conditions are

∫ 1/2
−1/2 −

∂2U
I
1

∂Z∂X dZ = 0,∫ 1/2
−1/2

∂2U
I
2

∂Z2 dZ = 0,∫ 1/2
−1/2 Z∂2U

I
3

∂Z2 dZ = 0

, at X = 0, (37)

∂2U
I
i

∂X2 = −
∂2U

I
i

∂X∂Z
= 0(i = 1, 2, 3), at Z = 1/2, (38)

∂2U
I
i

∂X2 = 0,−
∂2U

I
i

∂X∂Z
= 0(i = 1, 2, 3), at Z = −1/2, (39)

∫ 1/2
−1/2 (−

∂ΦI
1

∂X )dZ = 0∫ 1/2
−1/2 (−

∂ΦI
2

∂X )dZ = 0∫ 1/2
−1/2 (−

∂2U
0
0

∂Z∂X −
∂ΦI

3
∂X )dZ = 0

, at X = 0 and X = l/h, (40)

and
∂ΦI

i
∂Z

= 0(i = 1, 2, 3), at Z = ±1/2. (41)

Similarly, suppose  ΦI
i = X2gI

3i−2(Z) + XgI
3i−1(Z) + gI

3i(Z)

U
I
i =

X2

2 f I
3i−2(Z) + X f I

3i−1(Z) + f I
3i(Z)

(i = 1, 2, 3), (42)

where gI
i(Z) and f I

i (Z) (i = 1, 2, 3, . . . , 9) are unknown functions of Z which can be determined by
Equations (34)–(36) and (42), please see Appendix A.

Then, we solve the second-order perturbation equations. Comparing the coefficients of (d31)
2,

(d33)
2, (d15)

2, d31d33, d31d15 and d33d15, we may obtain the two-order perturbation equations as follows.
For term (d31)

2: 
∂3U

I
1

∂Z3 = λ33
∂2ΦII

1
∂Z2 +

∂2ΦII
1

∂X2

∂4U
II
1

∂Z4 + (2S13 + S44)
∂4U

II
1

∂X2∂Z2 + S33
∂4U

II
1

∂X4 =
∂3ΦI

1
∂Z3

, (43)

for term (d33)
2: 

∂3U
I
2

∂X2∂Z = λ33
∂2ΦII

2
∂Z2 +

∂2ΦII
2

∂X2

∂4U
II
2

∂Z4 + (2S13 + S44)
∂4U

II
2

∂X2∂Z2 + S33
∂4U

II
2

∂X4 =
∂3ΦI

2
∂X2∂Z

, (44)
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for term (d15)
2: 

−
∂3U

I
3

∂X2∂Z = λ33
∂2ΦII

3
∂Z2 +

∂2ΦII
3

∂X2

∂4U
II
3

∂Z4 + (2S13 + S44)
∂4U

II
3

∂X2∂Z2 + S33
∂4U

II
3

∂X4 = −
∂3ΦI

3
∂X2∂Z

, (45)

for term d31d33: 
∂3U

I
2

∂Z3 +
∂3U

I
1

∂X2∂Z = λ33
∂2ΦII

4
∂Z2 +

∂2ΦII
4

∂X2

∂4U
II
4

∂Z4 + (2S13 + S44)
∂4U

II
4

∂X2∂Z2 + S33
∂4U

II
4

∂X4 =
∂3ΦI

2
∂Z3 +

∂3ΦI
1

∂X2∂Z

, (46)

for term d31d15: 
∂3U

I
3

∂Z3 −
∂3U

I
1

∂X2∂Z = λ33
∂2ΦII

5
∂Z2 +

∂2ΦII
5

∂X2

∂4U
II
5

∂Z4 + (2S13 + S44)
∂4U

II
5

∂X2∂Z2 + S33
∂4U

II
5

∂X4 =
∂3ΦI

3
∂Z3 −

∂3ΦI
1

∂X2∂Z

, (47)

and for term d33d15: 
∂3U

I
3

∂X2∂Z −
∂3U

I
2

∂X2∂Z = λ33
∂2ΦII

6
∂Z2 +

∂2ΦII
6

∂X2

∂4U
II
6

∂Z4 + (2S13 + S44)
∂4U

II
6

∂X2∂Z2 + S33
∂4U

II
6

∂X4 =
∂3ΦI

3
∂X2∂Z −

∂3ΦI
2

∂X2∂Z

. (48)

The corresponding boundary conditions are

∫ 1/2
−1/2

∂2U
II
1

∂Z∂X dZ = 0,∫ 1/2
−1/2

∂2U
II
2

∂Z2 dZ = 0,∫ 1/2
−1/2 Z∂2U

II
3

∂Z2 dZ = 0

, at X = 0, (49)

∂2U
II
i

∂X2 = −
∂2U

II
i

∂X∂Z
= 0(i = 1, 2, 3, 4, 5, 6), at Z = 1/2, (50)

∂2U
II
i

∂X2 = 0,−
∂2U

II
i

∂X∂Z
= 0(i = 1, 2, 3, 4, 5, 6), at Z = −1/2, (51)

∫ 1/2
−1/2

∂ΦII
1

∂X dZ = 0,
∫ 1/2
−1/2

∂ΦII
2

∂X dZ = 0∫ 1/2
−1/2 (

∂2U
I
3

∂X∂Z +
∂ΦII

3
∂X )dZ = 0,

∫ 1/2
−1/2

∂ΦII
4

∂X dZ = 0∫ 1/2
−1/2 (

∂2U
I
1

∂X∂Z +
∂ΦII

5
∂X )dZ = 0,

∫ 1/2
−1/2 (

∂2U
I
2

∂X∂Z +
∂ΦII

6
∂X )dZ = 0

, at X = 0 and X = l/h, (52)

and
∂ΦII

i
∂Z

= 0, at Z = ±1/2. (53)

Suppose, 
ΦII

i = X2gII
3i−2(Z) + XgII

3i−1(Z) + gII
3i(Z)

U
II
i = X2

2 f II
3i−2(Z) + X f II

3i−1(Z) + f II
3i(Z)

(i = 1, 2, 3, 4, 5, 6), (54)

where gII
i (Z) and f II

i (Z) (i = 1, 2, 3, . . . , 18) are unknown functions of Z which can be determined by
Equations (43)–(48) and (54), please see Appendix A.

Thus, we can obtain
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Φ = B0
6 + d31[X2(− 3

λ33
qZ2 + 1

4λ33
q) + X(− 6

bλ33
PZ2 + 1

2bλ33
P) + 1

2(λ33)
2 qZ4

−
1

4(λ33)
2 qZ2

+
(2S13+S44)

2λ33
qZ4 + 6

bλ33
MZ2

−
3(2S13+S44)

20λ33
qZ2 + BI

6] + d33[−
1

2λ33
qZ4 + 3

4λ33
qZ2

−
1

2λ33
qZ + BI

12] + d15[−
1
2 qX2

−
P
b

X + 1
2λ33

qZ2 + 1
2λ33

qZ4
−

3
4λ33

qZ2 + BI
18]

+(d31)
2
BII

6 + (d33)
2
BII

12 + (d15)
2
BII

18 + d31d33BII
24 + d31d15BII

30 + d33d15BII
36

(55)

and

U = X2

2 (−2qZ3 + 3
2 qZ− q

2 ) + X(− 2
b
PZ3 + 3

2b
PZ + C0

8) +
(2S13+S44)

10 qZ5 + 2
b
MZ3

−
(2S13+S44)

20 qZ3 + C0
11Z + C0

12 + d31(XCI
8 + CI

11Z + CI
12) + d33(XCI

20 + CI
23Z + CI

24)

+d15(XCI
32 + CI

35Z + CI
36) + (d31)

2
[XCII

8 + 1
10(λ33)

2 qZ5 +
(2S13+S44)

10λ33
qZ5
−

1
20(λ33)

2 qZ3

−
(2S13+S44)

20λ33
qZ3 + CII

11Z + CII
12] + (d33)

2
(XCII

20 + CII
23Z + CII

24) + (d15)
2
(XCII

32 + CII
35Z + CII

36)

+d31d33(XCII
44 −

1
5λ33

qZ5 + 1
10λ33

qZ3 + CII
47Z + CII

48) + d31d15(XCII
56 +

1
5λ33

qZ5
−

1
10λ33

qZ3

+CII
59Z + CII

60) + d33d15(XCII
68 + CII

71Z + CII
72)

. (56)

Finally, from Equations (55) and (56), we can obtain the expression of displacement components,
stress components, and electric displacement components. The detailed derivation is shown in
Appendix B. Thus, the bending problem of a piezoelectric cantilever beam under combined loads
is solved. It can be seen from the derivation above that the piezoelectric effect is not shown in
the zero-order perturbation solution, that is, the zero-order perturbation solution is the solution of
the cantilever beam without piezoelectric properties which is regarded as the unperturbed system.
The piezoelectric properties are only shown in the first-order and second-order perturbation solutions.
In other words, the mechanical meaning of the first-order and second-order solutions is the influence
of piezoelectric properties on the deformation of piezoelectric cantilever beams. This phenomenon is
consistent with the basic idea of perturbation method.

4. Comparison of the Solution Presented Here and the Existing Solution

The theoretical solution for a piezoelectric cantilever beam under combined loads is given in this
paper by a new method which is usually called the multi-parameter perturbation method. The validity
of the theoretical solution should further be verified. For this purpose, we compare the solution
presented here with the solution given in reference [17].

Before the comparison, we need to make a degradation of the solution presented here.
In reference [17], only the concentrated force is considered. In this paper, however, the concentrated
force, bending moment, and uniformly distributed load are all considered. Thus, for the convenience
of comparison, we let the bending moment and uniformly distributed load equal to zero, that is, let

q = 0, M = 0. (57)

Substituting Equation (57) into Equations (A44) and (A45), the displacement components can be
transformed into

w = (
d33d31
λ33
− s13)

6P
bh3 xz2

− (
d31d31
λ33
− s11)

2P
bh3 x3

+(
d31d31
λ33
− s11)

6P
bh3 l2x− ( d31d31

λ33
− s11)

4P
bh3 l3

(58)
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and
u = (

d31d31
λ33
− s11)

6P
bh3 x2z− ( d33d31

λ33
− s13 − s44 −

d15d31
λ33

) 2P
bh3 z3

−(
d31d31
λ33
− s11)

6P
bh3 l2z− ( d15d31

λ33
+ s44)

3P
2bh z

. (59)

Similarly, substituting Equation (57) into Equations (A46), (A47), and (A48), the stress components can
be written as

σx = −
12P
bh3 xz, (60)

σz = 0, (61)

and
τzx =

6P
bh3 z2

−
3P
2bh

. (62)

Substituting Equation (57) into Equations (A49) and (A50), the expressions of electric displacement
components are

Dx = (d15 +
λ11d31

λ33
)(

6P
bh3 z2

−
3P
2bh

) (63)

and
Dz = 0. (64)

By comparing Equations (58)–(64) with the expressions of displacement components,
stress components, and electric displacement components in reference [17], it can be found that
they are exactly the same, which indicates that the solution obtained here is correct. It should be
mentioned that the structures studied in this paper and in reference [17] are both piezoelectric cantilever
beams, but the structure in this paper is subjected to combined loads and the structure in reference [17]
is subjected only to a concentrated force. In addition, non-dimensionalization is considered, the relevant
experiments are carried out, and a new method called the multi-parameter perturbation method is
given in this paper. These differences mentioned above constitute the advancements of this paper,
compared with reference [17].

5. Experimental Verification

To further verify the validity of the theoretical solution presented here, we carry out the relevant
experiments of piezoelectric cantilever beams. The mechanical model of the theoretical part is shown in
Figure 1, it can be seen that it is a piezoelectric cantilever beam subjected to three kinds of loads. In the
experiment, it is very difficult to apply these three kinds of loads at the same time. Therefore, we apply
only the concentrated force at the cantilever end to carry out the experiments, that is, this experiment
corresponds only to the case where the bending moment and the uniformly distributed load in the
theoretical solution are zero. The details of the experiments are as follows. The main experimental
equipments include a non-contact laser displacement sensor (ZSY Group Ltd, London, UK), a bench
clamp (a cantilever beam clamping device), weights, and the ZLDS10X measuring software (ZSY
Group Ltd, London, UK). The measuring range of the non-contact laser displacement sensor is 1 m,
the accuracy is 0.01%, and the sampling frequency is 2 kHz. The experimental specimens consist of
two groups of PbZrTiO3-5 (Generally abbreviated as PZT-5) piezoelectric ceramic sheets in which one
group has piezoelectric properties and the other group has no piezoelectric properties. The size of
the experimental specimens is 60 mm × 10 mm × 1 mm. The experimental specimen and non-contact
laser displacement sensor are shown in Figure 2, the experimental device is shown in Figure 3, and the
material constants are shown in Table 1.

The clamping length of the experimental specimens is 10 mm, therefore, the length of the
piezoelectric cantilever beam is 50 mm. The deformations of the free end of piezoelectric cantilever
beam are measured at the applied load 0.49 N, 0.98 N, and 1.96 N. The measured experimental data
and theoretical calculation results are shown in Tables 2 and 3, respectively. It should be noted that
the self-weight of the piezoelectric cantilever beam is 0.0367 N, and the ratio of the self-weight to the
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minimum applied load is 0.075, which indicates that the self-weight of the piezoelectric cantilever
beam is very small and thus may be ignored.
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Table 1. Physical properties of PZT-5 materials [33].

Elastic Constant (10−12 m2
·N−1) Piezoelectric Constant (10−12 C·N−1) Dielectric Constant (10−8 F·m−1)

s0
11 s0

12 s0
13 s0

33 s0
44 d0

31 d0
33 d0

15 λ0
11 λ0

33
16.4 −5.74 −7.22 18.8 47.5 −172 374 584 1.505 1.531

Table 2. Comparison of experimental data and theoretical calculation results.

Loads(N)
The Deformation of the Cantilever End

Experimental Data (mm) Theoretical Results (mm) Relative Errors (%)

0.49 0.4069 0.3545 12.87
0.98 0.7527 0.7089 5.82
1.96 1.6072 1.4178 11.79
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Table 3. Comparison of deformation test results between piezoelectric cantilever beam and cantilever
beam without piezoelectric properties.

Loads(N)
The Deformation of the Cantilever End

Piezoelectric Cantilever
Beam (mm)

Cantilever Beam without
Piezoelectric Properties (mm) Difference (mm)

0.49 0.4069 0.5351 0.1282
0.98 0.7527 0.8463 0.0936
1.96 1.6072 1.9796 0.3724

From Table 2, it can be seen that the theoretical results are in good agreement with the experimental
results, and the relative errors under every level load are less than 15% allowed in engineering.
This indicates that the analytical solution presented in this paper is reliable.

Table 3 shows that the deformation of the piezoelectric cantilever beam is smaller than the
cantilever beam without piezoelectric properties. This means that the piezoelectric properties have
a certain effect on the deformation of the piezoelectric cantilever beam, and its effect is, to a certain
extent, hindering the deformation of the cantilever beam. This phenomenon can be explained by
energy conservation. For piezoelectric cantilever beams, part of the work done by external forces is
transformed into the elastic strain energy of piezoelectric cantilever beams, while the other part is
transformed into the electric energy due to the existence of piezoelectric properties. For cantilever
beams without piezoelectric properties, the work done by external forces is basically transformed
into the elastic strain energy of cantilever beams. Therefore, the deformation of cantilever beams
without piezoelectric properties is larger than that of cantilever beams with piezoelectric properties.
The phenomenon mentioned above is commonly known as the piezoelectric stiffening effect peculiar
to piezoelectric materials and structures.

6. Conclusions

In this study, we used a multi-parameter perturbation method to solve the bending deformation
problem of piezoelectric cantilever beams under combined loads. And we compared the solution
presented here with the existing solution from Yang and Liu [17] to validate the rationality of the
presented solution. In addition, we carried out the related experiments of the piezoelectric cantilever
beam, and compared the experimental results with the theoretical solution presented here, and also
investigated the influence of the piezoelectric properties on the deformation of piezoelectric cantilever
beams. The following main conclusions can be drawn.

(i) The theoretical results are in good agreement with the experimental results, which means that
the analytical solution given in this paper is correct and the multi-parameter perturbation method
is effective.

(ii) From the perturbation expansion, it is easy to find that the zero-order perturbation solution
is a pure mechanical solution, in which the piezoelectric effect has not been incorporated. From the
first-order, second-order, and higher order perturbation solutions, the piezoelectric effect is gradually
reflected. This structural form of the multi-parameter perturbation solution presented here is beneficial
to the analysis and understanding of the solved problem.

(iii) The deformation magnitude of a piezoelectric cantilever beam is smaller than that of a
cantilever beam without piezoelectricity, due to the well-known piezoelectric stiffening effect.

Unfortunately, the numerical simulation for the physical system studied here has not been carried
out in this study. In our previous study [34], we used ABAQUS software to simulate the problem of
functionally graded piezoelectric cantilever beams with different properties in tension and compression.
Similarly, the problem studied here may also be simulated by ABAQUS, which is our follow-up
research. In summary, the multi-parameter perturbation method presented in this paper provides
a new way to solve complex non-linear structural problems. The analytical solution of the bending
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problems of piezoelectric cantilever beams under combined loads can provide a theoretical basis and
reference for the analysis and design of sensors or actuators made of piezoelectric polymers.
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Appendix A

(1) The unknown functions g0
i (Z) and f 0

i (Z) (i = 1, 2, 3):
From Equations (27) and (33), we can obtain the unknown functions g0

i (Z) and f 0
i (Z) (i = 1, 2, 3),

g0
1(Z) = B0

1Z + B0
2

g0
2(Z) = B0

3Z + B0
4

g0
3(Z) = −

1
3λ33

B0
1Z3
−

1
λ33

B0
2Z2 + B0

5Z + B0
6

(A1)

and 
f 0
1 (Z) =

1
6 C0

1Z3 + 1
2 C0

2Z2 + C0
3Z + C0

4

f 0
2 (Z) =

1
6 C0

5Z3 + 1
2 C0

6Z2 + C0
7Z + C0

8

f 0
3 (Z) = −

1
120 (2S13 + S44)C0

1Z5
−

1
24 (2S13 + S44)C0

2Z4

+ 1
6 C0

9Z3 + 1
2 C0

10Z2 + C0
11Z + C0

12

, (A2)

where B0
i (i = 1, 2, 3, . . . , 6) and C0

i (i = 1, 2, 3, . . . , 12) are undetermined constants which can be
determined by Equations (28)–(32),

C0
1 = −12q, C0

2 = 0, C0
3 = 3

2 q, C0
4 = −

q
2 , C0

5 = − 12P
b

, C0
6 = 0,

C0
7 = 3

2
P
b

, C0
9 = 12M

b
−

3
10 (2S13 + S44)q, C0

10 = 0
, (A3)

B0
1 = 0, B0

2 = 0, B0
3 = 0, B0

5 = 0. (A4)

(2) The unknown functions gI
i(Z) and f I

i (Z) (i = 1,2,3,. . . ,9):
From Equations (34)–(36) and (42), we can obtain the unknown functions gI

i(Z) and f I
i (Z)

(i = 1, 2, 3, . . . , 9),

gI
1(Z) =

1
4λ33

C0
1Z2 + BI

1Z + BI
2

gI
2(Z) =

1
2λ33

C0
5Z2 + BI

3Z + BI
4

gI
3(Z) = −

1
24(λ33)

2 C0
1Z4
−

1
3λ33

BI
1Z3
−

1
λ33

BI
2Z2
−

(2S13+S44)

24λ33
C0

1Z4

−
(2S13+S44)

6λ33
C0

2Z3 + 1
2λ33

C0
9Z2 + BI

5Z + BI
6

gI
6(Z) = −

1
3λ33

BI
7Z3
−

1
λ33

BI
8Z2 +

C0
1

24λ33
Z4

+
C0

2

6λ33
Z3 +

C0
3

2λ33
Z2 + BI

11Z + BI
12

gI
9(Z) = −

1
3λ33

BI
13Z3

−
1
λ33

BI
14Z2

−
C0

1

24λ33
Z4
−

C0
2

6λ33
Z3
−

C0
3

2λ33
Z2 + BI

17Z + BI
18

, (A5)

gI
i(Z) = BI

2i−1Z + BI
2i(i = 4, 5, 7, 8), (A6)

f I
i (Z) =

1
6

CI
4i−3Z3 +

1
2

CI
4i−2Z2 + CI

4i−1Z + CI
4i(i = 1, 2, 4, 5, 7, 8), (A7)
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and 

f I
3(Z) = −

(2S13+S44)
120 CI

1Z5
−

(2S13+S44)
24 CI

2Z4
−

1
12λ33

B0
1Z4

+ 1
6 CI

9Z3 + 1
2 CI

10Z2 + CI
11Z + CI

12

f I
6(Z) = −

(2S13+S44)
120 CI

13Z5
−

(2S13+S44)
24 CI

14Z4 + 1
12 B0

1Z4

+ 1
6 CI

21Z3 + 1
2 CI

22Z2 + CI
23Z + CI

24

f I
9(Z) = −

(2S13+S44)
120 CI

25Z5
−

(2S13+S44)
24 CI

26Z4
−

B0
1

12 Z4

+ 1
6 CI

33Z3 + 1
2 CI

34Z2 + CI
35Z + CI

36

. (A8)

where BI
i (i = 1, 2, 3, . . . , 18) and CI

i (i = 1, 2, 3, . . . , 36) are undetermined constants which can be
determined by Equations (37)–(41),

CI
1 = 0, CI

2 = 0, CI
3 = 0, CI

4 = 0, CI
5 = 0, CI

6 = 0, CI
7 = 0, CI

9 = 0, CI
10 =

1

12λ33
B0

1, (A9)

BI
1 =

C0
2

2λ33
, BI

2 = −
C0

1

48λ33
, BI

3 =
C0

6

λ33
, BI

4 = −
C0

5

24λ33
, BI

5 =
C0

10

λ33
+

C0
2

8(λ33)
2 , (A10)

CI
13 = 0, CI

14 = 0, CI
15 = 0, CI

16 = 0, CI
17 = 0, CI

18 = 0, CI
19 = 0, CI

21 = 0, CI
22 = −

1
12

B0
1, (A11)

BI
7 = 0, BI

8 = 0, BI
9 = 0, BI

10 = 0, BI
11 =

C0
4

λ33
, (A12)

CI
25 = 0, CI

26 = 0, CI
27 = 0, CI

28 = 0, CI
29 = 0, CI

30 = 0, CI
31 = 0, CI

33 = 0, CI
34 =

B0
1

12
, (A13)

BI
13 = 0, BI

14 = −
1

48
C0

1 −
1
2

C0
3, BI

15 = 0, BI
16 = −

1
24

C0
5 −C0

7, BI
17 =

C0
2

8λ33
. (A14)

(3) The unknown functions gII
i (Z) and f II

i (Z) ( i = 1,2,3,. . . ,18):
From Equations (43)–(48) and (54), we may obtain the unknown functions of gII

i (Z) and f II
i (Z)

(i = 1, 2, 3, . . . , 18),  gII
i (Z) = KiZ2 + BII

2i−1Z + BII
2i(i = 1, 2, 10, 11, 13, 14)

gII
i (Z) = BII

2i−1Z + BII
2i(i = 4, 5, 7, 8, 16, 17)

, (A15)



gII
3 (Z) = −

CI
1

24(λ33)
2 Z4
−

1
3λ33

BII
1 Z3
−

1
λ33

BII
2 Z2
−

(2S13+S44)

24λ33
CI

1Z4

−
(2S13+S44)

6λ33
CI

2Z3
−

1
3(λ33)

2 B0
1Z3 + 1

2λ33
CI

9Z2 + BII
5 Z + BII

6

gII
6 (Z) = −

1
3λ33

BII
7 Z3
−

1
λ33

BII
8 Z2 + 1

24λ33
CI

13Z4 + 1
6λ33

CI
14Z3 + 1

2λ33
CI

15Z2 + BII
11Z + BII

12

gII
9 (Z) = −

1
3λ33

BII
13Z3

−
1
λ33

BII
14Z2

−
1

24λ33
CI

25Z4
−

CI
26

6λ33
Z3
−

CI
27

2λ33
Z2 + BII

17Z + BII
18

gII
12(Z) = −

CI
13

24(λ33)
2 Z4
−

1
3λ33

BII
19Z3

−
1
λ33

BII
20Z2 + 1

24λ33
CI

1Z4 + 1
6λ33

CI
2Z3 + 1

2λ33
CI

3Z2

−
(2S13+S44)

24λ33
CI

13Z4
−

(2S13+S44)

6λ33
CI

14Z3 + 1
3λ33

B0
1Z3 + 1

2λ33
CI

21Z2 + BII
23Z + BII

24

gII
15(Z) = −

CI
25

24(λ33)
2 Z4
−

1
3λ33

BII
25Z3

−
1
λ33

BII
26Z2

−
(2S13+S44)

24λ33
CI

25Z4
−

(2S13+S44)

6λ33
CI

26Z3

−
1

3λ33
B0

1Z3 +
CI

33

2λ33
Z2
−

1
24λ33

CI
1Z4
−

CI
2

6λ33
Z3
−

CI
3

2λ33
Z2 + BII

29Z + BII
30

gII
18(Z) = −

1
3λ33

BII
31Z3

−
1
λ33

BII
32Z2 +

CI
25

24λ33
Z4 +

CI
26

6λ33
Z3 +

CI
27

2λ33
Z2

−
CI

13

24λ33
Z4
−

CI
14

6λ33
Z3
−

CI
15

2λ33
Z2 + BII

35Z + BII
36

, (A16)
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f II
i (Z) = 1

6 CII
4i−3Z3 + 1

2 CII
4i−2Z2 + CII

4i−1Z

+CII
4i(i = 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17)

, (A17)



f II
3 (Z) = − (2S13+S44)

120 CII
1 Z5
−

(2S13+S44)
24 CII

2 Z4
−

C0
1

120(λ33)
2 Z5
−

1
12λ33

BI
1Z4

−
(2S13+S44)

120λ33
C0

1Z5
−

(2S13+S44)

24λ33
C0

2Z4 + 1
6 CII

9 Z3 + 1
2 CII

10Z2 + CII
11Z + CII

12

f II
6 (Z) = − (2S13+S44)

120 CII
13Z5

−
(2S13+S44)

24 CII
14Z4 + 1

12 BI
7Z4

+ 1
6 CII

21Z3 + 1
2 CII

22Z2 + CII
23Z + CII

24

f II
9 (Z) = − (2S13+S44)

120 CII
25Z5

−
(2S13+S44)

24 CII
26Z4

−
1

12 BI
13Z4

+ 1
6 CII

33Z3 + 1
2 CII

34Z2 + CII
35Z + CII

36

f II
12(Z) = −

(2S13+S44)
120 CII

37Z5
−

(2S13+S44)
24 CII

38Z4
−

1
12λ33

BI
7Z4 +

C0
1

60λ33
Z5

+
C0

2

24λ33
Z4 + 1

12 BI
1Z4 + 1

6 CII
45Z3 + 1

2 CII
46Z2 + CII

47Z + CII
48

f II
15(Z) = −

(2S13+S44)
120 CII

49Z5
−

(2S13+S44)
24 CII

50Z4
−

1
12λ33

BI
13Z4

−
C0

1

60λ33
Z5

−
C0

2

24λ33
Z4
−

1
12 BI

1Z4 + 1
6 CII

57Z3 + 1
2 CII

58Z2 + CII
59Z + CII

60

f II
18(Z) = −

(2S13+S44)
120 CII

61Z5
−

(2S13+S44)
24 CII

62Z4 + 1
12 BI

13Z4

−
1

12 BI
7Z4 + 1

6 CII
69Z3 + 1

2 CII
70Z2 + CII

71Z + CII
72

, (A18)

and

K1 =
CI

1

4λ33
, K2 =

CI
5

2λ33
, K10 =

CI
13

4λ33
, K11 =

CI
17

2λ33
, K13 =

CI
25

4λ33
, K14 =

CI
29

2λ33
, (A19)

where BII
i (i = 1, 2, 3, . . . , 36) and CII

i (i = 1, 2, 3, . . . , 72) are undetermined constants which can be
determined by Equations (49)–(53),

CII
1 = 0, CII

2 = 0, CII
3 = 0, CII

4 = 0, CII
5 = 0, CII

6 = 0, CII
7 = 0,

CII
9 = 1

40(λ33)
2 C0

1 +
(2S13+S44)

40λ33
C0

1, CII
10 = 1

12λ33
BI

1 +
(2S13+S44)

24λ33
C0

2
, (A20)

BII
1 =

CI
2

2λ33
, BII

2 = −
CI

1

48λ33
, BII

3 =
CI

6

λ33
, BII

4 = −
CI

5

24λ33
, BII

5 =
CI

10

λ33
+

CI
2

8(λ33)
2 , (A21)

CII
13 = 0, CII

14 = 0, CII
15 = 0, CII

16 = 0, CII
17 = 0, CII

18 = 0, CII
19 = 0, CII

21 = 0, CII
22 = −

1
12

BI
7, (A22)

BII
7 = 0, BII

8 = 0, BII
9 = 0, BII

10 = 0, BII
11 =

CI
16

λ33
, (A23)

CII
25 = 0, CII

26 = 0, CII
27 = 0, CII

28 = 0, CII
29 = 0, CII

30 = 0, CII
31 = 0, CII

33 = 0, CII
34 =

1
12

BI
13, (A24)

BII
13 = 0, BII

14 = −
1
48

CI
25 −

1
2

CI
27, BII

15 = 0, BII
16 = −

1
24

CI
29 −CI

31, BII
17 =

CI
26

8λ33
, (A25)

CII
37 = 0, CII

38 = 0, CII
39 = 0, CII

40 = 0, CII
41 = 0, CII

42 = 0, CII
43 = 0,

CII
45 = −

C0
1

20λ33
, CII

46 = 1
12λ33

BI
7 −

C0
2

24λ33
−

1
12 BI

1

, (A26)

BII
19 =

CI
14

2λ33
, BII

20 = −
CI

13

48λ33
, BII

21 =
CI

18

λ33
, BII

22 = −
CI

17

24λ33
, BII

23 =
CI

22

λ33
+

CI
4

λ33
+

CI
14

8(λ33)
2 , (A27)
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CII
49 = 0, CII

50 = 0, CII
51 = 0, CII

52 = 0, CII
53 = 0, CII

54 = 0, CII
55 = 0,

CII
57 =

C0
1

20λ33
, CII

58 = 1
12λ33

BI
13 +

C0
2

24λ33
+ 1

12 BI
1

, (A28)

BII
25 =

CI
26

2λ33
, BII

26 = −
CI

1
48 −

CI
3

2 −
CI

25

48λ33
, BII

27 =
CI

30

λ33

BII
28 = − 1

24 CI
5 −CI

7 −
CI

29

24λ33
, BII

29 =
CI

34

λ33
+

CI
26

8(λ33)
2 +

CI
2

8λ33

, (A29)

CII
61 = 0, CII

62 = 0, CII
63 = 0, CII

64 = 0, CII
65 = 0, CII

66 = 0, CII
67 = 0,

CII
69 = 0, CII

70 = − 1
12 BI

13 +
1
12 BI

7

, (A30)

and
BII

31 = 0, BII
32 = − 1

48 CI
13 −

1
2 CI

15, BII
33 = 0,

BII
34 = − 1

24 CI
17 −CI

19, BII
35 =

CI
28

λ33
+

CI
14

8λ33

. (A31)

Appendix B

From Equations (3)–(4), (16), and (55)–(56), we have

∂w
∂Z = S13

∂2U
∂Z2 + S33

∂2U
∂X2 − d33

∂Φ
∂Z

= −6S13qX2Z− 12
b

S13PXZ + 2(2S13 + S44)S13qZ3
−

3(2S13+S44)
10 S13qZ

+ 12
b

S13MZ + S13(d31)
2
[ 2
(λ33)

2 qZ3 +
2(2S13+S44)

λ33
qZ3
−

3
10(λ33)

2 qZ− 3(2S13+S44)

10λ33
qZ]

+S13d31d33(−
4
λ33

qZ3 + 3
5λ33

qZ) + S13d31d15(
4
λ33

qZ3
−

3
5λ33

qZ) − 2S33qZ3 + 3
2 S33qZ− S33

q
2

−d33d31[−
6
λ33

qX2Z− 12
bλ33

PXZ + 2
(λ33)

2 qZ3
−

1
2(λ33)

2 qZ +
2(2S13+S44)

λ33
qZ3 + 12

bλ33
MZ

−
3(2S13+S44)

10λ33
qZ] − d33d33[−

2
λ33

qZ3 + 3
2λ33

qZ− 1
2λ33

q] − d33d15[
1
λ33

qZ + 2
λ33

qZ3
−

3
2λ33

qZ]

(A32)

and
∂u
∂X = ∂2U

∂Z2 + S13
∂2U
∂X2 − d31

∂Φ
∂Z

= −6qX2Z− 12
b

PXZ + 2(2S13 + S44)qZ3 + 12
b

MZ− 3(2S13+S44)
10 qZ + (d31)

2
[ 2
(λ33)

2 qZ3

+
2(2S13+S44)

λ33
qZ3
−

3
10(λ33)

2 qZ− 3(2S13+S44)

10λ33
qZ] + d31d33(−

4
λ33

qZ3 + 3
5λ33

qZ)

+d31d15(
4
λ33

qZ3
−

3
5λ33

qZ) − 2S13qZ3 + 3
2 S13qZ− S13

q
2 − d31d31[−

6
λ33

qX2Z

−
12

bλ33
PXZ + 2

(λ33)
2 qZ3

−
1

2(λ33)
2 qZ +

2(2S13+S44)

λ33
qZ3 + 12

bλ33
MZ− 3(2S13+S44)

10λ33
qZ]

−d31d33[−
2
λ33

qZ3 + 3
2λ33

qZ− 1
2λ33

q] − d31d15[
1
λ33

qZ + 2
λ33

qZ3
−

3
2λ33

qZ]

. (A33)

Integrating Equations (A32) and (A33) respectively, we may obtain

w = − 6
b
S13PXZ2 +

(2S13+S44)
2 S13qZ4 + 6

b
S13MZ2

−
3(2S13+S44)

20 S13qZ2
− 3S13qX2Z2

+S13(d31)
2
[ 1

2(λ33)
2 qZ4 +

(2S13+S44)

2λ33
qZ4
−

3
20(λ33)

2 qZ2
−

3(2S13+S44)

20λ33
qZ2]

+S13d31d33(−
1
λ33

qZ4 + 3
10λ33

qZ2) + S13d31d15(
1
λ33

qZ4
−

3
10λ33

qZ2) − S33
2 qZ4

+ 3
4 S33qZ2

− S33
q
2 Z− d33d31[−

3
λ33

qX2Z2
−

6
bλ33

PXZ2 + 1
2(λ33)

2 qZ4
−

1
4(λ33)

2 qZ2

+
(2S13+S44)

2λ33
qZ4 + 6

bλ33
MZ2

−
3(2S13+S44)

20λ33
qZ2] − d33d33[−

1
2λ33

qZ4

+ 3
4λ33

qZ2
−

1
2λ33

qZ] − d33d15[
1

2λ33
qZ2 + 1

2λ33
qZ4
−

3
4λ33

qZ2] + G0(X)

(A34)
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and

u = −2qX3Z− 6
b
PX2Z + 2(2S13 + S44)qXZ3 + 12

b
MXZ− 3(2S13+S44)

10 qXZ

+(d31)
2
[ 2
(λ33)

2 qXZ3 +
2(2S13+S44)

λ33
qXZ3

−
3

10(λ33)
2 qXZ− 3(2S13+S44)

10λ33
qXZ]

+d31d33(−
4
λ33

qXZ3 + 3
5λ33

qXZ) + d31d15(
4
λ33

qXZ3
−

3
5λ33

qXZ) − 2S13qXZ3

+ 3
2 S13qXZ− S13

q
2 X − d31d31[−

2
λ33

qX3Z− 6
bλ33

PX2Z + 2
(λ33)

2 qXZ3
−

1
2(λ33)

2 qXZ

+
2(2S13+S44)

λ33
qXZ3 + 12

bλ33
MXZ− 3(2S13+S44)

10λ33
qXZ] − d31d33[−

2
λ33

qXZ3

+ 3
2λ33

qXZ− 1
2λ33

qX] − d31d15[
1
λ33

qXZ + 2
λ33

qXZ3
−

3
2λ33

qXZ] + G1(Z)

, (A35)

From Equations (5) and (16), one has

−2qX3 + 2
λ33

d31d31qX3
−

6
b
PX2 + 6

bλ33
d31d31PX2 + 12

b
MX + 9

10 S13qX + 12
10 S44qX

+ 1
5(λ33)

2 d31d31qX − 9
10λ33

d31d33qX + 2
5λ33

d31d15qX − 12
bλ33

d31d31MX − d15d15qX +
dG0(X)

dX

= [ 6
b
S13P + 6

b
S44P− 6

bλ33
d33d31P + 6

bλ33
d15d31P]Z2

−
3
2b

S44P− 3
2bλ33

d15d31P− dG1(Z)
dZ = A

, (A36)

where A is an undetermined constant. From Equation (A36), we have

dG0(X)
dX = [2q− 2

λ33
d31d31q]X3 + [ 6

b
P− 6

bλ33
d31d31P]X2 + [− 12

b
M− 9

10 S13q− 12
10 S44q

−
1

5(λ33)
2 d31d31q + 9

10λ33
d31d33q− 2

5λ33
d31d15q + 12

bλ33
d31d31M + d15d15q]X + A

dG1(Z)
dZ = [ 6

b
S13P + 6

b
S44P− 6

bλ33
d33d31P + 6

bλ33
d15d31P]Z2

−
3
2b

S44P− 3
2bλ33

d15d31P−A

. (A37)

Integrating Equation (A37), it can be obtained

G0(X) = [ 1
2 q− 1

2λ33
d31d31q]X4 + [ 2

b
P− 2

bλ33
d31d31P]X3 + [− 6

b
M− 9

20 S13q− 6
10 S44q

−
1

10(λ33)
2 d31d31q + 9

20λ33
d31d33q− 1

5λ33
d31d15q + 6

bλ33
d31d31M + 1

2 d15d15q]X2 + AX + B

G1(Z) = [ 2
b
S13P + 2

b
S44P− 2

bλ33
d33d31P + 2

bλ33
d15d31P]Z3

+[− 3
2b

S44P− 3
2bλ33

d15d31P−A]Z + C

. (A38)

Thus, we can finally obtain

w = −3S13qX2Z2
−

6
b
S13PXZ2 +

(2S13+S44)
2 S13qZ4 + 6

b
S13MZ2

−
3(2S13+S44)

20 S13qZ2

+S13(d31)
2
[ 1

2(λ33)
2 qZ4 +

(2S13+S44)

2λ33
qZ4
−

3
20(λ33)

2 qZ2
−

3(2S13+S44)

20λ33
qZ2] − S33

2 qZ4

+S13d31d33(−
1
λ33

qZ4 + 3
10λ33

qZ2) + S13d31d15(
1
λ33

qZ4
−

3
10λ33

qZ2) + 3
4 S33qZ2

− S33
q
2 Z

−d33d31[−
3
λ33

qX2Z2
−

6
bλ33

PXZ2 + 1
2(λ33)

2 qZ4
−

1
4(λ33)

2 qZ2 +
(2S13+S44)

2λ33
qZ4 + 6

bλ33
MZ2

−
3(2S13+S44)

20λ33
qZ2] − d33d33[−

1
2λ33

qZ4 + 3
4λ33

qZ2
−

1
2λ33

qZ] − d33d15[
1

2λ33
qZ2 + 1

2λ33
qZ4

−
3

4λ33
qZ2] + [ 1

2 q− 1
2λ33

d31d31q]X4 + [ 2
b
P− 2

bλ33
d31d31P]X3 + [− 6

b
M− 9

20 S13q− 6
10 S44q

−
1

10(λ33)
2 d31d31q + 9

20λ33
d31d33q− 1

5λ33
d31d15q + 6

bλ33
d31d31M + 1

2 d15d15q]X2 + AX + B

(A39)
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and

u = −2qX3Z− 6
b
PX2Z + 2(2S13 + S44)qXZ3 + 12

b
MXZ− 3(2S13+S44)

10 qXZ− 2S13qXZ3

+(d31)
2
[ 2
(λ33)

2 qXZ3 +
2(2S13+S44)

λ33
qXZ3

−
3

10(λ33)
2 qXZ− 3(2S13+S44)

10λ33
qXZ] − S13

q
2 X

+d31d33(−
4
λ33

qXZ3 + 3
5λ33

qXZ) + d31d15(
4
λ33

qXZ3
−

3
5λ33

qXZ) + 3
2 S13qXZ

−d31d31[−
2
λ33

qX3Z− 6
bλ33

PX2Z + 2
(λ33)

2 qXZ3
−

1
2(λ33)

2 qXZ +
2(2S13+S44)

λ33
qXZ3

+ 12
bλ33

MXZ− 3(2S13+S44)

10λ33
qXZ] − d31d33[−

2
λ33

qXZ3 + 3
2λ33

qXZ− 1
2λ33

qX]

−d31d15[
1
λ33

qXZ + 2
λ33

qXZ3
−

3
2λ33

qXZ] + [ 2
b
S13P + 2

b
S44P− 2

bλ33
d33d31P

+ 2
bλ33

d15d31P]Z3 + [− 3
2b

S44P− 3
2bλ33

d15d31P−A]Z + C

. (A40)

Substituting Equations (A39) and (A40) into Equation (24), we have

A = −[2q− 2
λ33

d31d31q] l3
h3 − [

6
b
P− 6

bλ33
d31d31P] l2

h2 − [−
12
b

M− 9
10 S13q− 6

5 S44q

−
1

5(λ33)
2 d31d31q + 9

10λ33
d31d33q− 2

5λ33
d31d15q + 12

bλ33
d31d31M + d15d15q] l

h

, (A41)

B = [ 3
2 q− 3

2λ33
d31d31q] l4

h4 + [ 4
b
P− 4

bλ33
d31d31P] l3

h3 − [
6
b
M + 9

20 S13q + 6
10 S44q

+ 1
10(λ33)

2 d31d31q− 9
20λ33

d31d33q + 1
5λ33

d31d15q− 6
bλ33

d31d31M− 1
2 d15d15q] l2

h2

, (A42)

and

C = S13
q
2

l
h
−

1

2λ33
d31d33q

l
h

. (A43)

From Equations (16), (A41), (A42), and (A43), Equations (A39) and (A40) can be transformed into

w = −3s13q 1
h3 x2z2

−
6
b s13P 1

h3 xz2 +
(2s13+s44)

2s11
s13q 1

h3 z4 + 6
b s13

M
h3 z2
−

3(2s13+s44)
20s11

s13q 1
h z2

+ λ11

2(λ33)
2

s13
s11

(d31)
2q 1

h3 z4 +
(2s13+s44)s13

2λ33(s11)
2 q(d31)

2 1
h3 z4
−

3λ11s13

20(λ33)
2s11

(d31)
2q 1

h z2
−

s33
2 qz

−
3(2s13+s44)

20λ33(s11)
2 s13(d31)

2q 1
h z2
−

s13
λ33s11

d31d33q 1
h3 z4 +

3s13
10λ33s11

d31d33q 1
h z2
−

s33
2 q 1

h3 z4

+
s13

λ33s11
d31d15q 1

h3 z4
−

3s13
10λ33s11

d31d15q 1
h z2 + 3s33

4 q 1
h z2 + 3

λ33
d33d31q 1

h3 x2z2

+ 6
bλ33

d33d31
P
h3 xz2

−
λ11

2(λ33)
2 d33d31q 1

h3 z4 + λ11

4(λ33)
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and
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Similarly, the expression of stress components can be obtained
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σz = −
2q
h3 z3 +

3q
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z−
q
2

, (A47)

and

τzx =
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−
3q
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−
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. (A48)

The expressions of electric displacement components are
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and
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