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ABSTRACT

Motivation: Tumors acquire many chromosomal amplifications, and

those acquired early in the lifespan of the tumor may be not only

important for tumor growth but also can be used for diagnostic

purposes. Many methods infer the order of the accumulation of

abnormalities based on their occurrence in a large cohort of patients.

Recently, Durinck et al. (2011) and Greenman et al. (2012) developed

methods to order a single tumor’s chromosomal amplifications based

on the patterns of mutations accumulated within those regions. This

method offers an unprecedented opportunity to assess the etiology of

a single tumor sample, but has not been widely evaluated.

Results: We show that the model for timing chromosomal amplifica-

tions is limited in scope, particularly for regions with high levels of

amplification. We also show that the estimation of the order of

events can be sensitive for events that occur early in the progression

of the tumor and that the partial maximum likelihood method

of Greenman et al. (2012) can give biased estimates, particularly for

moderate read coverage or normal contamination. We propose a

maximum-likelihood estimation procedure that fully accounts for

sequencing variability and show that it outperforms the partial max-

imum-likelihood estimation method. We also propose a Bayesian

estimation procedure that stabilizes the estimates in certain settings.

We implement these methods on a small number of ovarian tumors,

and the results suggest possible differences in how the tumors

acquired amplifications.

Availability and implementation: We provide implementation of

these methods in an R package cancerTiming, which is available

from the Comprehensive R Archive Network (CRAN) at http://CRAN.R-

project.org/.

Contact: epurdom@stat.Berkeley.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Tumors accumulate large numbers of mutations and other

chromosomal abnormalities due to defects in the genomic

repair mechanisms of tumor cells. Not all of these abnormalities

are believed to be crucial for tumor growth and progression, and

a question of great importance is to try to identify the critical

abnormalities. One possible indicator of the importance of an

abnormality is when it occurred, relative to other abnormalities.

The most straightforward approach for determining the progres-

sion of these abnormalities is to evaluate multiple samples from

the same individual, such as primary and metastatic samples

(Frumkin et al., 2008; Gerlinger et al., 2012; Nishizaki et al.,

1997; Sasatomi et al., 2002), sub-clonal populations (Campbell

et al., 2008), or different portions of the same tumor (Navin and

Hicks, 2010; Siegmund et al., 2009).

It is usually difficult to have data on multiple time points in the

progression of an individual tumor; rather it is more common to

have cross-sectional data with a single time point from multiple

individuals. In this case, we cannot directly observe the accumu-

lation of genomic abnormalities and must infer it. There has been

a great deal of interest in identifying driver mutations and events

based on the frequency of their occurrence across patients

(e.g. Beroukhim et al., 2007; Cancer Genome Atlas Research

Network, 2008, 2011; Taylor et al., 2008). Many statistical meth-

odologies rigorously analyze frequencies of aberrations to deter-

mine those that are significantly represented in the population,

with specific statistical methods developed for mutations, copy-

number abnormalities and others types of genomic profiles

(Beroukhim et al., 2007; Brodeur et al., 1982; Huang et al.,

2007; Newton and Lee, 2000; Newton et al., 1994, 1998;

Taylor et al., 2008). Yet, these techniques do not explicitly

attempt to estimate the order of occurrence.
Many methods do explicitly estimate a common temporal

ordering among samples based on the co-occurrence across

patients. Fearon and Vogelstein (1990) first proposed a temporal

ordering of mutations based on the mutations in colorectal

tumors from different stages. Since then, a great deal of meth-

odological work has formalized this work. For example, onco-

genetic tree models (Desper et al., 2000) cast this notion in a

probabilistic setting, which later work extended and generalized

(Beerenwinkel et al., 2005a, b, 2006; Gerstung et al., 2009; Hjelm

et al., 2006; Liu et al., 2009; Newton, 2002; Rahnenführer et al.,

2005; Simon et al., 2000). Bilke (2005) modeled the critical elem-

ents of tumor progression in neuroblastoma by analyzing the sets

of shared mutations between the stages of a tumor and finding

the most likely model of progression between stages of aberra-

tions. Other approaches rely on stochastic models of cellular*To whom correspondence should be addressed.
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growth, such as the algorithm RESIC (Attolini et al., 2010),
which models the overall accumulation of abnormalities in a
population of tumors based on a probabilistic model of cell div-

ision and fitness of mutations. This is not an exhaustive review,
as many other approaches to this problem exist, but a common
feature is estimating a common temporal ordering by comparing

across many samples.
The simulation study of Sprouffske et al. (2011) compares

estimates of tumor progression that use multiple samples from

a single tumor/patient with those obtained from cross-sectional
samples from many independent tumors and finds that the cross-
sectional estimates can be quite misleading due to the heterogen-

eity of paths to tumorigenesis seen in tumors. In Durinck et al.
(2011), we introduced a novel approach for temporal ordering
of genomic abnormalities that instead focused on assessing from

a single sample of a single individual the internal ordering of
chromosomal abnormalities. In that work, we dealt with the
narrow case of ordering regions of copy-neutral loss-of-hetero-

zygosity (CNLOH), when one copy of the chromosome is deleted
and replaced by the other copy. Greenman et al. (2012) gave a
generalization to general chromosomal amplifications, and in

Nik-Zainal et al. (2012) applied the technique to 21 breast
cancer samples.
The model proposed by Durinck et al. (2011) and Greenman

et al. (2012) is general in principle and offers a remarkable ability
to analyze the history of a single tumor. However, there has been
little examination of the performance of the estimates of the

temporal orderings. We show that with higher levels of amplifi-
cation, most events result in non-identifiable models, meaning
that most regions with high levels of amplifications cannot be

timed in this way. Furthermore, differences in estimation pro-
cedures can have important effects on the quality of the estimate,
particularly for events that occur early in tumorigenesis, and

therefore are of particular biological interest. The method of
Greenman et al. (2012) uses a partial maximum-likelihood esti-
mation (MLE) technique, which can perform badly for early

(and late) events. We introduce a full MLE procedure that ac-
counts for sequencing variation, which we show performs better
for estimating early events, particularly for samples with moder-

ate read coverage. We also introduce a Bayesian estimation pro-
cedure, which can, in some situations, stabilize estimates for early
events when there are low numbers of mutations in a region.

The implementation of these methods on ovarian tumors,
which contain a large number of amplifications, allows for the
examination of the general pattern of amplification in ovarian

tumors and suggests that there might be two distinct patterns of
amplification present: steady accumulation of amplifications
over time versus whole-genome amplification.

Traditional copy-number analysis examines regions of the
normal genome as to whether they are amplified in the tumor,
and as such is largely our focus; indeed, this is the only alterna-

tive in the case of exon sequencing. If limited to this approach,
only regions with one of three types of allelic copy number are
viable candidates for the temporal analysis. However, an ampli-

fication and insertion of one region of the genome into another
creates a different genome with connections between regions that
do not exist in the normal genome. In the case of whole-genome

sequencing, reads that span such breakpoints will be sequenced
and algorithms have been proposed to use these breakpoints to

estimate the relationships between these separate regions
(Greenman et al., 2012). The additional information regarding

the connections between regions, when available, has the poten-
tial to make specific estimates of timing more feasible.

2 METHODS

We consider regions that have chromosomal copy-number changes, in

other words a region in the genome that has been amplified or deleted a

known number of times resulting in S copies of the region. What we

observe as a single region with abnormal copy number is generally the

culmination of a series of K events resulting in the final observed copy

number. This results in Kþ 1 stages in the life of the tumor where the

region’s copy number is stable, and the goal is to estimate the proportion

of the lifetime of the tumor spent in each stage. As we make clear later, we

are generally only able to consider regions that have a history of only

amplifications, but for now we will keep the terminology general.

At each stage, individual point mutations could have been introduced

into one of the existing copies. The amount of time for which the tumor

rested in a particular stage will determine the probability of a mutation

accumulating in that region during that time, as will the mutation rate of

the tumor at that time. More precisely, let the vector � ¼ ð�0, . . . ,�KÞ

consist of the probabilities that a mutation originated in the correspond-

ing stage of the tumor progression. Comparing vectors � calculated for

different regions allows for precise comparison of the temporal order of

aberrations in different regions. Of particular interest might be �0, the

proportion of time before any chromosomal change.

2.1 Model

We now describe a basic probablistic model for linking the vector � to the

observed set of N mutations, as proposed by Durinck et al. (2011) for

CNLOH events and generalized by Greenman et al. (2012).

Assume there are N total mutations in the region. Let Pi be the allele

frequency for a mutated location i, defined as the proportion of the

sequenced copies that are mutated in that location. We can only consider

locations that have been mutated and have Pi40; locations that have

been mutated in the past but have Pi ¼ 0 at the time of observing the

tumor cannot be distinguished from locations that were never mutated.

We do not assume that we know which of the S copies hold the mutation

or from which of the original copies (maternal or paternal) the mutation

is descended. The set of possible values for of Pi are given by

f1=S, . . . ,S=Sg for a pure tumor sample. For generality, we will denote

the set of them as fa1, . . . , aSg to handle possible contamination in our

sample (see Supplementary Appendix 3). Depending on the types of

copy-number changes that have occurred, only a subset of the set

fa1, . . . , aSg may actually be possible. For example, if only histories

with amplifications events are considered, then S/S is not possible.

Then Pi is a multinomial random variable defined by a probability

vector q ¼ ðqða1Þ, . . . , qðaSÞÞ
T that gives the probability of a randomly

acquired mutation having allele frequency for each aj, qðajÞ ¼

PðPi ¼ ajjPi40Þ. The values of the vector q depends on the random

process of mutagenesis over the life of the tumor. Specifically, Pi is com-

pletely determined by two random events: (i) the stage in which mutation

i occurred and (ii) which copy in existence during that stage was mutated.

We can formulate a probability model that links q with the parameter of

interest, �, by making the following assumptions:

(1) Each location was mutated once in the history of the tumor

(2) If a mutation occurred in stage k, it is equally likely to be on any of

the copies in existence during stage k

(3) The probability of a mutation occurring in a stage k is assumed

proportional to �k and the number of copies of the region in ex-

istence during the stage k. As we are concerned only with locations
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i with Pi40, we can use Bayes rule and assumption 2, previously

mentioned, to obtain

Pðmutation at i originated in stage kjPi40Þ ¼ Sk�k=c�

where Sk is the number of copies at stage k that survive to the end point at

which the tumor is observed, and c� is a normalizing constant equal to

PK
k¼0

Sk�k

Let Ckj be the set of copies in existence in stage k that lead to an allele

frequency aj in the observed tumor. All mutations originating from stage

k on the same copy s will have the same allele frequency. We notate that

allele frequency as pðk, sÞ; pðk, sÞ will be the proportion of the existing

S copies that trace their descent from the parental copy s that existed in

stage k. Conditioning we can write that

qðajÞ ¼
XK
k¼0

X
s2Ckj

Pðmutation on copy sjmutated in kth stage,Pi40Þ

� Pðmutated in kth stagejPi40Þ

¼
XK
k¼0

X
s2Ckj

1

Sk

Sk�k
c�
¼

1

c�

XK
k¼0

Ajk�k;where

Ajk ¼ f#copies in stage k that result in allele frequency ajg

We can collect the elements Ajk into an S� ðKþ 1Þ matrix A and write

the model simply as q ¼ A�=c�: As noted earlier, only a subset of the

set f1=S, . . . ,S=Sg may actually be possible. When this is the case, the

corresponding row of A will be all zeros, and can be removed.

2.2 Identifiability

To formulate the model, we must assume that we can determine the

number of copies in stage k that could have resulted in allele frequency

aj to construct the matrix A. This requires precise knowledge of the

history of amplifications. If we have three copies of the maternal copy

(M) and two of the paternal copy (P), these could have been acquired in a

variety of ways. For example, theM copy could be duplicated, then the P

copy and then one of the existing copies of M. This will result in a dif-

ferent matrix A than if the P copy were duplicated, and then the M copy

was duplicated two times (see Supplementary Table S2).

If there is only one event (K¼ 1), then the only possible event histories

are a deletion, a gain, or a CNLOH event where one of the copies deletes

and replaces the other copy simultaneously (a deletion would not result in

an identifiable model, see later in text). These events can generally be dis-

tinguished from each other based on estimating the total copy number S as

well as the allelic copy number (the number of copies of the maternal and

paternal alleles). Similarly, for caseS¼ 4, if we assumeK-2—i.e. two events

where at each event a single copy of the region was amplified—the allelic

copy number is sufficient to distinguish the two possible historymatricesA

corresponding to (1,3) and (2,2) allelic copy numbers. When there is42

events in the history of the region (S44), even if they are simple amplifica-

tions, then there aremultiple event histories that can lead to the same allelic

copy number but different histories A, and thus different resulting prob-

abilities, q, of observed allele frequencies. If only allelic copy number is

available, as with exome sequencing, this means that only these five cases

where K equals 1 or 2 can we know the matrix A.

With whole-genome sequencing, algorithms have been proposed to use

reads spanning the breakpoints to reconstruct the event history A

(Greenman et al., 2012), though not all amplified regions will have a

unique construction. With exome sequencing, however, the event histories

of large amplification regions will not be distinguishable.

Even if the event history matrix A is completely known, the question

remains as to whether � is identifiable, i.e. does complete knowledge of

the probability distribution of the data, q, allow for reconstruction of the

parameter �? It is clear that � is only identifiable if the matrix A has rank

Kþ 1. For this reason, we can only estimate � in cases where there have

been no deletions (Greenman et al., 2012), so only regions with a history

of pure amplification can be considered. An exception is the setting of

CNLOH, where the assumption is that one of the copies deletes and

replaces the other copy simultaneously so the time for the ‘‘stage’’ corre-

sponding to a deletion is zero.

We show that in the case of sequential amplification (where each event

is the addition of only one copy of the region) the sequence of events for

which this will be true is limited: for a total number of copies equal to S,

there is always exactly one history such that A is invertible and it is a

history where all of the gains are on a single line of descent. This neces-

sitates that the minor copy must have copy number 1, but this is not a

sufficient condition if S44. When S44, even if the minor copy number is

equal to 1, there can still be multiple histories associated with it and only

one of these histories will be identifiable (see Fig. 1). This implies that of

the five cases where the A matrix can be identified based solely on allelic

copy number, only three of them are identifiable: CNLOH (2,0), single

gain (1,2), and unbalanced two gains (1,3). For the two tumor types we

analyzed—ovarian and skin—this was around 40% of the amplified

regions, see Supplementary Table S3.

In the sequential amplification setting, the only identifiable matrix A

has a simple form and its inverse has the same simple form,

0 0 � � � 0 1
0 0 � � � 1 0
..
.

. .
. ..

.

0 1 � � � 0 0
1 0 � � � 0 0

0
BBBB@

1
CCCCA
þ ke1x

T; ð1Þ

where e1 is the unit vector. For A, k ¼ 1 and x ¼ ð1; 2; � � � ; S� 1ÞT, and

for A�1, k ¼ 1=S and x ¼ ðS� 1; � � � , 2, 1ÞT. See Supplementary

Appendix 2 for the proof.

Not all amplifications are the result of a single copy gain at each event.

For example, if two copies are adjacent to one another, a further dupli-

cation event can replicate both copies simultaneously. We can consider

that at each event a random set of the existing copies are chosen to be

duplicated. In this setting, we have explored the possible histories via

simulation (see Supplementary Appendix 6 for details). Generally, the

histories that result in identifiable models are a small proportion of all

models simulated, though the histories generated by our simulations may

not be representative of likely biological scenarios. There is no obvious

condition that appears to guarantee identifiability, but the simulations

continue to suggest that identifiability is loosely a property of having a

concentration of duplications along a small number of lineages.

2.3 Modeling sequencing variability

With sequencing data, we will not observe the true allele frequencies Pi,

but rather the mi sequenced fragments that overlap the location i, of

(a) (b) (c)

Fig. 1. Example of three histories of amplification that can lead to copy

number S ¼ 5: starting at the top with normal copy-number state of one

allele from the maternal (M) and one from the paternal (P), at each time

point k there is an amplification of an existing copy resulting in five

copies at the bottom, which represents the point at which the tumor

sample was removed. Only (a) is identifiable because all amplification

occurs on one lineage
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which Xi of them are mutated. Greenman et al. (2012) estimate Pi by first

classifying each mutated location as one of the possible fajg based on

which aj results in the largest likelihood, and then by finding the MLE of

the model given in Section 2.1 using the estimated P̂i as the true Pi. This

will ignore variability in the estimates of Pi, which can have an important

impact if mi is moderate. For example, normal contamination will result

in a set of alleles that encompass a smaller range, making it harder to

infer the true Pi from the Xi without greater sequencing depth.

We propose directly taking into account the variability in the Xi by

modeling the distribution of Xi. These adjustments allow us to reliably

include mutations with lower values of mi, increasing the total number of

mutations and thus the power. This distribution allows us to account for

sequencing error, as well as the fact that we only consider locations where

Xi40. However, in practice this will also make little difference in most

settings unless the coverage is very low.

We model Xi as Binomialðmi, ~PiÞ, where ~Pi is the expected allele fre-

quency after accounting for normal contamination and sequencing error

(see Supplementary Appendix 3). In general the sequencing error will be

fairly small (1–2%), and will only affect small values of Pi (50:2), for

example, if there is a large amount of normal contamination or large copy

number. A larger concern are sub-clonal populations, where some of the

mutations, or even the entire region, are not variant in all tumor cells.

Mild levels of sub-clonal populations that do not contain the region will

not necessarily affect the results badly if there is a large read depth and

the number of events K is small, but in more difficult cases can severely

bias the results, see Supplementary Appendix 3.

2.4 Estimating � from tumors

We can then estimate �̂ using maximum-likelihood techniques; unlike

Greenman et al. (2012), we expand our likelihood to include the sequen-

cing variability and sequencing error described earlier in text. For large

amount of sequencing depth, there is likely to be little difference in the

two methods, but for lower levels of sequencing, explicitly accounting for

the sequencing variability brings improved stability.

We assume in what follows that A defines an identifiable model. As

q / A�, and both q and � must sum to 1, q lies in a constrained set �.

If A is square, we can write this as � ¼ fq : A�1q� 0, 1Tq ¼ 1:g. Then by

the invariance property of the MLE it is sufficient to find the MLE of q,

with the constraint that q̂ 2 � and then solve for �̂. We use an EM algo-

rithm to estimate q̂ from the data X1, . . . ,XN, where the M-step involves a

constrained maximization (see Supplementary Appendix 4 for details).

The most important factor in the ability to estimate the timing of

events is the true value of the � vector. The allele frequencies of mutated

locations follow a multinomial distribution with the number of categories

equal to the number of alleles. When one of the alleles has a low prob-

ability of occurrence, as given by the parameter q, then the estimates of �

become more unstable. Mutations acquired in every mutational stage

contribute to the allele frequency 1/S (or its corresponding allele fre-

quency after adjusting for normal contamination and sequencing error).

The corresponding element of q, notated as q1, absorbs much of the prob-

ability; indeed, when the history is sequential amplification, it is easy to

show that q1 is guaranteed to be largest element of the vector q, meaning

that the most likely allele frequency must always be 1/S. As probabilities in

q are far from balanced regardless of the value of �, then when � has

small values the probabilities in q are even smaller; this will lead to in-

stability in the estimates. Furthermore, as the total copy number of a

region grows, the number of possible alleles does as well, making the

estimation problem even more difficult. To observe all the possible alleles

with a high probability requires a large number of mutationsN as the copy

number grows or a value of � that is small (see Supplementary Fig. S1).

Some of the most important events to time accurately are those that

are early (with small �0), and therefore to counteract this instability, we

introduce a Bayesian model for estimating �. Specifically, we assume that

� follows a Dirichlet distribution that puts uniform probability on the

K-simplex where � lies. This is commonly done in the case of simple

multinomial estimation, where a Dirichlet prior is equivalent to adding

pseudo-counts to the data to stabilize the estimates. The Dirichlet distri-

bution is not a conjugate prior for our distribution, and therefore we

sample from the posterior distribution of � using sampling importance

resampling to calculate the posterior mean and credible intervals (see

Supplementary Appendix 5 for details).

3 RESULTS

3.1 Simulation data

We simulated mutation data for different histories using the

model described earlier in text: calculating the q vector of multi-
nomial probabilities for a given � and A, generating Pi from a

MultinomialðN, qÞ, and then generating mutation counts using a
Binomialðm, ~PiÞ. We varied the parameter �, the read depth,

numbers of mutationsN and the normal contamination to evalu-
ate the performance of our estimation procedures; no sequencing

error was comprehensively simulated because the effect was so

small. In all situations, estimation of �0 when �050:1 is highly
variable with few mutations, and furthermore the MLE is a

biased estimate, underestimating �0, until N becomes large.
Even in the simplest example of K¼ 1 (CNLOH or single

gain), if �0 ¼ 0:01 values of N as high as 200 or 300 are

needed to remove this bias (Supplementary Fig. S2). For
�0 ¼ 0:01, the MLE estimate �̂0 equals zero for almost all simu-

lations, reflecting the low probability of observing an allele iden-
tified with the earliest stage.

For larger values of �0, the estimates are unbiased starting
around N¼ 50, with continually greater precision for larger N

(Supplementary Fig. S4). The read depth has much less effect on
the estimation, particularly if the read depth is430; even for read

depth as low as 10, the loss of precision due to low read depth is

not nearly as striking as that due to reducing the number of
mutations (assuming that the mutations are correctly identified

as mutated, which is problematic with only 10� coverage). This
implies that including more mutations with lower read depth will

increase N and lead to greater precision in the estimate of �
despite the lower precision of each individual location. We also
note that the 95% bootstrap confidence intervals are slightly

biased, with coverage probability somewhat 595% even with
large N (Supplementary Fig. S6).

Therefore, in evaluating our proposed procedures, we concen-
trate on two different contexts, �0 � 0:1 and �040:1, and

assume that we have at least 50 mutations in a region. We
focus on the estimation of �0 as being of the greatest biological

interest.
Full Maximum Likelihood We expect that the difference

between the partial MLE method of Greenman et al. (2012)

and our full MLE method will be the largest when the question
of classifying mutated locations to a particular allele frequency

has the greatest uncertainty: lower read coverage and/or higher
levels of normal contamination. Simulation results show that

with no normal contamination, the partial MLE method can
be biased even in the relatively simple case of the single-gain

case with read coverage as high as 30� (Fig. 2). By 75� coverage

the two methods are indistinguishable for low numbers of events,
but for larger K, the partial MLE still remains biased even with

75� coverage, see Supplementary Figure S8. In particular, the
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partial MLE method overestimates �0 for small �0, and con-
versely for large �0. Even where the full MLE tends to be

biased and underestimates �0, the partial MLE goes the other
direction and overestimates �0 by a larger margin (and conversely

for large �0), resulting in worse average error, Figure 3. When
normal contamination increases, the partial MLE does worse, so
that even for 75� coverage and K¼ 1, estimation of moderately

low values of �0 (e.g. �0 ¼ 0:1) is noticeably still biased (Figs 2
and 3). For large K, where the allele frequencies are closer to-
gether and harder to distinguish, the problems are magnified

across a wide spectrum of �0 and larger coverage is required
before the bias disappears, see Supplementary Figures S6.
We note that the difference between the partial and full esti-

mation methods also depends on the complexity of the problem.
For CNLOH, where there is a direct identification between allele

frequency and the stage in which the mutation occurred, there is
less difference in the methods—only when normal contamination
reaches �0.3 is there a difference if the read depth is 30�. This is

likely due to the fact that with CNLOH there is no constraint on
the space in which the vector q lies. With more complex models
(i.e. larger K), small variations in the estimation of q result in

larger perturbations of the vector � (see Supplementary Fig. S9).
Bayesian Estimation From a frequentist perspective, Bayesian

estimates will be on average biased, but can offer less variability
and thus less overall error. Simulations definitely reflect this bias,
with Bayesian estimates on average underestimating �0 across

the board for CNLOH regions and generally for single-gains
shrinking the estimates toward �0 ¼ 0:5.
The Bayesian estimates for gains generally are similar to that

of the MLE, with the overall error similar for most values of �0.
For extreme �0 (�0 ¼ 0:01 or 0.99), the Bayesian estimates have
worse overall error than the MLE, so that they do not improve

those estimates as was hoped (Supplementary Fig. S10).
However, the Bayesian interval estimates have a better coverage

probability, particularly in extreme values of �0, than the boot-
strap CI. For CNLOH, however, the Bayesian estimates have a
different behavior than the MLE. For small �0 (� 0:1), the

Bayesian estimates have a better error rate as well as better
coverage probability; indeed for extreme �0, the MLE bootstrap
confidence intervals are bad, often giving extremely small or

zero-width intervals. The Bayesian estimates have a much

worse error for �040:1 because they are extremely biased down-

ward (Fig. 3).

3.2 Cancer data

We use the exome sequencing data from six of the eight tumors
that we previously analyzed in Durinck et al. (2011). In that
work, we analyzed only CNLOH events and found that the

CNLOH event on chromosome 17 covering the tumor suppres-
sor gene TP53 to be an early event. Here we analyze both

CNLOH and single copy gains, and compare the performance
of estimates of �̂ (no events with S¼4 were observed). We note
that for these tumors, there is a high mutation rate, and many

CNLOH and single-gain abnormalities, with few higher level
amplifications. We also evaluated the timing of regions for five

ovarian tumors with WGS available through the TCGA project
(Cancer Genome Atlas Research Network, 2011). The ovarian
tumors have many more rearrangements than the skin cancers

and a much lower mutation rate. See Supplementary Appendix 1
and Supplementary Table S3 for more details regarding the

datasets.
We first observe that the estimate of �0 for the two skin

tumors containing a CNLOH event on chromosome 17 con-

tinues to imply 17p CNLOH is an early event (Fig. 4a), even
after the addition of the single-gain regions, with estimates of �0
on the order of 0.05 [additional CNLOH events were found by

Durinck et al. (2011) in samples that we did not analyze, see
Supplementary Appendix 1]. CNLOH events involving the

region containing TP53 are present in four of the five ovarian
samples, and TP53 mutations are found in all four of these re-
gions. Three of these TP53 mutations clearly occurred before the

CNLOH event (i.e. homozygous) with the remaining mutation

(a) (b)

Fig. 3. Comparison of Bayesian and MLE estimates for CNLOH, see

Supplementary Figures S10 and S11 for the single-gain case. (a) Plots of

relative mean squared error on simulated data of CNLOH for three dif-

ferent estimates. Relative MSE is the MSE scaled by the value of

�0ð1� �0Þ to reflect the size of the MSE relative to the size of �0. (b)

Comparison of CI coverage for MLE and Bayesian on simulated data.

For each possible �0, CI coverage was calculated as the percentage of CIs

from simulated data that covered �0; a color scale indicates the CI cover-

age, with red indicated �95% coverage and magenta indicated 90�95%

coverage. The solid points indicate the true value (circle for MLE and

triangle for Bayesian). Shown are the results for when the true �0 is small

(0.01, 0.05) and the Bayesian estimates are not extremely biased; see

Supplementary Figure S12 for all values of �0

(a) (b)

Fig. 2. Boxplots of �̂0 based on simulated data for values of �0 ¼ 0:1, 0:5
in the single-gain case. (a) Read depth of 30� and no normal contamin-

ation. (b) Read depth of 75� and 30% normal contamination. The

number of mutations, N, was fixed at 125
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ambiguous (see Supplementary Table 4 and Supplementary

Fig. S15). However, only one sample (13–1411) has an estimate

of �0 for the region containing TP53 that is as early in the life of

the tumor as seen in the skin cancers.

The large number of aberrations present in ovarian tumors

allows us to observe the general trajectory of chromosomal amp-

lifications (Supplemental Fig. S15). The five tumors present dif-

ferent general profiles. Two tumors (13-0890 and 13-1411) have

events that are clearly separated through time and span the range

of (relative) time, whereas events from other three tumors are

estimated to have occurred over a small range of time, suggesting

a short duration of rapid copy-number change. This suggests the

possibility of two different biological mechanisms in use, with

some tumors starting with a whole-genome duplication whereas

other tumors steadily accumulate copy-number changes.
Comparison with the partial MLE We have seen in simulations

that the partial MLE implemented in Greenman et al. (2012)

tends to overestimate �0, particularly for small values of �0.

For the skin data, the estimates of �0 for the two early events

on chromosome 17p given by the partial MLE method are much

larger (Fig. 4a). For sample M01, the 95% confidence intervals

based on the partial MLE for the CNLOH of chromosome 17p

overlaps that of chromosome 2, making it ambiguous whether

17p is the first event. The early events in the ovarian tumors

show an even larger difference between the two estimates. For

these early events of interest, the difference in estimation can be

important and accounting for sequencing variability identifies

early events more conclusively.
Aside from the early events, we see that the estimates for the

full and partial MLE methods are generally equivalent for the

skin tumors. For the ovarian tumors, however, the differences

are more striking even for events that have only moderate esti-

mates of �0, see Figure 4b. This is due to the fact that the ovarian

samples are sequenced at �35� coverage compared with 100�

coverage for the skin tumors (Supplementary Table S3); further-

more, gains are more heavily represented for the ovarian tumors,

and the gains show much greater differences between the

estimates.

(a)

(b)

Fig. 4. Estimates of �0 with bootstrap confidence intervals for the (a) skin tumors and (b) a single ovarian tumor (13–1411). The full MLE (black

symbol), partial MLE (gray symbol) and Bayesian estimates (white symbol) with their corresponding confidence intervals are shown side by side for each

region. Regions of CNLOH are marked with a circle, and those from a single gain are marked with a triangle. Regions from different samples are

separated by dashed lines. Each region is labeled by the chromosome and the arm that contain the region. Above each region, the number of mutations

(N) identified in the region is indicated. The CNLOH of 17p is shown in red
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Bayesian Estimation For regions where the MLEs are ap-
proaching the boundary of the parameter space (estimates that
are essentially 0 or 1) the Bayesian estimates, as expected, shrink

the estimates away from the boundary and toward the priormean.
Particularly for CNLOH regions, the bootstrap confidence inter-
vals for the MLE estimates often do not sufficiently capture the

variation in the estimates. One example is the CNLOH event in
8pq in the skin tumorM01, where only 11mutations are observed,
but all of them are heterozygous. Bootstrap confidence intervals

give great confidence to the parameter estimate of �0 ¼ 1 even
though N¼ 11; the Bayesian analysis, as hoped, modulates these
estimates, both decreasing the estimate in accordance with the

prior distribution and giving greater levels of uncertainty corres-
ponding to the small sample size.
The Bayesian estimates, as seen in simulation, also generally

give lower estimates of all �0 for CNLOH and estimates closer
to 0.5 for extreme values of �0 for single gains, which is also

reflected in both cancer datasets. However, the difference in
estimates is not large relative to the confidence intervals of the
estimates, and is probably offset by the advantage of increased

accuracy of the confidence intervals, particularly for early events.

4 CONCLUSION

Precise timing of chromosomal abnormalities provides a won-
derfully detailed glimpse of the etiology of a single tumor.

However, we have demonstrated that there are limitations to
this technique. In particular, we have shown that for high-level
amplifications, most of the possible combinations of events that

result in large amounts of amplification will not retain enough
information in the allele frequencies to be able to estimate the
ordering. Only regions where the amplification follows one single

lineage can be timed using this model. This may result in a biased
impression of the etiology, as this type of amplification may be
predominant for the promotion of certain types of abnormalities

and may miss many other types of oncogenes.
As we note in the introduction, our focus has been the trad-

itional one of copy-number analysis, where each region in the

normal genome is analyzed separately as to its behavior in the
tumor. With exome sequencing, this traditional viewpoint is still
the only one available. With whole-genome sequencing, as we

noted, one can analyze the relationships between the regions and
order the events using the information from other regions. In this
case, a single region A can share an event with another region B

if the amplification brought the two into proximity to each other
through an insertion. Then there are additional constraints on

estimating �A and �B jointly, as that event must occur at the
same moment for both. This implies that with reasonably deep
whole-genome sequencing such that these relationships are reli-

ably determined, there will be a larger percentage of histories that
are identifiable.
In addition, early events, which are of particular biological

significance, are sensitive to estimation procedures and large
numbers of mutations are necessary to be able have stable esti-
mates of the time of occurrence. Of even greater difficulty is the

ordering of a collection of early events. Even with whole-genome
sequencing, some regions will not have the hundred or more
mutations that our simulations show are necessary to distinguish

early events, particularly in tumors with low mutation rates.

However, we have also shown that differences in estimation
techniques can help provide better estimates and confidence
intervals for temporal estimates. We have introduced a full

MLE to handle sequencing variability due to lower read cover-
age, as well as a Bayesian estimation technique. We have shown

the full MLE can provide improvement with read depths as large
as 30�, and even up to 75� or higher if there is normal contam-

ination or early events. The Bayesian estimates have a varying
performance for different values of the parameter space, but

can provide increased stability, particularly in their estimates of
confidence intervals for the estimates.
Ultimately, the ability to successfully estimate � also relies on

intrinsic properties of the cancer. In the skin tumors, only half of
the samples had CNLOH over the tumor suppressor gene TP53

(not all of which were examined in this work); in the other
samples, both copies of TP53 were also inactivated but through

multiple mutations, not a chromosomal abnormality. Other im-
portant regions may be too small in a particular sample to have

sufficient mutations—the regions we ordered were large, some-
times entire chromosomal arms. Some tumors, such as the ovar-

ian, have low mutation rates so that even with whole-genome
sequencing many regions will have few mutations or not enough

to confidently distinguish between events. While 30–60% of the
abnormal regions could theoretically be timed in our sample, the
percentage that had enough mutations was generally 20–30%.

Therefore, timing of the chromosomal abnormalities of a single
sample remains extremely fragmentary, and an insight into

tumor etiology will still ultimately be gained by comparing the
temporal ordering of many tumors.
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