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Abstract
Background: It is common for patients diagnosed with medial temporal lobe epilepsy 
(TLE)	to	have	extrahippocampal	damage.	However,	it	is	unclear	whether	microstructural	
extrahippocampal	abnormalities	are	consistent	enough	to	enable	classification	using	dif-
fusion	MRI	imaging.	Therefore,	we	implemented	a	support	vector	machine	(SVM)-	based	
method	to	predict	TLE	from	three	different	imaging	modalities:	mean	kurtosis	(MK),	mean	
diffusivity	(MD),	and	fractional	anisotropy	(FA).	While	MD	and	FA	can	be	calculated	from	
traditional	diffusion	tensor	imaging	(DTI),	MK	requires	diffusion	kurtosis	imaging	(DKI).
Methods:	Thirty-	two	TLE	patients	and	36	healthy	controls	underwent	DKI	imaging.	To	
measure	predictive	capability,	a	fivefold	cross-	validation	(CV)	was	repeated	for	1000	
iterations.	An	ensemble	of	SVM	models,	each	with	a	different	regularization	value,	was	
trained	with	the	subject	images	in	the	training	set,	and	had	performance	assessed	on	
the	 test	 set.	The	different	 regularization	values	were	determined	using	a	Bayesian-	
based method.
Results:	Mean	kurtosis	achieved	higher	accuracy	than	both	FA	and	MD	on	every	itera-
tion,	 and	 had	 far	 superior	 average	 accuracy:	 0.82	 (MK),	 0.68	 (FA),	 and	 0.51	 (MD).	
Finally,	 the	MK	 voxels	with	 the	 highest	 coefficients	 in	 the	 predictive	models	were	
distributed within the inferior medial aspect of the temporal lobes.
Conclusion: These results corroborate our earlier publications which indicated that 
DKI	shows	more	promise	in	identifying	TLE-	associated	pathological	features	than	DTI.	
Also,	the	locations	of	the	contributory	MK	voxels	were	in	areas	with	high	fiber	cross-
ing	and	complex	fiber	anatomy.	These	traits	result	 in	non-	Gaussian	water	diffusion,	
and hence render DTI less likely to detect abnormalities. If the location of consistent 
microstructural	abnormalities	can	be	better	understood,	then	it	may	be	possible	in	the	
future	to	 identify	the	various	phenotypes	of	TLE.	This	 is	 important	since	treatment	
outcome	varies	dependent	on	type	of	TLE.
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1  | INTRODUCTION

The structural changes that may be unique to medial temporal lobe 
epilepsy	(TLE)	have	been	continually	investigated	to	better	understand	
the mechanisms associated with disease development and to define 
targets	 for	 treatment.	 Historically,	 TLE	 imaging	 findings	 have	 con-
firmed	the	existence	of	temporal	and	extratemporal	areas	of	neuronal	
loss	 (Keller	&	Roberts,	2008);	with	more	recent	studies	demonstrat-
ing	 that	microstructural	 abnormalities	 are	extensive	and	pervasively	
distributed	 (Bonilha	et	al.,	2015).	Since	most	structural	brain	studies	
have	investigated	group-	wise	differences,	it	remains	unclear	whether	
microstructural	abnormalities	in	TLE	are	consistently	observed	across	
all	patients	(and	could	therefore	be	used	to	classify	TLE	vs.	individuals	
without	TLE),	or	whether	there	is	a	high	degree	of	variability	beyond	a	
common underlying pattern.

This	question	is	important	since	the	treatment	outcomes	of	TLE	are	
variable and not completely predictable based on clinical data (Engel 
et	al.,	2003;	Spencer	et	al.,	2005);	 indicating	that	 there	are	different	
TLE	 phenotypes	 that	 remain	 unidentified,	 but	 could	 be	 discerned	
based	on	imaging,	if	the	type	and	the	location	of	regular	TLE	abnor-
malities	were	better	understood.	In	this	study,	we	tested	the	hypoth-
esis that microstructural abnormalities are present within a common 
pattern	in	most	subjects	with	TLE.	We	employed	a	machine-	learning	
algorithm	 to	 assess	 the	 accuracy	 with	 which	 individuals	 with	 TLE	
could	be	correctly	classified	as	having	epilepsy	based	on	voxel-	based	
microstructural	 abnormalities	 detected	 by	 diffusion	 MRI,	 including	
Diffusional	Kurtosis	Imaging	(DKI).	DKI	is	a	postprocessing	approach	
for	diffusion	MRI	with	multiple	b-	values	that	takes	into	account	non-	
Gaussian	 water	 molecule	 diffusion	 properties	 (Jensen	 et	al.,	 2005).	
Since	water	diffusion	in	the	brain	is	known	to	follow	a	non-	Gaussian	
pattern,	 DKI	 captures	 more	 structural	 information	 than	 DTI–based	
measures,	 which	 neglect	 diffusional	 non-	Gaussianity	 (Jensen	 et	al.,	
2005).	From	DKI	 it	 is	possible	to	calculate	voxel-	wise	mean	kurtosis	
(MK),	a	measure	of	non-	Gaussianity,	as	well	as	traditional	voxel-	wise	
diffusion	tensor	imaging	parameters	such	as	mean	diffusivity	(MD)	and	
fractional	anisotropy	(FA).

We	 aimed	 to	 identify	 which	 extrahippocampal	 temporal	 lobe	
voxels	were	consistently	abnormal	 in	TLE,	therefore	serving	as	good	
disease	classifiers.	Moreover,	we	also	tested	which	diffusion	MRI	mea-
sure	(MK,	MD,	FA)	was	more	consistently	abnormal	in	each	voxel,	with	
the	intent	of	providing	anatomical	and	microstructural	insight	into	TLE	
related abnormalities.

2  | MATERIALS AND METHODS

2.1 | Subjects

Thirty-	two	TLE	patients	and	36	healthy	controls	were	assessed	in	this	
study. This cohort was previously reported in a study that revealed 
DKI-	based,	 voxel-	based	 abnormalities	 in	 epilepsy	 (Bonilha	 et	al.,	
2015).	That	study	was	not	designed	to	assess	individualized	patterns	
of	 abnormalities	 or	 diffusion-	based	 classification	 accuracy,	which	 is	
the	 novel	 purpose	 of	 this	 study.	Only	 left-	sided	 TLE	 patients	were	

used.	As	it	is	well	known	in	the	literature,	left	TLE	is	associated	with	
a more widespread and homogeneous pattern of abnormalities com-
pared	 with	 right	 TLE	 (Bonilha	 et	al.,	 2007;	 Kemmotsu	 et	al.,	 2011;	
Pustina	et	al.,	 2015;	Ahmadi	et	al.,	 2009).	 Since	 the	purpose	of	 this	
study	is	to	assess	the	classification	algorithm,	we	opted	to	use	a	more	
regular	cohort.	All	TLE	patients	met	the	International	League	Against	
Epilepsy	 criteria	 for	 diagnosis	 (Berg	 et	al.,	 2010;	 Shorvon,	 2011;	
Commission on Classification and Terminology of the International 
League	 Against	 Epilepsy,	 1989).	 They	 were	 recruited	 from	 the	
Comprehensive	 Epilepsy	 center	 at	 the	Medical	University	 of	 South	
Carolina.	 The	mean	 age	 of	 patients	was	 44.8	±	16.7	years,	with	 22	
females.	This	was	a	consecutive	cohort	of	TLE	patients,	 and	not	all	
patients were medication refractory. Their clinical characteristics can 
be appreciated in Table S1. The control population consisted of indi-
viduals	with	no	neurological	history	or	risk	for	epilepsy.	Sex	and	age	
distribution differences between the patient and control groups were 
tested using a Chi- squared and a t-	test,	 respectively,	 and	were	not	
statistically significant (p	=	0.85	and	p	=	0.21).

2.2 | Image acquisition

A	 3T	Magnetom	 Verio	 MRI	 scanner	 (Siemens,	 Erlangen,	 Germany)	
with a 12- channel coil head was used to image all subjects. Diffusion 
imaging parameters were: a twice- refocused echo- planar imaging se-
quence with diffusion weightings of b	=	0,	1,000,	and	2,000	s/mm2,	
30	diffusion-	encoding	directions	with	number	of	excitations	(NEX)	=	1	
(NEX	=	10	for	b	=	0),	 repetition	 time	=	8,500	ms,	echo	time	=	98	ms,	
field- of- view = 222 × 222 mm2,	a	matrix	size	of	74	×	74,	a	parallel	im-
aging	factor	of	2,	3	mm	slice	thickness,	and	40	axial	slices.	No	partial	
Fourier	encoding	was	used.	The	 imaging	acquisition	parameters	are	
further	specified	in	our	previous	work	(Bonilha	et	al.,	2015).

2.3 | Image processing

Voxel-	based	scalar	diffusion	measures	were	obtained	using	the	soft-
ware	 diffusional	 kurtosis	 estimator	 (DKE)	 (https://www.nitrc.org/
projects/dke/).	The	probabilistic	white	matter	map	in	MNI152	space	
distributed	with	 software	 SPM	 8	 (http://www.fil.ion.ucl.ac.uk/spm/	
software/spm8/)	 was	 nonlinearly	 transformed	 into	 native	 diffusion	
space	 and	 used	 for	 selection	 of	 white	 matter	 voxels	 as	 described	
below.	 The	 parameters	 MD	 and	 FA	 were	 estimated	 without	 using	
the b	=	2,000	s/mm2	images	in	order	to	mimic	a	typical	DTI	analysis,	
while	the	MK	calculation	required	the	use	of	all	the	images	for	all	the	
b- values.

2.4 | Statistical analyses with machine learning

We	employed	support	vector	machines	(SVM)	to	analyze	voxel	con-
tribution to epilepsy status. The diffusion measures compared were 
DKI-	derived	MK,	and	DTI-	derived	MD	and	FA.	For	each	measure,	the	
white	matter	voxels	located	in	the	left	temporal	lobe	for	the	subjects	
were	transformed	into	a	matrix	of	size	number	of	subjects	by	number	
of	voxels.	White	matter	voxels	were	those	located	in	areas	with	20%	

https://www.nitrc.org/projects/dke/
https://www.nitrc.org/projects/dke/
http://www.fil.ion.ucl.ac.uk/spm/
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or greater probability of belonging to white matter in accordance with 
the probabilistic white matter map transformed into diffusion space. 
Left	temporal	lobe	locations	were	identified	using	a	mask	derived	from	
the	 Talairach	 Atlas	 in	 MNI	 space.	 Specifically,	 the	 atlas	 was	 trans-
formed into diffusion space and a mask was created that corresponded 
to a union of all the ROIs associated with the left temporal lobe.

2.5 | Prediction

Our	 classification	 pipeline	 consisted	 of	 training	 19	 different	 linear-	
kernel	SVM	models	from	19	different	cost	values	(C)	on	the	training	
set (D),	and	then	performing	a	weighted	average	over	the	predictions	
of	the	19	models	for	each	subject	in	the	test	set	(V)	(Bishop,	2006)	:

In	the	above	equation,	the	weight	of	a	model	trained	with	a	particu-
lar cost (C= c)	is	given	by:	pC=c|D. These weights form a valid probability 
distribution as they sum to 1. Each classification model also outputs a 
probability,	p1|C=c,D,i,	which	is	the	probability	the	model	assigns	the	 i

th 
test subject of being a patient. If the weighted average of the models’ 
outputs	is	greater	than	0.5,	then	the	subject	is	predicted	to	be	a	patient.

It is important to note that support vector machines do not directly 
output	probabilities,	but	a	score	for	each	subject	which	ranges	from	
−∞ to ∞. We employed a simple logistic link function to transform 
each score to a probability of being a patient (p1|C=c,D,i).	Further	details	
are	explained	in	the	supplementary	material.

A	fivefold	stratified	cross-	validation	scheme	was	executed,	and	the	
C vector was recalculated for the new D from each run of the cross- 
validation. The folds were stratified to ensure a consistent patient to 
control ratio. To account for the variance associated with running 

fivefold	cross-	validation	on	small	datasets,	we	repeated	this	pipeline	for	
1,000	experimental	iterations.	Each	iteration	was	unique	from	the	other	
iterations in the random allocation of the data between the five folds.

The	entire	pipeline	was	written	in	Matlab	(The	MathWorks	I,	2017),	
the	implementation	was	placed	online,	and	the	URL	can	be	found	in	
the supplementary material.

2.6 | Finding Values for the Cost Hyperparameter (C)

Our first step for generating the inputs for the weighted average was 
to calculate the vector of cost values (C).	The	mean	of	C was defined 
as the minimum cost value (Cμ)	required	to	fit	D without any classifica-
tion error on D. The methodology used to determine this minimum 
fit is described in the supplementary material. It is important to note 
that though a model fit with Cμ had no classification error on D,	it	still	
was	not	a	maximum	fit	on	D as the probability outputs from the model 
could	be	further	optimized.

We	 then	 calculated	 the	minimum	cost	 required	 to	have	 a	maxi-
mum fit on D (Cmax).	In	other	words,	the	probability	outputs	could	not	
be further improved with increased C.	The	fit	increases	approximately	
monotonically with C	until	a	particular	value	is	reached,	at	which	point	
the fit score remains flat. Slight noise deviations from the monotonic 
increase were smoothed with a length- 3 median filter. The fit was 
assessed with log- likelihood (LLD|C),	the	procedure	for	calculating	the	
log- likelihood for a given c (LLD|C=c)	is	explained	in	the	supplementary	
material.	This	optimization	can	be	visualized	in	Figure	1.

From	Cmax and Cμ,	the	C vector was found as:

where Δ=Cmax−Cμ.

H=
{(∑

C
pC=c|D ∗p1|C=c,D,i

)
> 0.5|i ∈ V

}

{
Cμ +Δ∗

i

9
|i∈−9 ⋅ ⋅ ⋅9

}

F IGURE  1 The fit on the training 
data (LLD|C)	increases	approximately	
monotonically with C until a particular 
point,	and	then	remains	flat.	The	minimum	
(C= c)	at	which	LLD|C=c=max

(
LLD|C

)
 is 

depicted	as	a	red	dot	and	used	as	maximum	
value in the C vector
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Calculating the model weights (pC|D)
The model weights (pC|D)	were	 calculated	 through	 the	 Bayesian	

formula:

In	 the	 above	 formula,	 LD|C can be viewed as the evidence in 
Bayesian	derivations,	pC	can	be	viewed	as	the	prior,	and	dividing	by	pD 
scales the vector in the numerator (LD|C ∗pC)	so	that	pC|D sums to 1 and 
hence is a proper probability distribution.

The	log	of	the	evidence	(the	log-	likelihood,	LLD|C)	was	already	cal-
culated to find the C vector. LLD|C was converted to a likelihood (LD|C)	
through the formula {eLLD|C=c |c∈C},	where	each	value	indicates	the	like-
lihood of D given a model trained with C= c.	An	example	LD|C can be 
seen	in	the	middle	panel	of	Figure	2.

Typically,	 pC	 is	 estimated	 from	 other	 experiments	 or	 data,	 but	
such	information	was	not	available.	However,	we	did	not	desire	“uni-
formed”	 flat	 priors	 because	 it	was	 important	 to	 regularize	LD|C (de-
crease	the	weights	of	the	higher	cost	models)	to	prevent	over-	fitting.	
Therefore,	pC	was	defined	as	a	Gaussian	distribution	with	a	mean	at	Cμ

,	and	a	standard	deviation	of	Cσ = Δ/2. The values were scaled to en-
sure that pC sums to 1. We selected Cμ	as	the	point	with	maximal	prob-
ability	 (the	mean),	 because	 a	model	will	 almost	 always	 have	 higher	
generalization	error	than	training	error,	therefore	the	model	needs	to	
at least fit D.	However,	such	sparse	datasets	are	highly	susceptible	to	
over-	fitting,	therefore	we	chose	a	distribution	with	small	weights	for	

models that strongly fit D:	for	example,	since,	its	corresponding	weight	
will	approximate	0.0275.	An	example	of	pC can be found in the top 
panel	of	Figure	2.

As	both	LD|C and pC	were	represented	as	vectors	of	size	(19	by	1),	
the scalar pD was simply found through a dot product: pD=LD|C

�
⋅pC.

The final pC|D derived from the pC and LD|C	examples	used	in	this	
explanation	can	be	seen	in	the	bottom	panel	of	Figure	2.

2.7 | Generating coefficients

On	each	run	of	the	cross-	fold	validation,	a	βC=c vector of coefficients 
was	generated	for	each	of	the	19	SVM	models	from	the	training	data	(D)	
associated with the current run (R= r).	The	vectors	were	aggregated	into	
a single vector per run with a weighted average: βR=r=

∑
C pC=c�D ∗βC=c. 

The coefficients per run were averaged across runs to generate a vector 
for	each	of	the	1,000	experimental	 iterations:	βI=i=

1

5

∑
R βR=r.	Finally,	

the βI vectors were aggregated into four vectors as shown below:

1. Mean	 vector
i. βμ =

1

1000

∑1000

i=1
βI=i

2. Standard deviation vector
ii. βσ =

√�
1

1000

∑1000

i=1
(βI=i−βμ)

2
�

3. Positive run count vector
iii. β+ =

∑1000

i=1
βI=i>0

pC|D=LD|C ∗pC∕pD

F IGURE  2 The weight assigned to 
each model is determined by the fit on the 
training	data	(second	row)	multiplied	with	a	
Gaussian	prior	that	has	a	regularizing	effect	
(first	row).	The	final	weight	distribution	
(third	row)	reflects	the	influence	from	both	
distributions

Measure Accuracy F1 Score Sensitivity Specificity

MK 0.820 ± 0.023 0.800 ± 0.026 0.765	±	0.032 0.870 ± 0.031

FA 0.683 ± 0.037 0.642 ± 0.047 0.606	±	0.058 0.752	±	0.041

MD 0.514	±	0.035 0.400 ± 0.047 0.345	±	0.049 0.664	±	0.049

TABLE  1 Predictive values following 
SVM	vector	analysis	by	diffusion	measure
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4. Negative run count vector
iv. β− =

∑1000

i=1
βI=i<0

Since	the	SVMs	used	 linear	kernels,	 these	values	could	be	directly	
interpreted.	Voxels	with	negative	coefficients	had	higher	intensities	for	
controls	compared	to	patients,	and	positive	coefficients	corresponded	to	
lower intensities for controls compared to patients.

2.8 | Ethical publication statement

We	 confirm	 that	we	 have	 read	 the	 Journal’s	 position	 on	 issues	 in-
volved in ethical publication and affirm that this report is consistent 
with those guidelines.

3  | RESULTS

3.1 | Individual measures

As	shown	 in	Table	1,	 the	classifier	 trained	and	tested	with	MK	best	
classified	TLE,	followed	by	FA	and	then	MD.	As	shown	in	Figure	3	and	
Table	1,	MK	scored	higher	prediction	metrics	for	accuracy,	F1-	score,	
sensitivity,	and	specificity.	With	regard	to	accuracy	and	F1-	score,	MK	
out-	performed	 the	other	measures	 for	 all	 1,000	 iterations.	 Figure	4	
depicts	the	most	contributory	voxels	for	MK	and	FA.

FA	also	clearly	out-	performed	MD.	However,	the	accuracy	associ-
ated	with	FA	was	not	significantly	higher	than	what	can	be	achieved	
with	Gaussian	noise	given	a	small	dataset	(Combrisson	&	Jerbi,	2015).

F IGURE  3 At	each	iteration	of	the	
experiment,	the	subjects	are	randomly	
allocated among five folds. These subjects 
are used to train and test the models 
derived	from	the	different	measures.	MK	
has	higher	accuracy	than	both	FA	and	MD	
on	all	1,000	iterations	of	the	experiment

F IGURE  4 This	mosaic	demonstrates	which	FA	and	MK	voxels	most	contributed	to	the	classification	model.	Voxels	colored	in	red	were	those	
in	which	lower	values	of	MK	had	higher	weight	toward	classifying	individuals	as	belonging	to	the	group	of	patients.	Similarly,	the	voxels	colored	
in	green	were	those	in	which	lower	FA	values	contributed	toward	classifying	the	individuals	as	patients.	The	color	bar	represents	the	weights,	
whereas	lower	negative	weights	indicated	a	higher	influence	in	the	more	towards	classification	as	patients.	Finally,	voxels	colored	in	yellow	(red	
+	green)	where	those	where	both	the	FA	and	MK	values	contributed	to	the	classification
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As	shown	in	Figure	5,	certain	subjects	were	far	more	likely	to	be	
misclassified.	 In	particular,	 there	were	six	patients	and	three	con-
trols	that	MK	did	not	correctly	predict	in	any	of	the	1,000	iterations.

4  | DISCUSSION

MK-	derived	 classifiers	 were	 far	 more	 accurate	 for	 classifying	 TLE	
than	FA-		or	MD-	derived	classifiers.	However,	certain	subjects	were	
always misclassified regardless of the data allocation across the folds.

Further	insight	into	the	relative	contribution	of	each	voxel	location	
can be gained by assessing the anatomical distribution of abnormal-
ities	 that	 contribute	 to	 classification.	As	 seen	 in	Figure	4,	 the	 impli-
cated	voxels	in	MK	were	distributed	within	the	inferior	medial	aspect	
of	the	temporal	lobes,	which	may	represent	areas	of	higher	fiber	cross-
ing,	more	complex	fiber	anatomy,	or	more	axonal	changes	associated	
with	epilepsy.	Therefore,	it	appears	these	measures	may	reflect	com-
ponents	of	microstructural	pathology	that	are	subtly	different,	but	im-
portant	in	the	classification	of	TLE.

Our results corroborate previous studies that have highlighted 
the	sensitivity	of	DKI	as	compared	to	standard	DTI	when	measuring	
microstructural	abnormalities	in	adult	and	pediatric	patients	with	TLE	
(Bonilha	et	al.,	2015;	Gao	et	al.,	2012).	The	microstructural	complexity	
and	compartmentalization	of	brain	tissue	result	in	non-	Gaussian	water	
diffusion,	 which	 DTI	 cannot	 detect.	 By	 quantifying	 this	 diffusional	
non-	Gaussianity	with	measures	 such	 as	MK,	DKI	more	 fully	 reveals	
micropathologic changes that may be associated with inflammation 
and	cell	loss	(Winston,	2015).

Our results achieve comparable performance metrics to previ-
ous	literature	that	applies	SVM	to	neuroimaging	data	to	classify	TLE.	
An	SVM	study	using	T1-	weighted	images	performed	by	Rudie	et	al.	
achieved	a	prediction	accuracy	of	up	to	81%	for	patients	with	TLE	

compared	 to	 those	with	 other	 structural	 abnormalities,	 and	 it	 ad-
ditionally found correlations between predictive value and clinical 
disease	progression	(Rudie,	Colby,	&	Salamon,	2015).

Furthermore,	our	 results	 indicate	 that	microstructural	 abnormal-
ities	 in	 TLE	 (here	 exemplified	 by	 left	 TLE)	 may	 enable	 an	 accurate	
classification with kurtosis- based imaging. This is important since it 
demonstrates that a pattern of microstructural pathology is common 
across	individuals	with	TLE	and	therefore	forms	a	structural	mainstay	
for	the	disease.	Importantly,	this	approach	is	not	intended	only	to	di-
agnose	epilepsy,	but	may	be	able	to	identify	a	common	pathological	
pattern that could be used as a decision support tool for clinical as-
sessments in the future. We recommend that future analyses inves-
tigate the subjects that were consistently misclassified. It is possible 
that these subjects contain subtle but important features that distin-
guish	patients	 from	controls,	which	may	be	overshadowed	by	more	
general differences between the groups.
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