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Reopening schools is an urgent priority as the COVID-19 pan-
demic drags on. To explore the risks associated with returning
to in-person learning and the value of mitigation measures, we
developed stochastic, network-based models of severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) transmission in
primary and secondary schools. We find that a number of mitiga-
tion measures, alone or in concert, may reduce risk to acceptable
levels. Student cohorting, in which students are divided into two
separate populations that attend in-person classes on alternat-
ing schedules, can reduce both the likelihood and the size of
outbreaks. Proactive testing of teachers and staff can help catch
introductions early, before they spread widely through the school.
In secondary schools, where the students are more susceptible to
infection and have different patterns of social interaction, con-
trol is more difficult. Especially in these settings, planners should
also consider testing students once or twice weekly. Vaccinating
teachers and staff protects these individuals and may have a pro-
tective effect on students as well. Other mitigations, including
mask wearing, social distancing, and increased ventilation, remain
a crucial component of any reopening plan.
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As the COVID-19 pandemic accelerated in early 2020,
schools around the world closed in an effort to preempt

school-associated transmission and protect their students, teach-
ers, and staff. By mid-April of that year, 195 countries had closed
their schools in response to COVID-19, affecting more than 1.5
billion students (1). In the United States, schools were among the
first organizations to close, and many remained closed or tran-
sitioned to remote learning through the end of the 2019–2020
school year. Some remain closed today. While remote learn-
ing affords students the opportunity to continue their education,
it fails to provide many of the crucial benefits students typi-
cally receive through in-person schooling (2). There is an urgent
need to evaluate the effectiveness of evidence-based strategies
that would allow children, teachers, and staff to safely return to
in-person learning.

To date, widespread community transmission, conflicting pub-
lic health guidance, and the emergence of new severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) variants
associated with higher transmissibility have compounded the
challenges schools face when reopening (3–5). Numerous epi-
demiological models have been developed to forecast the spread
of SARS-CoV-2 or compare the effectiveness of mitigation
strategies in communities or large populations (6–12). How-
ever, only a few models have focused on the unique demo-
graphic and contact structures of primary and secondary school
settings (13–15).

Case studies suggest that primary schools have a lower risk of
transmission compared to secondary schools (16–19). Two prin-
cipal causes could be at play. First, younger children are less
likely than adolescents or adults to become infected with SARS-
CoV-2 (20), and less likely to experience symptomatic or severe
disease (21, 22). Second, primary and secondary schools have
different contact structures. Primary school students have fewer

contacts and typically spend the full day with a single teacher and
the same group of students. By contrast, secondary school stu-
dents move between classrooms and encounter multiple teachers
and groups of students each day.

We have developed epidemiological models to simulate the
spread of SARS-CoV-2 among students, teachers, and staff in
both primary and secondary schools. Here, we use these mod-
els to better understand the risks of reopening schools and
to explore the effectiveness of different mitigation strategies:
cohorting students, proactive testing, quarantine protocols, and
vaccinating teachers and staff.

Model and Methods
A Stochastic Network-Based Model of SARS-CoV-2 Transmission. We
use the SEIRS+ modeling framework (https://github.com/
ryansmcgee/seirsplus) to study the dynamics of disease transmis-
sion in school populations. SEIRS+ builds upon classic SEIR
compartment models that divide the population into susceptible
(S), exposed (E), infectious (I), and recovered (R) individuals
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and track the transitions of individuals among these states
(23). The basic SEIR model is a deterministic model of a
homogeneous population with well-mixed interactions. How-
ever, accounting for demographic heterogeneity and the struc-
ture of contact networks is particularly important when evalu-
ating control strategies that perturb the contact network (e.g.,
social distancing) or make use of it (e.g., contact tracing) (24, 25).
For disease control, modeling stochasticity is crucial to under-
stand the distribution of potential outcomes, especially in smaller
populations.

To incorporate these important aspects of disease dynam-
ics, we use the SEIRS+ modeling framework to implement an
extended SEIR model of SARS-CoV-2 transmission on stochas-
tic dynamical networks. Individuals are represented as nodes
in a contact network. Parameters, interactions, interventions,
and residence times in each compartment are specified on an
individual-by-individual basis. This allows us to model real-
istic heterogeneities in disease, transmission, and behavioral
parameters—which are particularly important when consider-
ing SARS-CoV-2 transmission dynamics in small, age-stratified
school populations. The disease dynamics are summarized in Fig.
1 and described in detail in SI Appendix, section A.1. Parameter
settings are outlined in SI Appendix, section A.2.

We model infection as transmitted largely along a network of
close contacts. Close contacts are individuals with whom one has
repeated, sustained, or close-proximity interactions on a regu-
lar basis: classmates, friends, housemates, or other close rela-
tionships. Disease transmission can also occur among casual
contacts—individuals who are not on one’s contact network, but
with whom one has incidental, brief, or superficial interactions. A
network locality parameter sets the relative frequency and weight
of transmission among close and casual contacts (SI Appendix,

Fig. 1. Compartment model. The progression of disease states in the
extended SEIR network model is represented by the compartments shown.
Susceptible (S) individuals become infected (exposed) following transmis-
sive contact with an infectious individual. Newly exposed (E) individuals
undergo a latent period, during which time they are infected but not con-
tagious. Infected individuals then progress to a presymptomatic infectious
state (Ipre), in which they are contagious but not yet presenting symptoms.
Some infectious individuals go on to develop symptoms (Isym), while oth-
ers will remain asymptomatic (Iasym). At the conclusion of the infectious
period, infected individuals enter the recovered state (R) and are no longer
contagious or susceptible to infection. The unshaded compartments repre-
sent quarantined individuals in the respective disease states. Individuals are
moved into a quarantine compartment upon isolation due to symptoms or
a positive test (gray arrows).

section A.1.4). In both primary and secondary school settings,
we assume that 80% of transmission occurs between close con-
tacts specified by the networks (26). Exposure to the community
is modeled by randomly introducing new cases to the school pop-
ulation at a rate that corresponds to the community prevalence—
see Community Prevalence and Case Introduction Rate.

The likelihood that a susceptible individual becomes infected
depends on the prevalence of infectious individuals among
their contacts, the transmissibilities of these contacts, and their
own susceptibility to infection (SI Appendix, section A.1.4).
Because individuals with large numbers of contacts—teachers,
for example—are unlikely to interact as closely with each individ-
ual contact, we assume a logarithmic rather than linear scaling
of transmission opportunity as a function of network degree
(SI Appendix, section A.1.4.2). Independent of connectivity, we
assume an overdispersed distribution of individual variation in
biological transmissibility (SI Appendix, section A.2.3), which
corresponds to the observation that 80% of SARS-CoV-2 trans-
mission may be attributable to 20% of infectious individuals
(27–29). This distribution of individual transmissibilities is cal-
ibrated to a nominal basic reproduction number R0 for the
population. While the R0 of SARS-CoV-2 varies, many estimates
place R0 upward of 2.5 to 3.0 without intervention, depending
on the variants that are present in a given population (30–35).
As a baseline, we assume that schools will implement sufficient
mitigation measures, such as mask wearing, physical distanc-
ing, and increased ventilation, to reduce R0 to 1.5 in the school
population. More aggressive mitigation measures may bring the
baseline R0 in schools closer to 1.0. Results for other values of
R0 are discussed in SI Appendix, section B.

Individuals in any disease state may enter quarantine due to
symptoms or in response to a positive test result. The effect of
isolating individuals is modeled by introducing compartments
that represent quarantined individuals who do not make trans-
missive contact with others outside of the home (Fig. 1 and SI
Appendix, section A.2.4.3). Individuals remain in quarantine for
10 d (36), at which time they transition to the nonquarantine
compartment corresponding to their present disease state. We
assume that 20% of symptomatic individuals self-isolate upon the
onset of symptoms (37) (SI Appendix, section B.4). At baseline,
only the symptomatic or positive individual is isolated, but we
go on to consider scenarios where classroom contacts of positive
students are also isolated (SI Appendix, section A.2.6.4).

Model Considerations for Primary Schools versus Secondary Schools.
We use distinct models for primary and secondary schools, with
different contact networks reflecting the social structures in each
setting (SI Appendix, section A.2). We assume primary school
children are 60% as susceptible as adults, while secondary school
students are equally as susceptible as adults (16, 20). Our primary
school model encompasses a school with 480 students, 24 teach-
ers, and 24 additional staff. Primary school students have close
contacts with their teacher, classmates, and other children in
their household (e.g., siblings). For our secondary school model,
we simulate a school with 800 students distributed across four
grades, 125 teachers, and 75 additional staff. Secondary school
students have close contacts with six teachers, with other stu-
dents in their grade and social groups, and with other students
in their households. Secondary school networks are parameter-
ized such that connectivity statistics (e.g., mean degree, CV2 of
degree, clustering coefficient) are in line with empirical studies of
secondary school contact networks (38–41) (SI Appendix, section
A.2.4.2). Both settings feature a network of close contacts among
teachers and staff. A new random network is generated for each
simulation replicate. Example network diagrams for each school
setting are shown in Fig. 2. Detailed descriptions of the con-
tact network structures and their generation are provided in
SI Appendix, section A.2.4.
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Fig. 2. Network structures for primary and secondary schools. Each individual is represented by a circle, with gray lines connecting close contacts. (A)
Primary school students (blue) are organized into classes with close contacts between all students in each classroom as well as a single teacher (green).
School staff (yellow) interact with teachers and other staff. (B) Secondary school students (shades of blue and purple indicating grade levels) move between
classrooms and have close contact with six teachers (green) each. School staff (yellow) interact with teachers and other staff. Secondary school students are
clustered into loose social groups and are more likely to interact with other students in the same grade. (C and D) Example contact networks for primary
and secondary schools, respectively, on a given day in a cohorting strategy in which students are divided into two groups that alternate in-person learning.
Students that are in school on a given day (interior nodes) maintain the same school interactions as in the baseline networks. Students in the out-of-school
cohort (peripheral nodes) make connections with any students that share their household (students in the same household are assigned to the same cohort
in our model), but are disconnected from all other students and teachers. Students alternate between these interaction patterns according to a weekly or
daily cohorting schedule.

Community Prevalence and Case Introduction Rate. To account for
the effect of community prevalence on COVID-19 dynamics in
schools, we model scenarios in which new cases are introduced
into the school population stochastically at rates correspond-
ing to daily, weekly, or monthly introductions on average (SI
Appendix, section A.2.5). When the effective community repro-
duction number Reff is in the 1.0 to 2.0 range, these rates
approximately correspond to the community prevalences shown
in SI Appendix, Table A.2.5. We also consider the consequences
of a single introduction; in this scenario, all replicates start off
with the case introduction occurring on the first day of the
simulation.

Simulations. To capture stochastic variability in outcomes, we
report 1,000 replicates for each parameter set. Each repli-
cate simulation tracks the progression of an outbreak that
begins with the introduction of a single infected individual in
an otherwise disease-free school population. The simulation
begins on a random day of the week with the introduction of
an initial case. Additional introductions may occur through-
out the simulation at a Poisson rate reflecting the community
prevalence. School is in session 5 d a week, and we assume
that no close contacts are made outside of the household on
weekends. Weekend transmission among casual contacts does

occur. The simulation proceeds for 150 d to represent a school
semester.

To allow comparisons across scenarios with different commu-
nity prevalences, we report the percentage of cases attributable
to transmissions within the school population (i.e., excluding
introduced cases attributable to exogenous community expo-
sure). These transmissions may occur either at school or among
school-affiliated individuals while off campus, and are here-
after collectively described as “school transmission.” We define
“sizable outbreaks,” as simulation runs where more than 5% of
the population becomes infected in school over the course of
the semester (150 d). While schools that experience sizable out-
breaks are likely to stop in-person learning before very large
case counts are realized, these data provide information about
the probability of epidemic trajectories that could require such
action.

Results
The Effect of Community Prevalence. The prevalence of COVID-
19 in the community impacts the risk of transmission in schools.
Fig. 3 shows the percentage of the school population infected
in primary and secondary schools over the course of a semester
when only basic mitigation strategies (e.g., distancing, hygiene,
and mask wearing) are in place. Higher COVID-19 prevalence in
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Fig. 3. Effect of community prevalence. The distributions of school transmission cases as a percentage of the school population when new cases are
introduced at different average rates. In these simulations, all students are in school 5 d a week, and there is no proactive testing. (A and B) Outcomes
for primary schools and secondary schools, respectively, with baseline transmission R0 = 1.5. Black and orange lines represent median and 95th percentile
outcomes, respectively. Under each jitter distribution, we list the percentage of simulations where more than 5% (gray dashed line) of the population are
infected in school. (C and D) Outcomes for primary and secondary schools in scenarios with heightened transmission R0 = 2.25 due to the predominance of
a highly transmissible strain. (E and F) Heatmaps show the fraction of simulations where more than 5% of the student or teacher population are infected in
primary and secondary schools, respectively, across a range of R0 values and introduction rates.

the surrounding community increases the probability of a sizable
outbreak in primary and secondary schools alike. When commu-
nity prevalence is so high that new introductions occur on a daily
basis (between 0.25 and 1.0%), our simulations suggest that even
aggressive mitigation strategies cannot prevent sizable outbreaks
(Fig. 4).

The probabilities of sizable outbreaks are higher in secondary
schools than in primary schools, and the outbreaks tend to be
larger in secondary schools. This difference holds across the
range of parameters and interventions that we explore, and is
primarily attributable to the difference in susceptibility between
primary and secondary school students (SI Appendix, section
B.3). Model outcomes are less sensitive to differences in the
contact networks that characterize these settings (SI Appendix,
section B.3.2).

The Effect of Highly Transmissive Variants. As of spring 2021, sev-
eral SARS-CoV-2 variants have evolved higher transmissibility
relative to their ancestors (35, 42–47). For example, the B.1.1.7
lineage that emerged from the United Kingdom appears to be 30
to 70% more transmissible than previous SARS-CoV-2 variants
(35, 42–44). To understand how highly transmissible variants may
impact transmission dynamics where they become predominant,
we look at the consequences of a 50% increase in transmissibility,
which increases the assumed baseline R0 for the school environ-

ment from R0 = 1.5 to R0 = 2.25. Results for more incremental
increases in mean transmission rates that approximate interme-
diate penetrance of such strains can be found in SI Appendix,
section B.1.1.

Fig. 3 illustrates how community prevalence, as modeled by
introduction rate, influences school transmissions when schools
are confronted by this more transmissible strain. Even under a
monthly rate of new case introductions, schools face the risk
of a major outbreak. With more frequent introductions, sub-
stantive outbreaks become the most likely outcome. Aggressive
controls mitigate the risk somewhat, but are considerably less
effective for a strain with R0 = 2.25 than for a strain with
R0 = 1.5 (Fig. 4).

The Effects of Interventions.
Cohorting. Cohorting, wherein students are divided into two or
more groups that alternate in-person learning, is a common strat-
egy for mitigating outbreaks in school settings (48–50). In our
model, we represent cohorting by shifting the contact networks
according to which students are on campus (SI Appendix, sec-
tion A.2.4.5). While off campus, students are disconnected from
the school network but maintain household connections and
transmission to casual contacts (the latter representing out-of-
school interactions among the student body). Teachers remain
on campus across all cohorts.
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Fig. 4. Effects of cohorting and testing strategies. Heatmaps illustrate the interactions of three student cohorting strategies and five proactive
testing strategies (horizontal axis) across a range of transmission levels (R0) and new case introduction rates (vertical axis). The color of each
cell indicates the fraction of 1,000 simulations for the given parameter set that result in sizable outbreaks where more than 5% of the popula-
tion is infected. Outcomes are shown for student and teacher populations in primary and secondary schools as indicated by the title above each
heatmap.

Fig. 5 shows the effects of three common cohorting strate-
gies: 1) All students belong to a single cohort that is on campus
full time; 2) students are divided into two cohorts, A and B,
which are on campus on alternating days; and 3) students are
divided into two cohorts which are on campus on alternating
weeks (SI Appendix, section A.2.6.3). We find that, relative to no
cohorting, both alternating day and alternating week strategies
can improve outcomes substantially. Cohorting with alternating
weeks generally outperforms cohorting with alternating days, but
the marginal benefit of weekly cohorting is small when in-school
transmission is limited (SI Appendix, section B.1.1). In primary
schools, student cohorting alone dramatically reduces the risk
of outbreak among students. In secondary schools, cohorting is
helpful but insufficient on its own to keep the likelihood of an
outbreak low among students or among teachers and staff.
Proactive testing. The purpose of proactive testing is to iden-
tify individuals who are infected but not currently showing
symptoms, so that they can be quarantined (51, 52). We con-
sider five proactive testing strategies, detailed in SI Appendix,
section A.2.6.2: 1) a baseline of no testing; 2) once-weekly
testing among teachers and staff only; 3) twice-weekly testing
among teachers and staff only; 4) once-weekly testing cadence

among students, teachers, and staff; and 5) twice-weekly test-
ing among students, teachers, and staff. We assume that 75%
of students and 100% of teachers and staff are compliant with
testing (53). Previous work suggests that long test turnaround
times severely curtail the value of testing (51, 54, 55). To
account for this, we use a test turnaround time of 24 h and
assume positive individuals enter quarantine immediately. In our
basic model, only those who test positive are quarantined. We
will later consider the consequences of quarantining all mem-
bers of a primary school classroom when an individual therein
tests positive.

Fig. 4 illustrates the effects of cohorting and testing on the
probability of sizable outbreaks. In our model, proactive testing
consistently reduces the risk of outbreaks among teachers and
students (Fig. 4 and SI Appendix, section B). While cohorting
alone does not completely mitigate the risk of sizable outbreaks
in secondary schools, the combination of cohorting and testing
can keep this risk in check when baseline transmissibility in the
school is sufficiently low.

Fig. 6 highlights the interactions between testing and cohort-
ing measures in their effect on outbreak size in a secondary
school environment. More aggressive testing helps reduce the

A B

Fig. 5. Effects of cohorting strategies. The distributions of school transmission cases as a percentage of school population for 1,000 simulations under
different student cohorting strategies in (A) primary schools and (B) secondary schools with R0 = 1.5, approximately weekly new case introductions, and no
testing. Under each jitter distribution, we list the percentage of simulations that result in outbreaks affecting more than 5% of the population.
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Fig. 6. Relative effects of testing and cohorting in a secondary school setting. A heatmap of pairwise comparisons of testing and cohorting interventions
illustrates the effects of various combinations on mean outbreak sizes. Each cell is colored according to the log-ratio of mean outbreak sizes for the two
interventions, which represents the effect of the column intervention relative to the row intervention. A blue cell indicates that the column intervention
achieves a lower mean outbreak size than the row intervention; a red cell indicates that the column intervention has worse outcomes than the row
intervention on average. Symbols in cells denote statistically significant differences in outbreak size distributions according to the Mann−Whitney U test at
the 0.01 (~) and 0.05 (∗) levels. Results are shown for scenarios where R0 = 1.5, case introductions occur weekly on average, and only the positive individual
is quarantined when cases are detected.

size of outbreaks, as does cohorting. Testing and cohorting
together outperform either measure alone. Interventions that
help students also help teachers, and vice versa.
Isolation protocols. When an infected individual is identified
by proactive testing, that person should be immediately iso-
lated to prevent further transmission. In primary schools where
classroom organization is stable, school administrators may addi-
tionally consider quarantining the entire classroom—students
and teacher.

Our model indicates that classroom-level quarantine can
reduce outbreak risk (SI Appendix, Fig. A4). For students and for
teachers, with weekly introductions, the distribution of outcomes
from isolating classrooms is stochastically smaller than the distri-
bution of outcomes from isolating individuals (Mann−Whitney
U test, p� 0.01). This means that, if one takes the outcome of
a randomly drawn simulation run with classroom-level isolation
and another with individual-level isolation, the classroom-level
simulation run is significantly more likely to have the better
outcome. When introductions are less frequent, benefits of class-
room isolation may not be statistically significant. One important
consideration for quarantining at the classroom level is that
this approach imposes more quarantine days on the popula-
tion. When the level of in-school transmission is relatively low
(e.g., R0 =1.5), classroom-level isolation confers about the same
amount of risk mitigation as moving from a weekly to semiweekly
testing cadence, but classroom isolation leads to a large increase
in the number of in-person learning days lost (SI Appendix,
section B.8).
Vaccination. Pfizer-BioNTech and Moderna have reported
extremely successful results from their phase III and phase

IV COVID-19 vaccine trials, with 90% or greater efficacy at
blocking symptomatic disease (56–61). The Johnson & Johnson
vaccine has somewhat lower efficacy but requires only a sin-
gle dose. Distribution of all three vaccines is well underway in
the United States, with over a third of the US population fully
vaccinated as of early May 2021.

Teachers and staff who have been vaccinated against COVID-
19 are well protected against infection (Fig. 7). While initial
phase III trial data focused only on diagnosis of symptomatic dis-
ease as a primary end point, current evidence suggests that the
vaccines block transmission as well as symptomatic disease (59,
60, 62, 63). Vaccinating teachers can also reduce the risk of out-
breaks among students, particularly when paired with cohorting.
The combination of vaccinating teachers and cohorting students
continues to substantially reduce the risk of outbreaks at higher
levels of transmissibility, which suggests this strategy may offer
a proactive defense against the spread of more transmissive
variants.

Limitations
Like all epidemiological models, ours is a simplification of a
complex, highly variable world. Our model is built on a series
of assumptions and parameters; to the degree that these do
not accurately reflect the real world, the model will be inef-
fective at predicting even the range of possible outcomes. We
have attempted to account for uncertainty by embracing realistic
heterogeneity and stochasticity in our model and by evaluat-
ing the sensitivity of outcomes across plausible ranges of val-
ues for critical parameters (SI Appendix, section B). Still, in a
novel pandemic where many epidemiological parameters remain
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Fig. 7. Effects of vaccinating teachers. The distributions of school transmission events as a percentage of school population for 1,000 simulations with
either no vaccination or vaccination of all teachers and staff in (A) primary schools and (B) secondary schools. Results are shown for scenarios with R0 =
1.5, approximately weekly new case introductions, and no testing. Because vaccination is only 90% effective in the model, some teachers and staff become
infected even when all are vaccinated. Effective vaccinations block both disease and transmission.

uncertain, and social and behavioral factors are fluid, some
mismatch is inevitable.

The basic reproduction number (R0)—the average number
of new cases generated by an infectious individual in a fully
susceptible population—is a critical driver of disease dynamics.
Estimates of R0 at the community level reflect an average rate of
transmission integrated over many contexts and behaviors, which
may include efforts to curtail transmission, such as social dis-
tancing, restricting large groups, and closing schools, businesses,
and other gathering places. As schools reopen, larger numbers of
individuals come together to interact, and average rates of trans-
mission could be higher in schools than in the overall community.
Still, basic in-school interventions such as mask wearing, physical
distancing, and behavioral changes are expected to substantially
reduce R0.

In our model, we assume that these basic interventions can
reduce R0 to 1.5—roughly half of what it would be in the absence
of intervention, depending on the transmissibility of variants
circulating in the population. Previous studies suggest that trans-
mission is relatively limited in schools (22, 49, 50, 64–66). In
addition to the basic measures listed above, many of the schools
described in these studies were already implementing one or
more interventions along the lines of the ones we analyze here:
cohorting, isolating groups, testing, contact tracing, reducing the
number of people on campus, and so forth (17, 49, 66, 67). These
studies largely corroborate our findings that school transmis-
sion is often kept in check when such mitigation strategies are
used. Fewer studies have considered schools that are only using
masks and other basic measures, but there is evidence that siz-
able school outbreaks can occur in these contexts (18). We find
that the probability and size of outbreaks are strongly influenced
by the underlying R0, but the relative effects of mitigations are
robust across a range of R0 values (SI Appendix, section B.1.1).

Here we have simulated a subset of the currently prac-
ticed strategies for returning to in-person learning (68). We
assume that students, teachers, and school staff adhere to test-
ing cadences, cohorting schedules, and quarantine policies in
addition to basic measures. In the absence of evidence to the
contrary, we assume that—holding transmissibility and suscep-
tibility constant—all forms of close contact are equally likely to
result in transmission. In practice, the nature of interpersonal
relations may make transmission from student to student or from
teacher to teacher more likely than transmission between these
groups, and could explain why some contact-tracing studies have
reported disproportionately low student-to-teacher transmission
(49, 69).

We have modeled primary school children as being less
susceptible to SARS-CoV-2 infection than teachers and staff.

Recent evidence from seroprevalence and contact-tracing stud-
ies supports this assumption (16, 20, 70–72). However, because
a high percentage of children develop asymptomatic disease,
COVID-19 cases among children may be more likely to go unde-
tected. Therefore, it is possible that the apparent decreased sus-
ceptibility to SARS-CoV-2 infection among primary school−age
children is an artifact of underreporting. We find that school
transmission is sensitive to the susceptibility of students, and, if
the susceptibility of primary school students is closer to that of
adults, then primary school outcomes will more closely resemble
those of secondary schools (SI Appendix, appendix B.3.1).

We also assume that there is no difference in infectiousness
between presymptomatic, asymptomatic, and symptomatic indi-
viduals. Some studies suggest that presymptomatic individuals
may contribute a disproportionately high number of cases rel-
ative to the duration of this disease state, and asymptomatic
individuals may contribute disproportionately few cases rela-
tive to symptomatic individuals (73–75). However, these studies
draw on contact tracing data, and it is unclear how much of
these differences in transmission is attributable to differences in
viral transmissibility (e.g., viral load and shedding) as opposed
to changes in behavior or other factors associated with these
disease states. Our assumption is conservative with respect to
asymptomatic transmission in the sense that our results will err
on the side of overestimating the number of school transmis-
sion events if asymptomatic or presymptomatic individuals are
indeed less infectious than symptomatic individuals. However,
our results may overstate the relative benefit of mitigations in
such a case. If presymptomatic individuals are more infectious
than symptomatic individuals, our results may underestimate the
amount of transmission that is likely to occur in schools, but the
importance of proactive mitigations would be even greater. The
sensitivity of our model results to the relative infectiousness of
presymptomatic and asymptomatic individuals is discussed in SI
Appendix, section B.1.3.

Over the course of the pandemic, community prevalence
measurements have fluctuated substantially on a timescale of
months, due to changing individual behaviors and societal inter-
ventions. Because these fluctuations have been largely unpre-
dictable, we have elected to use a constant introduction rate
throughout. In doing so, we are effectively decoupling infec-
tion dynamics within the school from epidemic dynamics in the
community. In our model, intervention choices that lead to a
large number of school-related transmissions do not feed back
on the community prevalence to influence the downstream haz-
ard of community introduction back into the school. Similarly,
in our model, mitigation choices that block school transmis-
sion do not reduce the community introduction rate. This seems
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reasonable when schools are not important drivers of the com-
munity prevalence of SARS-CoV-2 infection, as appears to be
the case especially for K-5 schools (17, 49, 76). Where schools are
important drivers of community dynamics, however, our model
risks underestimating the consequences of mitigation efforts.
When schools drive community prevalence, planners must also
consider the cost of the additional community infections that
result from reopening schools—which we have not done here.

Summary
We have presented results from a simulation model of reopen-
ing schools during the COVID-19 pandemic. The purpose of this
model is to provide a scenario-simulating tool that, when used
in concert along with other credible sources of information and
data, can aid decisions around school reopening policies.

We attempt to make reasonable assumptions about epidemi-
ological parameters and aspects of human behavior that drive
disease transmission. Our results tend to be robust to these
choices, and the qualitative findings that we report—advantages
to cohorting, testing, and vaccination—are expected to hold up
more broadly. In SI Appendix, section B, we provide detailed sen-
sitivity analyses for a number of important parameters, includ-
ing transmissibility, student susceptibilities, contact network
structures, and compliance with intervention strategies. Our
online webapp (https://www.color.com/return-to-school-model)
provides a way to explore the range of parameters interac-
tively, which can be used to assist in dynamic decision-making
in response to uncertain and changing local circumstances.

Our model suggests that dividing students into cohorts that
attend school in person on alternating schedules can be a pow-
erful strategy for mitigating risk. Cohorting is effective in our
model because students largely restrict in-person interactions to
other individuals within their own groups, and this takes place
only while at school. The cohorting strategy is fairly robust to
students interacting off campus as well, provided that students
continue to limit their contacts to students in their own cohort (SI
Appendix, section B.6). However, when students socialize beyond
their close contacts and across cohort boundaries outside of
school—as students are wont to do—the effectiveness of cohort-
ing is reduced (SI Appendix, section B.2). Schools could consider
further efforts to reduce the mixing of the student body at school,
which has a significant impact on the risk of transmission in all
contexts (SI Appendix, section B.2). This might include restruc-
turing lunch periods, passing periods, transportation logistics,
and other scenarios in which incidental transmission could occur
between otherwise “unconnected” individuals.

Teachers and staff are more susceptible to the virus than
primary school students and at higher risk of severe disease
than students of any age. Moreover, teachers serve as con-
duits for outbreaks to move among classrooms within the school
network. Frequent, proactive testing of teachers and staff can
interrupt such transmission chains and further protect them from
infection.

Vaccinating teachers and staff is a powerful tool for pro-
tecting this critical workforce. If vaccines effectively block

SARS-CoV-2 transmission in addition to COVID-19 symptoms,
vaccinating teachers and staff can significantly dampen outbreak
dynamics in both primary and secondary schools. The result
would be fewer cases among adults and students alike.

The success of reopening efforts will hinge on the amount
of transmission that occurs in schools. The higher the trans-
missibility, parameterized here as R0, the greater the chance
of substantial outbreaks in a school setting. Physical distancing,
diligent use of masks, and other environmental controls offer
a first-line approach to reducing transmission and will be an
important component of reopening plans.

For both primary and secondary schools, the risk of an out-
break increases as cases in the surrounding community rise. One
of the most effective ways to safely reopen schools is by con-
trolling COVID-19 in the community. Surveillance should be in
place to monitor levels of community transmission, and schools
should be prepared to respond flexibly.

Because highly transmissible variants such as B.1.1.7 pose
increased risks for outbreaks, schools need to be vigilant on
multiple fronts. First, where genomic surveillance is available,
school districts and counties need to monitor the introduction
and spread of these variants. Second, irrespective of the vari-
ants involved, it will be important to monitor epidemic dynamics
within any given school and to respond quickly should uncon-
trolled spread take place. An additional virtue of testing is that
it facilitates early detection of such events. We have not explic-
itly modeled surveillance testing and response, but general public
health guidance should be followed. For example, schools could
implement “tripwire” strategies, returning to distance learning
for a period of time in response to in-school outbreaks or rising
community prevalence. In the event of isolated cases appearing
at higher than expected rates, administrators should recon-
sider assumptions about the rate of community introduction and
intensify control measures accordingly.

Our model suggests that, under certain parameters, it may
become difficult or impossible to keep the probability of out-
breaks low across the schools of an entire district. Tripwire
strategies may be necessary under these circumstances.

While gaps remain in our understanding of transmission
in school settings, both real-world experience and models—
including the one presented here—suggest a path forward for
schools to reopen, particularly when community transmission is
low and when it is possible to deploy and consistently implement
the mitigation measures we have modeled here.

Data Availability. Python code used to instantiate and run the
models, and the simulation data tables, have been deposited in
Zenodo (https://doi.org/10.5281/zenodo.5237328) (77).
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