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In microbiome studies, researchers often wish to compare the taxa count distributions between groups of
samples. Commonly used corresponding methods of analysis are built on examining distance matrices,
where distances describe the beta-diversity between samples. Analyses then compare the distribution
of distances within groups to the distributions between groups. However, when performing a priori sam-
ple size or power calculations for such study designs, appropriate within and between group distance dis-
tributions can be challenging to obtain. When available, pilot study data, or data from prior studies of
similar design should provide realistic distance estimates. However, when these are not available, dis-
tances can be extracted from available studies where one can assume similar beta-diversity.
Alternatively, distances can be generated by simulation methods. Here, we describe and illustrate these
three strategies for obtaining realistic distance matrices. For simulation methods, we illustrate the pro-
cedures required starting from existing benchmark data, as well as how to simulate directly from popu-
lation assumptions. Using data from the American Gut project, we provide tables of observed distances
for use by researchers planning their own studies, as well as R codes for generating similar matrices in
other datasets. Furthermore, for simulated data, we compare methods, provide R codes, and demonstrate
how challenging it is to obtain realistic distance distributions without any benchmark data. This code and
illustrative distance tables are provided by the IMPACTT Consortium as a resource to the microbiome
research community.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

More than a decade after the HumanMicrobiome Project (HMP)
[1], large-scale microbiome studies have been initiated worldwide
to characterize the large diversity of microbial populations living in
and on humans. This is being achieved by next generation sequenc-
ing technologies to genetically identify all microbiota present in a
biosample. This was a newly developed method at the time of the
HMP and one that continues to offer advantages over culture-
based methods. In fact, the ability to identify all community mem-
bers in human microbiota at a site of interest was the ‘promised
land’ of large-scale sequencing technologies [2]. The microbiome
research field has also embraced principal component or coordi-
nate clustering methods to show visually and intuitively in a fig-
ure, how whole microbial communities cluster by a health
outcome or an environmental determinant. As many times micro-
biota clusters overlap visually, these figures are often accompanied
by analysis methods such as PERMANOVA [3] to test for statisti-
cally significant differences in cluster composition. However, it is
rare to find study plans that carefully consider whether they have
good power for detection of meaningful differences, particularly
for complex community composition questions. However, this
may be coming shortly: reporting guidelines have been recently
developed for microbiome studies (STORMS: https://www.
stormsmicrobiome.org/ [4], STROBE-metagenomics [5]) have been
recently developed for microbiome studies and recommend exam-
ining study power carefully.

In an overview paper by Casals-Pascual et al [6] on sample size
requirements for microbiome studies, an example was provided on
how to test for desired differences in microbial beta-diversity, a
metric that characterizes the whole microbiome community [7].
It assumed a normal distribution of microbial beta-diversity but
often this is not the case. Appreciating this challenge, Kelly et al.
developed a series of equations to determine sample size for
beta-diversity measures, [8], built on the permutation-based
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analysis method PERMANOVA [3]. However, use of their equations
requires researchers to find literature reference values for vari-
ances and desired differences in beta-diversity. Although several
alternative analysis methods for detecting global microbiome
diversity have been proposed [9–11], to perform sample size and
power calculations using these methods, realistic estimates of beta
diversity are still required in advance. Recently, Gail et al. (2021)
[12] compared the power of several of these methods; they also
mention that beta-diversity measures are required when estimat-
ing sample size and power. This presents microbiome researchers
with another challenge. ‘Actual values’ for the beta-diversity met-
ric by groupings of interest are not often reported in microbiome
papers. Although obtaining data from a small pilot study would
be ideal [12], is not always feasible. We -- several researchers from
IMPACTT (Integrated Microbiome Platforms for Advancing Causa-
tion Testing and Translation; https://www.impactt-microbiome.
ca/) – describe in detail, including code, how to obtain values for
microbial beta-diversity variances and helpful group differences
from existing literature, to be used in sample size calculations.
When such data are missing or not reported, we also show how
to use simulation to create ranges for these beta-diversity values.

2. Distance metrics

Sample size calculations for beta-diversity require measures of
the ‘‘distance” between samples, where distance captures the dis-
similarity between twomicrobiome profiles. Many different defini-
tions can be used to describe the similarity or differences between
vectors of microbiome counts. Perhaps the most common distance
metric is the Unifrac distance (weighted or unweighted), which
measures the phylogenetic dissimilarity of samples by accounting
for the evolutionary tree estimated from sequence similarity [13].
The unweighted UniFrac distance uses only estimated species pres-
ence/absence information, e.g. the molecularly-defined operational
taxonomic unit (OTU), and counts the fraction of branch length
unique to each sample, while the weighted UniFrac distance
weights the branch length with the OTU abundance difference.
The unweighted Unifrac distance has been shown to be more sen-
sitive to outliers, i.e. OTUs with significantly different abundance
from other OTUs, or to OTUs with abundance near detection limits
[14].

Non-phylogenetic distance metrics that are commonly used for
beta-diversity include the Jaccard (weighted and unweighted) and
Bray-Curtis distances. The unweighted Jaccard distance for micro-
biome is defined as one minus the ratio of the intersection to the
union of OTU presence/absence sets of two samples [15]. The
weighted Jaccard distance considers abundance information, and
a distance between two samples j and k is defined as:

djk ¼ 1�
P

iminðxik; xijÞP
imaxðxik; xijÞ ;

where i indexes different OTUs.
A third common choice, chosen as the default metric in the pop-

ular vegan R package [16] is the Bray-Curtis distance [17] defined
as:

djk ¼
P

i xij � xik
�� ��

P
i xij þ xik
�� �� :

The choice of distance metric in a microbiome study depends on
the study goals since difference metrics reflect different perspec-
tives on beta-diversity. The Unifrac distance is a logical choice
when the evolutionary tree is relevant. Use of weighted metrics
that incorporate abundance information will be more important
when considering the microbiome as a system, i.e. a set of of
OTU community members where all the frequencies are correlated,
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whereas unweighted metrics may be more appropriate when look-
ing for new mutations or the presence of a few new rare (esti-
mated) species. Furthermore, beta-diversity measures might be
chosen to make it easier to assess a specific hypothesis, for exam-
ple changes in microbiome composition over time. For example, a
Bray Curtis distance that uses all the abundance differences may be
more sensitive to examine gradients of diversity with location or
time [7].

Researchers should consider experimental design (e.g. effect
size expectations, abundance levels, the range of anticipated
OTUs), data quality (e.g. phylogeny validity, presence of outliers)
and priorities (e.g. type I error) to choose an appropriate metric
for a specific power analysis [18]. Code for calculation of a Unifrac
distance matrix illustrated with data from the American Gut pro-
ject [19] can be found in Supplement A, Box 1.
3. Estimation of distance matrices for sample size calculations

Having chosen a distance metric, beta-diversity sample size cal-
culations require knowledge of the distributions of this distance
measure, both within and between groups [8]. For example, dis-
tances between pairs of individuals receiving the same treatment
could be compared to distances between pairs of individuals
receiving different treatments. Ideally, sample size calculations
are then built on a matrix of distances between all pairs of samples,
but they can also be built on summary statistics describing the dis-
tributions of these distances within and between groups.

The best way to obtain realistic distance matrix estimates for a
chosen beta-diversity distance metric in planning a study is from a
pilot study or from a publication of a similar study. Assuming the
existence of a pilot or a published study involving samples and
groups similar to the planned study, between-group and within-
group distance distributions can be calculated from those studies
and used for inferring effect sizes and conducting power calcula-
tions. This approach was taken by Gail et al. (2021) [12]; a small
set of pilot data were generated and then used to illustrate power
calculations.

However, pilot or similar published data may not always be
available. In such cases, there are two main strategies that can be
used. Firstly, data from a previous study can be used as a bench-
mark dataset in simulations that expand or shrink the observed
distances to desired values. Alternatively, if no benchmark data
can be found, Kelly et al. (2015) [8] proposed a simulation strategy
that employs rarefaction of randomly generated of OTU counts to
achieve desired within-group and between-group distance. In
either case, analysis of the simulated data for a range of sample
sizes will allow estimation of statistical power.
3.1. Extracting distance metrics from a publication

Whenmicrobiota beta-diversity distance measures are reported
in a publication, they can be used to inform sample size calculation
assumptions. Although pairwise distances are not often reported
for each pair of samples compared, we illustrate here, using a study
of the breast milk microbiome, how summary statistics can pro-
vide sufficient information. Tannock et al. (2013) [20] displayed
the distributions of between and within group beta-diversity dis-
tances for 90 infants, sampled at the age of 2 months, who were
fed breast, cow or goat milk. We extracted the means and standard
errors of the distances from Fig. 4b of their paper, then converted
the standard errors to standard deviations, and we provide the
results in Table 1. Both within group and between group distances
are shown, and it can be seen that between group distances tend to
be slightly larger. These values could then be used in power calcu-
lations that are based on t-tests comparing group means. For more
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Table 1
Within group and between group beta-diversity means and standard deviations for stool microbiota, for infants fed breast milk, goat milk or cow milk. Data extracted from
Tannock, Lawley et al. 2013) ‘‘CtoB”: Cow to Goat. ‘‘GtoB”: Goat to human Breast. ‘‘GtoC”: Goat to Cow.

Breast Goat Cow CtoB GtoB GtoC

Mean 0.707 0.734 0.72 0.761 0.755 0.737
SD 0.014 0.01 0.011 0.007 0.007 0.007
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than two groups, it may be possible to transform means and stan-
dard deviations like those in Table 1 to an ANOVA R2 estimate,
which can then motivate sample size calculations based on an
ANOVA-based effect size parameter. We have recently illustrated
such calculations in a review issue on microbiome studies [21],
and this is well described in the classic text by Cohen [22].
3.2. Simulating distance matrices based on benchmark data

Benchmark data, usually from a single group of samples or indi-
viduals, can be used as a starting point to create distance matrices
for power calculations. Ideally, benchmark data would be sampled
from the same body site as planned for the upcoming study, and
the microbiome should be assayed with the same technique. Then,
for power calculations, individuals in the benchmark data can be
randomly allocated to groups, and pairwise distances between
individuals assigned to different groups are multiplied by a scaling
factor to vary the between group distances relative to within-
group distances.

These simulations and calculations depend on the statistical
quantity known as ‘‘effect size”. Often, for beta-diversity compar-
isons, the effect size is defined as a function of between and within
group sums of squares from an analysis of variance [8]. Let N be the
total number of subjects, G be the number of groups and assume an
equal number of individuals (n) will be recruited for each group, so
that N ¼ nG. The effect size, a, is then defined as:

a ¼ SST � SSWðN � 1Þ=ðN � GÞ
SST þ SSW=ðN � GÞ
SSW ¼ 1
n

XN�1

j¼1

XN

k¼jþ1
d2
jkejk
SST ¼ 1
N

XN�1

j¼1

XN

k¼jþ1
d2
jk

where SSW is the within group sum of squared distances, and SST is
the total sum of squared distances between individuals j and k. The
quantity ejk ¼ 1 is an indicator variable, which is 1.0 only when sub-
ject j and k are in the same group, and is 0.0 otherwise.

Kelly et al. (2015) [8] proposed that simulations starting from
benchmark data could be undertaken as follows:

� Bootstrap the benchmark data set and randomly allocate the
bootstrapped set of individuals into G groups. Within group dis-
tances (SSW) can then be estimated from the distances within
these groups of individuals.

� To create larger distances between groups than within groups, a
scaling factor, r > 1:0, is introduced and set to a value chosen
by the researcher. Every bootstrapped distance between indi-
viduals in different groups is multiplied by r, and then the total
sum of squares, SSTðrÞ, between all pairs of individuals, can be
calculated. This procedure is then repeated for a range of chosen
values for r.

� Average effect sizes comparing between group sums of squares
to within group sums of squares, for each chosen value of r, can
then be calculated from the bootstrapped datasets:
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aðrÞ �
SST � SSW G�1

N�Gð Þrþ 1
� �

SST þ SSW N�Gþ1
r � 1

� � ð1Þ

The effect sizes will increase with larger values of r. By choos-
ing a fine grid of values for r, it is possible to find a value cor-
responding to the average desired effect size a. Also, although
we illustrate calculations for two groups in the code in the Sup-
plementary material, the general concept can be extended to
several groups by defining more than one r for different pairs
of groups.

� To perform power calculations, the steps above are then
repeated many times, generating datasets for analysis, and test-
ing for the ability to detect differences in beta diversity. Details
for this last step are provided in the section below on calculat-
ing power using beta-diversity measures. The code for simulat-
ing distance matrices from benchmark data can be found in
Supplement A, Box 2.

3.2.1. Observed beta-diversity distances from the American Gut project
To illustrate beta-diversity-based distances from a public data-

set that is frequently analyzed, we took data from the American
Gut project (AG) [19] and calculated distances between micro-
biome samples using weighted and unweighted Unifrac, Jaccard
and Bray-Curtis metrics at the phylum level. These distances were
calculated for several sampling sites (e.g. feces, tongue, skin, etc.)
for pairs of samples either from the same sampling site [within
group distances] or from two different sampling sites [between
group distances]. The resulting distributions of pair distances are
summarized by boxplots in Fig. 1 for Jaccard distances and in Sup-
plement B, Figs. S1-S3, for the three other distance measures (Bray-
Curtis, unweighted and weighted Unifrac). Several quantiles as
well as the means and standard deviations (SD) for all 4 distance
measures are also shown in Supplement Table S1. It can be seen
that the distances can have long asymmetric tails.

Inter-sampling site beta-diversity distances, such as seen in the
American Gut data, are not likely to be relevant for most sample
size calculations, since multiple sites were sampled from the same
individual leading to potential dependence between site informa-
tion. Furthermore, microbiome community structures are known
to be extremely distinct between sampling sites. Beta-diversity
changes due to an intervention at a single site are likely to be smal-
ler than differences between sites. On the other hand, differences
in beta diversity between independent individuals may be larger
than between sites sampled from the same individual. Therefore,
we also calculated the distances within and between subgroups
of the AG data defined by age (�45 versus <45), sex and asthma
diagnosis. Fig. 2 shows these statistics for the Jaccard distance,
and Supplement B, Figs. S4-S6, and Tables S2-S4 show similar
results for the other distance measures.

As seen for age, sex, and asthma status, the distribution of dis-
tances in these data is extremely similar within and between
groups. For example, the median of the Jaccard distances is 0.66
for males, females, and between the sexes. In contrast, larger dif-
ferences are seen between body sampling sites, as expected. For
example, the median Jaccard distance within nostril samples is
0.74 but only 0.65 for feces and 0.46 for hair. The median Jaccard
distances between sampling sites was 0.66. We also observed that



Fig. 1. Boxplots of within- and between-group Jaccard distances from different body sites from the AG data. Samples missing body site information are excluded.
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the Unifrac distances (both weighted and unweighted) have smal-
ler variance across the body sites than Bray-Curtis and Jaccard dis-
tances (Supplement B Table S1). Some of the body sites included
only a small number of samples. Unifrac distance takes the phylo-
genetic relatedness of the OTUs at these sites into account, which
may partially compensate for the small sample size. However,
Bray-Curtis and Jaccard distances do not incorporate such assump-
tions, and these metric-specific attributes may be more affected by
sample size.

3.3. Simulating distance matrices without benchmark data

We followed Kelly et al. (2015) [8] to illustrate one way to sim-
ulate distance matrices when benchmark data are not available.
For fixed choices of N;G; and a specific effect size (a) the following
procedure can be followed:

� Start by simulating a uniform vector of species or OTU counts
for each of a sample size of N individuals. Then perform rarefi-
cation (subsampling) by randomly choosing a proportion (the
rarefication proportion: Pr) of the counts to keep [23]; these
counts are then randomly subsampled for each individual. This
step creates pairwise distances that will be considered to be
within-group distances, dependent on the proportion Pr .
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Distances between samples will be larger if fewer sequences
are retained, i.e. a smaller value of Pr . This enables the genera-
tion of samples with a desired within-group mean distance.

� Then the sets of OTU counts for each of the N individuals are
allocated to G groups to match the desired, pre-specified effect
sizes. Specifically, a proportion of the OTUs in one of the G
groups are assumed to belong to new species, unique to that
group; we call this the segregation proportion. By varying the
segregation proportion of OTUs that are renamed in this way,
the within-group distances across all groups can be preserved,
but between-group distances are boosted [8]. The choices of
within-group distances and effect sizes then determine the
between group distances. These rarefication and segregation
steps are implemented in the R package micropower.

� Distance matrices can then be calculated from the rarified data;
the code for generating distance matrices with this approach
can be found in Supplement A, Box 3.

Importantly, to calculate a Unifrac distance, the simulation
methodmust provide data that corresponds to a valid phylogenetic
tree. Frequently, we found that Kelly’s method for generating data
with rarefication did not provide results where Unifrac distances
could be calculated. In contrast, Jaccard distances or Bray-Curtis
distances can always be calculated.



Fig. 2. Within group and between group distance measures for Jaccard distances and subgroupings of the AG data by age, asthma diagnosis and sex. Samples with missing age
are excluded from boxplots for age; Samples missing asthma are excluded from boxplots for asthma.
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It can be challenging to choose the parameters of the simulation
procedure to obtain realistic distances. In Fig. 3, we show a heat-
map of how well the simulated data would match the AG distances
for groups defined by sex (male vs female) and for different param-
eter choices. From the AG data, we calculated the weighted Unifrac
distances for male and female groups and between the sexes. For
the simulations, we assumed two equally sized groups, N = 100,
50 OTUs, and a sequence depth of 50. Then we varied the other
simulation parameters for Kelly’s method, and for each set of
parameters we calculated the deviance between the observed dis-
tance distribution and the simulated one. Specifically, the deviance

between two distance distributions is defined as
P

q
jdqobs�dq

sim j
dq

obs ,

where quantile q is taken from the set of quantiles (0.05, 0.10,

0.25, 0.50, 0.75, 0.90, 0.95), dq
obs is the qth quantile of the observed

distance distribution, and dq
sim is the qth quantile of the simulated

distances. Finally, the deviances from between and within the male
and female groups are calculated and added together to become
our evaluation measure for goodness of fit each set of parameters.
Results are shown for different sets of parameters in the heatmap.
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Although Fig. 3 shows two clear bands where deviance is smaller,
the trends across the heatmap are not smooth and small changes in
either within or between group diversity can lead to abrupt
changes in the similarity of the distributions.

In Fig. 4, we show boxplots of the simulated weighted Unifrac
beta-diversity estimates corresponding to the best situation in
Fig. 3, as well as three other parameter choices that gave less good
matches to AG data. It can be seen that the distance distributions
vary substantially in magnitude and variability. By selecting the
rarefaction parameter of 0.10 and an effect size of 0.18, the
deviances were the smallest, indicating best match to the AG sex
beta-diversity measures.

In Kelly’s study [8], the starting distribution of counts across the
OTUs was assumed to be uniform, so that an equal number of
sequences is assigned to each OTU. However, this is not a realistic
assumption since usually there is a large range between the most
common and least common OTU. This assumption can be easily
altered to simulate from a non-uniform distribution. In the follow-
ing section, we show power results when simulations started with
non-uniformly distributed OTU counts.



Fig. 3. Heatmap of summed absolute deviances across 7 quantiles between simulated beta-diversity distances and observed distances from AG data for two groups defined
by sex. Simulated data are obtained with Kelly’s method, varying the simulation parameters in each cell to match observed data most closely.
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4. Power calculations for beta-diversity measures

With a method in hand to obtain or generate an appropriate dis-
tance matrix, power can be estimated by bootstrap sampling if we
follow Kelly’s [8] method. This approach samples individuals from
the distributions implied by the distance matrix, allocates them
into groups with the desired effect size, and then analyzes
between- and within-group distances using a method such as PER-
MANOVA [3]. Performing this process repeatedly enables estima-
tion of the proportion of datasets where the null hypothesis is
rejected at a chosen significance threshold. For example, to esti-
mate the statistical power of a study that includes 10 subjects
per group, we can randomly select, with replacement, 10 subjects
per-group from each simulated distance matrix. If we repeat the
selection and analysis, say 100 times, power will be the percentage
out of 100 where the p-value is less than the threshold. Hence, by
varying these calculations for different sample sizes, one can
choose an appropriate study size with good power. Sample code
for calculating power using this approach can be found in Supple-
ment A, Box 4.
4.1. Illustration of power calculations with American Gut benchmark
data

Using two of the body sites within the AG data (skin and hand)
as benchmark data, we illustrate the results of two power calcula-
tions in Fig. 5.

There were 169 skin samples and 165 hand samples, which
were combined to create a dataset of 334 individuals to calculate
pairwise distances. We then sampled from this large distance
matrix assuming a desired study sample size of 100 individuals
divided into 2 groups (Fig. 5a) or 100 individuals divided into 10
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groups (Fig. 5b), and a type 1 error of 0.05. The effect sizes were
varied by changing the scaling factor r from 0.9 to 10. After creat-
ing between and within distances, the resulting effect sizes were
calculated for each simulated data set, and this was repeated 100
times. Due to stochasticity associated with the bootstrap sampling,
a chosen scaling factor leads to distance matrices with similar but
not identical effect sizes; the effect sizes obtained ranged from
0.003 to 0.98. Therefore, we calculated power by the proportion
of datasets rejected for a given value of the scaling factor, rather
than for the effect sizes. We smoothed the results in Fig. 5 so that
the general trend can be seen. The power increases with effect size
as would be anticipated. With 10 groups, the effect sizes must be
larger before good power, of 80% or more, is obtained.
4.2. Illustration of power calculations without benchmark data

Fig. 6 shows the results from power calculations built on Kelly’s
data simulation method, using unweighted Unifrac distances,
assuming the same parameters as for Fig. 5, although the segrega-
tion proportion was varied to lead to a range of effect sizes and
powers between zero and one.

In Fig. 6a, power is shown assuming a uniform distribution
across the OTUs. However, as discussed above, all OTUs are unli-
kely to be equally common in microbiome samples. Therefore,
we adapted the simulation to vary the initial number of counts
across the 50 OTUs, following a binomial distribution of size 62,
proportion 0.8 (giving a mean of 50), and results are shown in
Fig. 2b. Power estimates become more variable with the latter sim-
ulation. Hence, these results imply that to ensure good power in
planning a study, it would be best to anticipate the variability in
the distribution of OTU counts, and to use a larger sample size if
possible.



Fig. 4. Distributions of simulated beta-diversity using Kelly’s method for four scenarios. Top left: best match of best: best grid on heatmap with low deviance as defined for
Fig. 3 (rarefaction 0.10, effect size 0.18). Top right: high deviance between groups (rarefaction 0.07, effect size 0.81). Bottom left: high deviance within groups (rarefaction
0.83, effect size 0.11). Bottom right: cell in heatmap with highest deviance (rarefaction 0.34, effect size 0.50).

Fig. 5. Power calculations based on benchmark data. We simulated distance matrices based on the observed distance matrix calculated on 169 skin samples and 165 hand
samples in the AG dataset. Data were simulated for 100 individuals from 2 groups (a) or 10 groups (b), with a Type I error of 0.05 in both simulations.
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Fig. 7 shows simulation results for unweighted Unifrac dis-
tances using Kelly’s method with 4 groups, assuming an equal dis-
tribution of counts across the OTUs to start the simulation. It can
be appreciated in Fig. 7 that estimated power in this simulation
setup is extremely variable. For instance, when effect sizes are
2265
0.3 or larger, power can be close to one, whereas for many other
values, power was close to zero. In fact, we often found it difficult
to choose parameter values for Kelly’s simulation method that
always gave realistic distances, particularly when there were more
than 2 groups.



Fig. 6. Power calculations using Kelly’s method for unweighted Unifrac distances starting from uniform OTUs (Fig. 6a) and non-uniform (Binomial distributed) OTUs (Fig. 6b).
The rarefication proportion (Pr) is 0.03, the segregation proportion is 0.1, N = 100, there are two groups, and 50 OTUs. In panel 2a, there were 50 sequence counts per OTU bin.
In panel 2b, counts per bin were generated from Binom (62, 0.8). Power was calculated using the code in Supplement A Box 4 with a type I error of 0.05. The shaded area
corresponds to a 95% confidence bank obtained within a bandwidth of size 0.05. Specifically, for a specified value of effect size, a, the simulations rendering estimated effect
sizes +/- 0.05 from a were collated, and the 95% CIs of the values of power are shaded accordingly.

Fig. 7. Power calculations using Kelly’s method for unweighted Unifrac distances
starting from uniform OTUs with N = 100 from 4 groups. We set the rarefication
proportion (Pr) = 0.03, while fixing other parameters as N = 100, 4 groups, 50 OTUs,
50 sequence counts per OTU bin with a type I error of 0.05. The segregation
proportion was varied between 0.1 and 1.0, and thence effect sizes ranged from 0 to
0.65. Power calculations were performed using code in Supplement A Box 4. The red
curve is a smoothed cubic spline fit to the relationship between effect size and
power. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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5. Concluding remarks

Clustering methods for microbial beta-diversity have become
popular in human and animal microbiome studies to show how
whole microbial communities differ across groups of interest. For
most part, these are visual tests and microbiota cluster differences
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are not tested statistically. Appropriate power calculations, per-
formed before undertaking a study, can reassure the researchers
(and their audience) that meaningful differences in microbiome
composition are likely to be detected – if they exist – with the
study being planned. However, obtaining realistic estimates of
beta-diversity distance metrics can represent a significant chal-
lenge when performing power or sample size calculations. The goal
of this paper was to aid researchers planning human or animal
microbiome studies. We provided definitions of commonly-used
microbial beta-diversity distance metrics, discussed methods for
estimating distance distributions from pilot studies, or from sum-
mary statistics in existing publications, and demonstrated how to
use inference to calculate sample size and power for one analysis
method. We illustrated two simulation approaches for generating
realistic distance matrices with or without preliminary (bench-
mark) data. Finally, using sample sizes that are typical in micro-
biome studies, we reported the power for detecting beta-
diversity differences between groups for a range of assumptions.

The procedures that we have described apply when comparing
beta diversity between independent groups of individuals. If a lon-
gitudinal study were desired, then one would need estimates of the
distribution of intra-individual changes in beta-diversity. Analo-
gously, for dependent samples, such as those from the same family,
then both within cluster and between cluster beta diversity distri-
butions would be needed for sample size calculations. The
approach of Field et al. (2013) [24] can be used to adjust the effect
size equation (1) to account for repeated measures on the same
individual. However, there is no self-evident way to adapt the sim-
ulation procedure of Kelly et al. [8] to create correlated sets of data.
This could be an interesting research direction.

Researchers should be cautioned that the distance summary
statistics that we showed should be considered as illustrative of
the methods to calculate distances, rather than illustrative of the
distances themselves. American Gut-derived distances include
multiple sampling sites taken from the same individuals, and so
there could be dependence between the microbiome count distri-
butions. Also, our calculations were shown for the phylum level,
and hence will not apply to other levels. Researchers should
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thoughtfully select relevant publications or pilot data for use when
undertaking sample size calculations.

The choice of the distance metric depends on the objectives and
priorities of the power calculation, and the choice of simulation
method depends on the: (i) availability of the pilot dataset, and
(ii) assumptions researchers want to make. In particular, we found
that simulated distances, within- and between-groups need careful
scrutiny before conducting power calculations. We found that
results from Kelly’s method can be unreliable, dependent on
assumptions, this particularly when planning comparisons among
several groups. Moreover, when planning to study microbiota envi-
ronments, interventions, or sampling sites different from those
examined here, microbial beta-diversity distances provided in this
paper—either from simulation or from the American Gut project—
may not resemble those intended for study. Nevertheless, by vary-
ing assumptions, a range of distributions can be obtained and a
study can be designed with conservative assumptions.

Although the beta-diversity distance calculations and power
curves presented in this paper are specific to the data choices
and modelling assumptions we made, we anticipate that our
examples will provide researchers with concrete starting points
for choosing distance estimates for their own studies. Throughout
this paper, we have provided detailed R code to assist in simulating
and analyzing data on beta-diversity distance measures, and in cal-
culating sample size or power. The inclusion of examples of dis-
tances that we obtained, despite their limitations, may guide
researchers in the generation of their own distance matrices. We
encourage microbiome scientists to test and optimize the tools/
scripts presented here, and future ones, as microbiome datasets
become more plentiful in public repositories.
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