

## Supporting Information

for Adv. Sci., DOI 10.1002/advs.202302606

A Mycovirus VIGS Vector Confers Hypovirulence to a Plant Pathogenic Fungus to Control Wheat FHB

Lihang Zhang, Shuangchao Wang, Shaojian Ruan, Clement Nzabanita, Yanfei Wang and Lihua Guo\*

#### Supporting Information

Title

A mycovirus VIGS vector confers hypovirulence to a plant pathogenic fungus to control wheat FHB

Lihang Zhang<sup>†</sup>, Shuangchao Wang<sup>†</sup>, Shaojian Ruan, Clement Nzabanita, Yanfei Wang, and Lihua Guo<sup>\*</sup>

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China

† L.Z. and S.W. contributed equally to this work.\*Corresponding author: Lihua Guo

E-mail: guolihua@caas.cn



Figure S1. Comparison of colony morphology, colonial diameter, viral DNA accumulation, and virulence between fungal cultures transfected with plasmid vectors A+B+C and pSK-ABC. (A) Southern blot showing viral DNA accumulation of strains PH-1 (VF, as negative control), A+B+C (as positive control), and pSK-ABC. Fungal genomic DNA serves as the loading control (L.C.). The blots show the components of DNA-A and DNA-C, respectively. This experiment was repeated three times with similar results; representative images are shown. (B) Colony morphology of strains PH-1, A+B+C, and pSK-ABC after 4 days of culture on PDA in the dark (n = 3). (C) Comparison of the colonial diameter among strains PH-1, A+B+C, and pSK-ABC (n = 3). (D) FHB symptoms and the number of diseased spikelets per invaded wheat head caused by putting small equisized mycelial plugs into the glume of spikelets (n = 15). Twelve days after inoculation, there were no significant differences in the number of diseased spikelets per invaded wheat head infected with strains A+B+C and pSK-ABC. Error bars represent standard deviation. ns indicates no significance.



**Figure S2. Colony morphology and virus detection of mutants p26-D1, p26-D2, p26-D3, and p26-D4 during culture on PDA.** (A) Colony morphology of mutants p26-D1, p26-D2, p26-D3, and p26-D4 was observed after 4 or 6 days of culture and subculture on PDA under dark conditions. (B) PCR detection of the viral components DNA-A, DNA-B, and DNA-C in the samples from (A). VF: negative control. This experiment was repeated thrice with similar results. Representative images are shown.



**Figure S3.** Sequence analysis of the inserted GFP gene fragments and the conjugated viral genome in transfectants infected by p26-D4-GFP75F/R, p26-D4-GFP150F/R, p26-D4-GFP300F/R, and p26-D4-GFP450F/R. There were no changes in the inserted fragments and viral genome sequences in transfectants infected by p26-D4-GFP75F/R and p26-D4-GFP150F/R. The GFP fragments inserted into DNA-C genomes of strains infected by p26-D4-GFP300F/R and p26-D4-GFP300F/R and p26-D4-GFP450F/R were partially or entirely deleted. This experiment was repeated thrice with similar results. Representative sequences are shown.



Figure S4. The relative expression levels of eight target genes and DON production analysis in p26-D4-GFP150F-infected strain. (A) The relative expression levels of *Tri1*, *Tri5*, *Tri10*, *Tri101*, *FgP1*, *FgPP1*, *FgSTE12*, and *FgCYP51C* in p26-D4-GFP150F-infected strain. qRT-PCR was carried out with the *EF-1a* transcript levels as an internal control (n = 3). (B) DON production analysis in p26-D4-GFP150F-infected strain. The DON production of each strain was determined after growth in mycotoxin induction medium (TBI) for three days (n = 3).



Figure S5. The relative expression level of target genes in the sixth subculture. The expression of *Tri1*, *Tri5*, *Tri10*, *Tri101*, *FgP1*, *FgPP1*, *FgSTE12*, and *FgCYP51C* are downregulated in the strains infected with p26-D4-Tri1, p26-D4-Tri5, p26-D4-Tri10, p26-D4-Tri101, p26-D4-FgP1, p26-D4-FgSTE12 or p26-D4-FgCYP51C, respectively. These samples were sub-cultured six times. qRT-PCR was carried out with the *EF-1a* transcript levels as an internal control (n = 3). Error bars represent standard deviation. An asterisk indicates a statistically significant difference according to the one-way ANOVA (Dunnett's *post-hoc* test). \*\*\*\* p < 0.0001.



Figure S6. The control of FHB in wheat with hypovirulent strains containing the VIGS vector in the field. FHB symptom and the number of diseased spikelets per invaded wheat head in Test 1 (A) and Test 2 (B) (n = 15). Test 1: Small equisized mycelial plugs of the two hypovirulent strains were inoculated together with 10  $\mu$ L of conidial suspension of strain PH-1/*hph* into the glume of a spikelet. Test 2: Hyphal fragment suspensions were sprayed on wheat spikes, followed by inoculation of 10  $\mu$ L PH-1/*hph* conidial suspension at 24 h post spraying. Infected wheat heads were photographed 12 days after inoculation. Sterile water was used as the negative control. The data was analyzed using GraphPad Prism version 8.0. Error bars represent standard deviation. An asterisk indicates a statistically significant difference according to the one-way ANOVA (Dunnett's *post-hoc* test). \*\*\*\* *p* < 0.0001.



Figure S7. p26-D4-based vectors could silence target genes by viral horizontal transmission via hyphal anastomosis. (A) Viral horizontal transmission via hyphal anastomosis. Strains infected by p26-D4-GFP75F and p26-D4-GFP75R were used as donors, and strain PH-1/GFP as a recipient. (B) Southern blot analysis of DNAs extracted from mycelia of strains PH-1/GFP (VF, as negative control), p26-D4-GFP75F/R-infected strains (as positive control) and subcultures (F1-F3, R1-R3) from the recipient sides of dual-cultures between PH-1/GFP and strains infected by p26-D4-GFP75F or p26-D4-GFP75R. Fungal genomic DNA serves as the loading control (L.C.). The blots show the components of DNA-A and DNA-C, respectively. This experiment was repeated three times with similar results; representative images are shown. (C) p26-D4-based vector mediated the suppression of the GFP reporter expression by viral horizontal transmission via hyphal anastomosis. The recipients infected by p26-D4-GFP75F and p26-D4-GFP75R are significantly weak in green fluorescence intensity. Values in the respective panels of (C) show the relative intensity of GFP green fluorescence quantified by ImageJ, with virus-free strain PH-1/GFP expressed as 1.0. Scale bars, 5 mm. This experiment was repeated thrice with similar results. Representative images are shown. (D) The relative expression level of GFP in recipient strains infected by p26-D4-GFP75F and p26-D4-GFP75R. qRT-PCR was carried out with the *EF-1* $\alpha$  transcript levels as an internal control (n = 3). Error bars represent standard deviation. An asterisk indicates a statistically significant difference according to the one- way ANOVA (Dunnett's *post-hoc* test). \*\*\*\* p < 0.0001. ns indicates no significance.

| Strains                                         | Brief description                              | Reference   |  |
|-------------------------------------------------|------------------------------------------------|-------------|--|
| PH-1                                            | Wild-type                                      | [34]        |  |
|                                                 | PH-1 integrated the enhanced green             |             |  |
| PH-1/GFP                                        | fluorescent protein (EGFP) gene and the        | This study  |  |
|                                                 | Geneticin-resistance gene (G418)               |             |  |
| PH-1/pSK-ABC                                    | Transfectant of the infectious clone pSK-ABC   | This study  |  |
| DII 1/26 D1                                     | Transfectant of the viral deletion mutant p26- | This study  |  |
| РН-1/р20-D1                                     | D1, strain PH-1 as a recipient                 | This study  |  |
| DII $1/26$ D2                                   | Transfectant of the viral deletion mutant p26- |             |  |
| Рп-1/р20-D2                                     | D2, strain PH-1 as a recipient                 | This study  |  |
| DII 1/20 D2                                     | Transfectant of the viral deletion mutant p26- | This study. |  |
| РН-1/р20-D3                                     | D3, strain PH-1 as a recipient                 | This study  |  |
| DII 1/20 D4                                     | Transfectant of the viral deletion mutant p26- | This study  |  |
| РН-1/р20-D4                                     | D4, strain PH-1 as a recipient                 |             |  |
| DII 1/20 D5                                     | Transfectant of the viral deletion mutant p26- | This study  |  |
| РН-1/р20-D3                                     | D5, strain PH-1 as a recipient                 |             |  |
| DII $1(CED)/n26$ D4                             | Transfectant of the viral deletion mutant p26- | This study  |  |
| РП-1(ОГР)/р20-D4                                | D4, strain PH-1/GFP as a recipient             |             |  |
| PH-1(GFP)/p26-D4-                               | Transfectant of the VIGS vector p26-D4-        | This study  |  |
| GFP75F                                          | GFP75F, strain PH-1/GFP as a recipient         | This study  |  |
| PH-1(GFP)/p26-D4-                               | Transfectant of the VIGS vector p26-D4-        | This study. |  |
| GFP75R                                          | GFP75R, strain PH-1/GFP as a recipient         | This study  |  |
| PH-1(GFP)/p26-D4-                               | Transfectant of the VIGS vector p26-D4-        | This study  |  |
| GFP150F                                         | GFP150F, strain PH-1/GFP as a recipient        | This study  |  |
| PH-1(GFP)/p26-D4-                               | Transfectant of the VIGS vector p26-D4-        | This study. |  |
| GFP150R                                         | GFP150R, strain PH-1/GFP as a recipient        | i nis study |  |
| PH-1(GFP)/p26-D4-                               | Transfectant of the VIGS vector p26-D4-        | This stude  |  |
| GFP300F GFP300F, strain PH-1/GFP as a recipient |                                                | This study  |  |

Table S1. All F. graminearum strains used in this study.

| PH-1(GFP)/p26-D4-      | Transfectant of the VIGS vector p26-D4-      |                |  |
|------------------------|----------------------------------------------|----------------|--|
| GFP300R                | GFP300R, strain PH-1/GFP as a recipient      | This study     |  |
| PH-1(GFP)/p26-D4-      | Transfectant of the VIGS vector p26-D4-      | <b>701</b> • 1 |  |
| GFP450F                | GFP450F, strain PH-1/GFP as a recipient      | This study     |  |
| PH-1(GFP)/p26-D4-      | Transfectant of the VIGS vector p26-D4-      | This study     |  |
| GFP450R                | GFP450R, strain PH-1/GFP as a recipient      | This study     |  |
|                        | Transfectant of the VIGS vector p26-D4-      | This study     |  |
| TH-1/p20-D4-OF1 /5F    | GFP75F, strain PH-1 as a recipient           | This study     |  |
| DH 1/m26 D/ CED75D     | Transfectant of the VIGS vector p26-D4-      | This study     |  |
| FII-1/p20-D4-OFF/JK    | GFP75R, strain PH-1 as a recipient           | This study     |  |
| DH 1/m26 D4 Tril       | Transfectant of the VIGS vector p26-D4-Tri1, | This study     |  |
| FII-1/p20-D4-1111      | strain PH-1 as a recipient                   | i nis study    |  |
| DH 1/m26 D4 Tri5       | Transfectant of the VIGS vector p26-D4-Tri5, | This study     |  |
| Рп-1/р20-D4-1113       | strain PH-1 as a recipient                   | This study     |  |
|                        | Transfectant of the VIGS vector p26-D4-      | This study     |  |
| FH-1/p20-D4-11110      | Tri10, strain PH-1 as a recipient            |                |  |
| DH 1/m26 D4 Tri101     | Transfectant of the VIGS vector p26-D4-      | This study     |  |
| FH-1/p20-D4-111101     | Tri101, strain PH-1 as a recipient           | This study     |  |
| DII $1/m^{2}$ D4 EaD1  | Transfectant of the VIGS vector p26-D4-FgP1, | This study     |  |
| rн-1/p26-D4-FgP1       | strain PH-1 as a recipient                   | This study     |  |
| DII $1/m^{2}$ D4 EaDD1 | Transfectant of the VIGS vector p26-D4-      | This study     |  |
| rn-1/p20-D4-rgrr1      | FgPP1, strain PH-1 as a recipient            |                |  |
| PH-1/p26-D4-FgSTE12    | Transfectant of the VIGS vector p26-D4-      | This study.    |  |
|                        | FgSTE12, strain PH-1 as a recipient          |                |  |
| PH-1/p26-D4-           | Transfectant of the VIGS vector p26-D4-      | This study     |  |
| FgCYP51C               | FgCYP51C, strain PH-1 as a recipient         | This study     |  |

| Gene name                     | Brief description                                                                                                                                                                                                                                                                                                                                                                                     | Silencing<br>efficiency | Reference     |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------|
| <i>Tri1</i><br>(FGSG_00071)   | <i>Tri1</i> encodes cytochrome P450 oxygenases and<br>catalyzes hydroxylation of C-7 and C-8 of<br>isotrichodermin and calonectrin during the<br>biosynthesis of type B trichothecenes. The gene<br>disruptants no longer produced 15-<br>acetyldeoxynivalenol, but accumulated<br>calonectrin and 3-deacetylcalonectrin.                                                                             | 83%                     | [22]          |
| <i>Tri5</i><br>(FGSG_03537)   | <i>Tri5</i> encodes a trichodiene synthase, which cyclizes farnesyl pyrophosphate into trichodiene, the first step in trichothecene biosynthesis. <i>Tri5</i> deletion mutant could not produce trichothecene and exhibited reduced virulence on some hosts. <i>Tri10</i> is a regulatory gene in trichothecene                                                                                       | 84%                     | [22b,<br>23b] |
| <i>Tri10</i><br>(FGSG_03538)  | mycotoxin-producing <i>Fusarium</i> species and<br>required for trichothecene biosynthesis. The<br>expression levels of most trichothecene genes<br>such as <i>Tri1</i> , <i>Tri3</i> , <i>Tri4</i> , <i>Tri5</i> , <i>Tri8</i> , <i>Tri11</i> , <i>Tri101</i><br>are regulated by <i>Tri10</i> . DON production and<br>pathogenicity were significantly reduced in <i>Tri10</i><br>deletion mutants. | 85%                     | [22a, 23c]    |
| <i>Tri101</i><br>(FGSG_07896) | <i>Tri101</i> encodes a C-3 acetyltransferase that is<br>responsible for the conversion of isotrichodermol<br>to isotrichodermin in the biosynthesis pathway of<br><i>Fusarium</i> trichothecene. <i>Tri101</i> is an integral<br>enzyme in the progression of the biosynthetic<br>steps.                                                                                                             | 82%                     | [22b,<br>23a] |

#### Table S2. Genes involved in trichothecene biosynthesis or pathogenicity in *F. graminearum*.

Biosynthetic pathways for the trichothecene deoxynivalenol in *F. graminearum*: <sup>[35]</sup>

| Farnesyl diphosphate $Tri5$ Trichodiene $Tri4$ Isotrichotriol nonenzymatic Isotrichodermol |                                                                           |        |            |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------|------------|
| Tri101 Isotricho                                                                           | odermin $\overline{Tri11}$ 15-decalonectrin $\overline{Tri3}$ Calonectrin | Tril   |            |
| 3,15-di-O-acetyl                                                                           | deoxynivalenol $Tri8$ 15-acetyldeoxynivalenol ?                           | →Deoxy | nivalenol  |
|                                                                                            | FgP1 is a WOR1-like gene. Deletion of the $FgP1$                          |        |            |
|                                                                                            | in F. graminearum results in greatly reduced                              |        |            |
| FaDl                                                                                       | pathogenicity and loss of trichothecene toxin                             |        |            |
| (ECSC 12164)                                                                               | accumulation in infected wheat plants and in                              | 69%    | [23d]      |
| (1030_12104)                                                                               | vitro. $FgP1$ is also involved in the developmental                       |        |            |
|                                                                                            | processes of conidium formation and sexual                                |        |            |
|                                                                                            | reproduction.                                                             |        |            |
|                                                                                            | FgPP1 encodes an essential phosphatase that                               |        |            |
| FgPP1                                                                                      | plays an important role in hyphal growth,                                 | 63%    | [23e, 23i] |
| (FGSG_07233)                                                                               | development, plant infection and secondary                                |        |            |
|                                                                                            | metabolism synthesis.                                                     |        |            |
|                                                                                            | FgSTE12 is a orthologue of Saccharomyces                                  |        |            |
|                                                                                            | cerevisiae STE12, which is a key transcription                            |        |            |
| FgSTE12<br>(FGSG_07310)                                                                    | factor activated by Fus3/Kss1. The FgSTE12                                | 82%    | [23f]      |
|                                                                                            | deletion mutant was impaired in virulence and in                          |        |            |
|                                                                                            | the secretion of cellulase and protease.                                  |        |            |
|                                                                                            | <i>FgCYP51C</i> is one of the three <i>CYP51</i> paralogues               |        |            |
| <i>FgCYP51C</i><br>(FGSG_11024)                                                            | that is required for full virulence to host wheat                         |        |            |
|                                                                                            | ears. In addition, wheat spikelets inoculated with                        | 220/   | [22: 1]    |
|                                                                                            | FgCYP51C deletion mutant contained five-fold                              | 32%    | [23],fi]   |
|                                                                                            | less DON at 10 dpi than those inoculated with                             |        |            |
|                                                                                            | PH-1.                                                                     |        |            |

| Gene name                     | Gene fragment sequence                                                                                                                       |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Tri1</i><br>FGSG_00071     | AAACACAACTGGTATCTCTTCCAAGGCTTGACAGACCATTTCG<br>CTGTCATGGCTCTCATCACCAGTTTGCAGGATGTCCGGCTCGAC<br>ATGCTGGCATATTTTGTTGCCTTTCTCGTCGTAGTATCCGTCGTA |
| <i>Tri5</i><br>FGSG_03537     | TTATTGAATAACTGTTACCAGTACAACCTTGCCATCATGGAAAA<br>CTTTCCCACCGAGTATTTTCTCAACACTAGCGTGCGCCTTCTCG<br>AGTATATTCGATACCGAGACAGCAATTACACCCGAGAGGAGCG  |
| <i>Tri10</i><br>FGSG_03538    | ATGGATTTCCCAAAGCCTAGACAAGTCCGAGAGACGAGCCTGT<br>TGATGTACTACCTAGACGTCGTGTTTCCTCTGCAATGCATCAAC<br>CCAAACAACAATTGTCTGGGAAAGAGAGAGAGGGCTGTTGACTA  |
| <i>Tri101</i><br>FGSG_07896   | GATTTGTACTCTGTTCCCAAGCGTCATCTTTCTCAGCGCAGCAC<br>TTCTATAATTTAGCGGCCTCACCTTCTGTAACACCAACACCAAG<br>TGATTTACAAACACCACCAAAATGGCTTTCAAGATACAGCTCG  |
| <i>Fgp1</i><br>FGSG_12164     | ATGGCAAATTCAGTGCTCACAGCAACCTATGAGGGTTATATCA<br>GGGACACCGCCGATGCTCTCAGAATCTTCGAGGCTTGCTT                                                      |
| <i>FgPP1</i><br>FGSG_07233    | ACCATCTGCTTGCTCCTCGCCTACAAGATCAAGTACCCCGAAA<br>ACTTCTTCATCCTTCGAGGTAACCACGAGTGTGCCTCCATCAAC<br>CGTATTTATGGATTCTACGACGAGTGCAAGCGTCGCTATAACAT  |
| <i>FgSTE12</i><br>FGSG_07310  | ACATTCGCCGATTCCTGCTGCCCACAGGTGAATATGTCTCATGC<br>ATTCTCTGGAACAACCTCTTCCACATTTCTGGCACCGACATCGT<br>GCGATGCTTGTCCTTCCGATTCCAGGCTTTCGGCCGACCTGTCA |
| <i>FgCYP51C</i><br>FGSG_11024 | ATGGAATCGCTCTACGAGACTCTGCGGACTCTACCGCTCTCAGT<br>CTCAATCCCTCTAACAACCAGCATCATCATCATCTTGTCCATCG<br>TCACCAACGTGGTCAAACAATTATGGTTTCCCAACCCACATCGT |

Table S3. The gene fragment sequences used to obtain hypovirulent strains in this work.

 Table S4. All primers used in this study.

| Primer name      | Primer sequence                         | Reference                          |  |
|------------------|-----------------------------------------|------------------------------------|--|
| p26-D1-F         | AGGATGCATTACAACTCGCTTACAGCGGAGTTATGCCTT | Used for p26-D1 construction       |  |
| p26-D1-R         | AGGACCGGTCATCTTTATATTGTAAAAAATATTTGTAAC |                                    |  |
| p26-D2-F         | AGGATGCATAACAACTTTTCTCCGAGCCAAATCAAGGGG | Used for p26-D2 construction       |  |
| p26-D2-R         | AGGACCGGTGGCTTCGTTGGAGGGGAATGTTTCCAGTAT |                                    |  |
| p26-D3-F         | AGGATGCATCATCTCCACAACAATCCCGACCCACATGAC | Used for p26-D3 construction       |  |
| p26-D3-R         | AGGACCGGTGCCAGAAGGGGTCAGATGTGGCTGAGCAAA |                                    |  |
| p26-D4-F         | AGGATGCATGATTGGGTGGACATACCAGATCATCAACCA | Used for p26-D4 construction       |  |
| p26-D4-R         | AGGACCGGTACACGTGTTAGTGCTGGTATGAACTCGCAG |                                    |  |
| p26-D5-F         | AGGATGCATTAAAAATAAATTTCCGCTGCCTAAATCTGC |                                    |  |
| p26-D5-R         | AGGACCGGTAGGATCATTTAAATTATGTACAATTGAATT | Used for p26-D5 construction       |  |
| p26-D4-GFP75F-F  | CCCACCGGTCAGCACGACTTCTTC                | Used for sense 75 bp GFP fragment  |  |
| p26-D4-GFP75F-R  | CCAATGCATGCCGTCGTCCTTGAAG               | amplification                      |  |
| p26-D4-GFP75R-F  | CCCACCGGTGCCGTCGTCCTTGAAG               | Used for antisense 75 bp GFP       |  |
| p26-D4-GFP75R-R  | CCAATGCATCAGCACGACTTCTTC                | fragment amplification             |  |
| p26-D4-GFP150F-F | CCCACCGGTATGGTGAGCAAGGGCGAG             | Used for sense 150 bp GFP fragment |  |
| p26-D4-GFP150F-R | CCAATGCATGGTGCAGATGAACTTC               | amplification                      |  |
| p26-D4-GFP150R-F | CCCACCGGTGGTGCAGATGAACTTC               | Used for antisense 150 bp GFP      |  |
| p26-D4-GFP150R-R | CCAATGCATATGGTGAGCAAGGGCGAG             | fragment amplification             |  |
| p26-D4-GFP300F-F | CCCACCGGTCAGCACGACTTCTTCAAG             |                                    |  |

| p26 D4 GEP300E P  | CCAATGCATGGCGAGCTGCACGCTG                    | Used for sense 300 bp GFP fragment  |
|-------------------|----------------------------------------------|-------------------------------------|
| p20-D4-OFF 300F-K |                                              | amplification                       |
| p26-D4-GFP300R-F  | CCCACCGGTGGCGAGCTGCACGCTGC                   | Used for antisense 300 bp GFP       |
| p26-D4-GFP300R-R  | CCAATGCATCAGCACGACTTCTTCAAG                  | fragment amplification              |
| p26-D4-GFP450F-F  | CCCACCGGTATGGTGAGCAAGGGCGAG                  | Used for sense 450 bp GFP fragment  |
| p26-D4-GFP450F-R  | CCAGTTGTGGCTGTTGTAGTTGTAC                    | amplification                       |
| p26-D4-GFP450R-F  | CCCACCGGTGTTGTGGCTGTTGTAG                    | Used for antisense 450 bp GFP       |
| p26-D4-GFP450R-R  | CCAATGCATATGGTGAGCAAGGGCGAG                  | fragment amplification              |
| p26-D4-Tri1-F     | CAGCACTAACACGTGTACCGGTAAACACAACTGGTATCTC     | Used for sense 150 bp Tril fragment |
| p26-D4-Tri1-R     | GTATGTCCACCCAATCATGCATCGGGGGCCAGCTTCTTTCGTAC | amplification                       |
| p26-D4-Tri5-F     | CAGCACTAACACGTGTACCGGTTTATTGAATAACTGTTAC     | Used for sense 150 bp Tri5 fragment |
| p26-D4-Tri5-R     | GTATGTCCACCCAATCATGCATATAGTGCAAATTCTCGATGC   | amplification                       |
| p26-D4-Tri10-F    | CAGCACTAACACGTGTACCGGTATGGATTTCCCAAAGCCTAG   | Used for sense 150 bp Tri10         |
| p26-D4-Tri10-R    | GTATGTCCACCCAATCATGCATAGGCCGCGCAGAGGTCAG     | fragment amplification              |
| p26-D4-Tri101-F   | CAGCACTAACACGTGTACCGGTGATTTGTACTCTGTTCCC     | Used for sense 150 bp Tri101        |
| p26-D4-Tri101-R   | GTATGTCCACCCAATCATGCATGGTAGCTGGCCGAGGGTGTC   | fragment amplification              |
| p26-D4-FgP1-F     | CAGCACTAACACGTGTACCGGTATGGCAAATTCAGTGCTCAC   | Used for sense 150 bp FgP1          |
| p26-D4-FgP1-R     | GTATGTCCACCCAATCATGCATGCTTGTAATCAGGGTTGAGC   | fragment amplification              |
| p26-D4-FgPP1-F    | CAGCACTAACACGTGTACCGGTACCATCTGCTTGCTCCTCGCC  | Used for sense 150 bp FgPP1         |
| p26-D4-FgPP1-R    | GTATGTCCACCCAATCATGCATGAAAGTCTTCCACAACTTG    | fragment amplification              |
| p26-D4-FgCYP51C-F | CAGCACTAACACGTGTACCGGTATGGAATCGCTCTACGAGACTC |                                     |

| p26-D4-FgCYP51C-R | GTATGTCCACCCAATCATGCATATGGAATACAACGGGTGGACG  | Used for sense 150 bp <i>FgCYP51C</i> fragment amplification |  |
|-------------------|----------------------------------------------|--------------------------------------------------------------|--|
| p26-D4-FgSTE12-F  | CAGCACTAACACGTGTACCGGTACATTCGCCGATTCCTGCTGC  | Used for sense 150 bp FgSTE12                                |  |
| p26-D4-FgSTE12-R  | GTATGTCCACCCAATCATGCATCGAATTTCTTCGAGTTCTTGAC | fragment amplification                                       |  |
| qPCR-EF1α-F       | GAAGTTCGAGAAGGAAGC                           |                                                              |  |
| qPCR-EF1α-R       | ATGACGGTGACATAGTAG                           | Used for qPCR amplification                                  |  |
| qPCR-GFP-F        | CGTAAACGGCCACAAGTTCA                         |                                                              |  |
| qPCR-GFP-R        | CTTCATGTGGTCGGGGTAGC                         | Used for qPCR amplification                                  |  |
| qPCR-Tri1-F       | GCTCGTGCAGTCTCAGAAGT                         |                                                              |  |
| qPCR-Tri1-R       | ACCTCCTTGATCAGTGCTGC                         | Used for qPCR amplification                                  |  |
| qPCR-Tri5-F       | TGAGGGATGTTGGATTGAGCAGTAC                    | Used for aDCD amplification                                  |  |
| qPCR-Tri5-R       | TGCTTCCGCTCATCAAACAGGT                       | Used for qr CK amplification                                 |  |
| qPCR-Tri10-F      | CTACAAAGGCTACCGACAGACGA                      | Used for a DCD succelificati                                 |  |
| qPCR-Tri10-R      | ATCCGTCAAGTCTTCCCATCTCATT                    | Used for qPCR amplification                                  |  |
| qPCR-Tri101-F     | GCGTGCGTCTCGAAAGAATC                         |                                                              |  |
| qPCR-Tri101-R     | GGTAGATGGGTCCGCATCAG                         | Used for grCK amplification                                  |  |
| qPCR-FgCYP51C-F   | CGTCCACCCGTTGTATTCCA                         |                                                              |  |
| qPCR-FgCYP51C-R   | AACGAGCATTGGAGCAGTCA                         | Used for qPCR amplification                                  |  |
| qPCR-Fgp1-F       | CTACGATCACCGACCACAGG                         | Used for a DCD small firsting                                |  |
| qPCR-Fgp1-R       | GACATGAGCTCCATCCGAGG                         | Used for greek amplification                                 |  |
| qPCR-FgPP1-F      | CGAAATGGCAGACCAACACG                         | Used for qPCR amplification                                  |  |

| qPCR-FgPP1-R | CCGAGGAAGAGGTAGTTGGC   |                                     |  |
|--------------|------------------------|-------------------------------------|--|
| qPCR-STE12-F | ATGCTTCTTTGGAGGAGCCC   | Used for aDCD emplification         |  |
| qPCR-STE12-R | GCTCGTAGAGCGACTGAGAC   | Used for qPCK amplification         |  |
| Probe A-F    | TGGGAAGTAGGCGTGATT     | Used for Southern blot detection of |  |
| Probe A-R    | CACACCAACCATCCTTGA     | DNA-A genome                        |  |
| Probe B-F    | GGCAATCCGCAAACACAT     | Used for Southern blot detection of |  |
| Probe B-R    | CTCCGTCTTCAACAACGCA    | DNA-B genome                        |  |
| Probe C-F    | GTATGTCCACCCAATCAGG    | Used for Southern blot detection of |  |
| Probe C-R    | CCCTTCTGGCAACAACTT     | DNA-C genome                        |  |
| DNA-A-1F     | GACCAATCAACTTCCGCA     | Used for PCR detection of DNA-A     |  |
| DNA-A-1R     | GATGATACGCAACCATTC     | genome                              |  |
| DNA-B-1F     | TTATCACCGTATCCGTCGG    | Used for PCR detection of DNA-B     |  |
| DNA-B-1R     | AACTCCTCCGTCTTCAAC     | genome                              |  |
| DNA-C-1F     | CGGAGTTATGCCTTCTATTCTG | Used to clone the complete sequence |  |
|              |                        | of DNA-C and for PCR detection of   |  |
| DNA-C-1R     | CTGTAAGCGAGTTGTAGGC    | DNA-C genome in mutants p26-D3      |  |
|              |                        | and p26-D4                          |  |
| DNA-C-2F     | TCATCTCCACAACAATCCC    | Used for PCR detection of DNA-C     |  |
| DNA-C-2R     | CACGTGTTAGTGCTGGTATG   | genome in mutants p26-D1 and p26-   |  |
|              |                        | D2                                  |  |
|              |                        |                                     |  |