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Trial by trial EEG based BCI 
for distress versus non distress 
classification in individuals 
with ASD
Safaa Eldeeb1,4, Busra T. Susam1,4*, Murat Akcakaya1, Caitlin M. Conner2, Susan W. White3 & 
Carla A. Mazefsky2 

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is often accompanied by 
impaired emotion regulation (ER). There has been increasing emphasis on developing evidence-based 
approaches to improve ER in ASD. Electroencephalography (EEG) has shown success in reducing 
ASD symptoms when used in neurofeedback-based interventions. Also, certain EEG components 
are associated with ER. Our overarching goal is to develop a technology that will use EEG to monitor 
real-time changes in ER and perform intervention based on these changes. As a first step, an EEG-
based brain computer interface that is based on an Affective Posner task was developed to identify 
patterns associated with ER on a single trial basis, and EEG data collected from 21 individuals 
with ASD. Accordingly, our aim in this study is to investigate EEG features that could differentiate 
between distress and non-distress conditions. Specifically, we investigate if the EEG time-locked 
to the visual feedback presentation could be used to classify between WIN (non-distress) and LOSE 
(distress) conditions in a game with deception. Results showed that the extracted EEG features 
could differentiate between WIN and LOSE conditions (average accuracy of 81%), LOSE and rest-EEG 
conditions (average accuracy 94.8%), and WIN and rest-EEG conditions (average accuracy 94.9%).

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by impaired social interaction 
and communication, restricted interests, and repetitive behaviors3. Accumulating evidence has indicated differ-
ences in processing and connectivity across brain regions in individuals with ASD, relative to non-autistic peers6,7. 
These pervasive impairments have a significant impact on emotional functioning and emotion regulation (ER), 
which is defined as the person’s ability to modify their arousal and emotional state to promote adaptive behavior9. 
Compared to typically developing individuals, individuals with ASD have more impaired ER, which may cause 
them to react maladaptively to emotional stimuli with tantrums, temper outbursts, aggression and self-injurious 
behavior11. ER impairment contributes to negative social outcomes, which in turn leads to negative expectancies 
for future interactions and a cycle of social avoidance, missed opportunities, and failure to learn new social skills 
as well as, ultimately, poor quality of life marked by limited independence12–17. Given the pervasive impact of 
impaired ER across functional domains, it should be considered while developing ASD treatment protocols19.

There has been an increasing interest in using neurofeedback technology in the treatment and study of several 
neurodevelopmental conditions such as ASD. Electroencephalography (EEG) based neurofeedback can provide 
an assessment and intervention tool that is safe, portable, and easy to use without the need for verbal or physical 
response22,23. It also provides high temporal resolution, allowing real time experience to its users while interacting 
with virtual social environment that involves emotion expression, recognition and regulation. Furthermore, it 
can be used to engage children with ASD in life-like social situations through augmented reality, in the safety of 
one’s own home. Augmented neurofeedback can also be used to provide augmented traditional therapy sessions 
similar to the in-person sessions, which would reduce the cost and increase the accessibility to more children22–24.

Various studies have assessed the effectiveness of using EEG in neurofeedback-based interventions for indi-
viduals with ASD25–27. EEG-based neurofeedback has been successfully used to improve cognitive flexibility, and 
enhanced social and communicative skills in individuals with ASD25–27,29,30. EEG-guided neurofeedback studies 
demonstrated changes in the EEG activity in individuals with ASD compared to neurotypical individuals1,2,4. 
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Murias et al.31, found an increase in the theta and beta band powers in individuals with ASD’s EEG activity 
compared to their neurotypical peers during resting state. Another study by Kouijzer et al.29 showed a significant 
improvement in social and communication skills when the power in the theta band in individuals with ASD was 
reduced. Cowan et al.30 found a substantial improvement in attention and socialization after suppressing the 
excessive alpha and theta power. Furthermore, Wang et al.27 showed a linear decrease of the theta to beta power 
ratio, and an increase in the gamma power after applying the neurofeedback intervention.

Several EEG components have been identified which are associated with emotional processing and regulation 
in individuals with ASD and neurotypical individuals1,2,4,5,8,10,18,20,21,28; a summary of these EEG features is shown 
in Table 1. EEG components such as the frontal theta oscillations and power were shown to be associated with 
ER for both neurotypical individuals and individuals with ASD1,5. It has been found that ER induced by negative 
pictures showed an increase in frontal theta oscillations5. Moreover, a positive correlation between theta oscil-
lations and successful usage of cognitive reappraisal to decrease negative emotions has been shown26. Another 
study by Noordt et al.1 showed that inter-trial coherence of medial frontal theta oscillations was significantly 
lower for individuals with ASD. They also showed that the medial frontal theta power and phase coherence were 
greater following LOSE compared to WIN feedback. Moreover, they found that individuals with ASD were more 
sensitive to the valence of the reward as compared to their neurotypical peers. Another study by Stavropoulos 
et al.2, investigated the power in alpha and theta bands in response to a reward prediction task in both individuals 
with ASD and neurotypical individuals. They observed suppression in the alpha band power after presenting the 
feedback in individuals with ASD, while more theta activity was observed in neurotypical individuals.

Other studies of changes in the event related potentials (ERPs) have shown that emotional stimuli induce 
P30010 and late positive potential (LPP)8,32 in neurotypical individuals. P300 is attention dependent, and therefore 
reflects higher cognitive processing of stimuli32,33, while LPP is more sustained positivity. Thiruchselvam et al.8 
studied the effects of negative response inhibition and reappraisal on amplitude and latency of P300 and LPP in 
neurotypical individuals. Findings of this study showed a decrease in the amplitude of P300 and the duration 
and amplitude of LPP. Another ERP component is the feedback-related negativity (FRN), which reflects the 
neural activity associated with task performance and outcome monitoring34. Larson et al4. demonstrated that 
the amplitude of the FRN in response to distress conditions is different from the non-distress conditions both 
for individuals with ASD and neurotypical individuals during the monetary loss- gain feedback4. Therefore, FRN 
amplitude could be utilized to identify conditions associated with distress35.Overall, it is well established that 
earlier responses and larger amplitudes of ERP reflect more intact functioning in both ASD and neurotypical 
individuals28,36,37. Hileman et al.28 examined the difference in the P1and N170 in response to emotion stimuli in 
children with ASD and their neurotypical peers. Findings indicated that neurotypical individuals showed a larger 
amplitude and shorter latency of P1 and N170 in response to emotion stimuli compared to their peers with ASD. 
These studies show that several EEG components could be used to detect and monitor changes in brain activity 
related to ER in neurotypical and individuals with ASD.

Table 1.   Studies of EEG patterns associated with emotional processing and regulation. ASD group: 
Individuals with ASD, NT group: Neurotypical individuals. N: the number of participants.

Author Studied population EEG feature Stimuli type/feedback Findings

Noordt et al.1 ASD group (N = 27)
NT Group (N = 22)

Event-related spectral perturbations 
(ERSPs)
Inter-trial coherence of medial frontal 
theta oscillations

Feedback-Reward Paradigm
Lower inter-trial coherence of medial 
frontal theta for ASD group
Medial frontal theta power and phase 
coherence were greater in LOSE feedback

Stavropoulos et al.2 ASD group (N = 20)
NT group (N = 23) Alpha and Theta band power Feedback-Reward Paradigm

Greater alpha suppression in ASD com-
pared to NT after feedback
More theta band activity during reward 
processing in NT group

Larson et al.4 ASD group (N = 25)
NT group (N = 25) Amplitude of FRN Monetary loss/gain feedback Larger FRN in response to loss trials than 

gain trails in both groups

Ertl et al.5 NT group (N = 30) Frontal theta oscillations Negative and neutral images Increase in frontal theta oscillations in 
prefrontal brain regions

Thiruchselvam et al.8 NT group (N = 18) LPP Negative images Reappraisal and Distraction reduced the 
amplitude of LPP

Cuthbert et al.10 NT group (N = 37) LPP
P300

Emotional images (pleasant and unpleas-
ant) and neutral images

Emotional stimuli increased the amplitude 
of LPP
Pleasant emotional stimuli increased the 
amplitude of P300

Lerner et al.18 ASD group (N = 34)
Latency and Amplitude of N170, N250, 
N100
N300, P200

Facial emotion stimuli and vocal emotion 
stimuli

Positive significant correlation with N170 
latency, and facial stimuli
Significant correlation with N100 latency 
and voice stimuli

Whitehouse et al.20 ASD group (N = 15)
NT group (N = 15)

Latency and Amplitude of P100, N200, 
P300
N400

Speech sound stimuli
Nonspeech sound stimuli

Reduced amplitude P100, N200, P300 
N400 during perception of speech sound in 
children with ASD

Dawson et al.21 ASD group (N = 29)
NT group (N = 22)

Amplitude and latency of N300, P300, 
P500 Neutral and fear expression images Larger N300 response to a fear face than 

neutral face in NT compared to ASD group

Hileman et al.28 ASD group (N = 20)
NT group (N = 20) Amplitude and latency of P1 and N170 Facial expression and vehicle images Larger P1 and N170, shorter P1 and N170 

latency in NT compared to ASD
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In this study, we developed an EEG-based BCI system based on an Affective Posner38,39 task to analyze 
the effect of distress on the brain activity of individuals with ASD. Identifying brain responses to distress is a 
foundational step towards developing BCI technology tools to support ER-focused interventions. The Affective 
Posner task with deception has been used previously in functional magnetic resonance imaging studies for ER 
through the participation of chronically irritable children44, but not in EEG-based studies. Our preliminary 
results showed that the extracted set of temporal and spectral EEG features showed high accuracies in dif-
ferentiating between distress (LOSE) and non-distress (WIN) conditions (average accuracy of 81%), and the 
LOSE and rest-EEG conditions (average accuracy 94.8%), and WIN and rest-EEG conditions (94.9%), with low 
variance across participants.

Results
Features analysis.  The weighted sequential forward feature selection (WSFS) algorithm selects a subset 
of features that significantly contribute to the accurate classification of each problem. In this work, we have 
three main classification problems as shown in Fig. 3. Representing distress and non-distress as LOSE and WIN 
conditions respectively, we investigate the possibility of extracting EEG features that could distinguish between: 
(1) LOSE and rest-EEG (baseline) conditions; and, (2) WIN and rest-EEG (baseline) conditions; (3) LOSE and 
WIN conditions.

The percentage of the occurrence of feature subsets of each classification problem generated by applying the 
WSFS algorithm is shown in Fig. 1. The generation of this pie chart is discussed in the methods section. For the 
first classification problem, WIN versus LOSE conditions, both the power in frontal channels in the frequency 
range (4–30 Hz) and the P300 EEG features showed the highest percentage of selections by the WSFS algorithm. 
The power in frontal channels showed high contribution towards the first classification problem with 22.03%, 
and the P300 showed high significance with 18.64%. Moreover, The FRN, LPP and power in alpha frequency 
band showed high significance during the classification of distress and non-distress conditions with 11.86%.

For the classification problem of differentiating between the LOSE and rest-EEG conditions, the LPP, the P300 
and total power in the frontal channels showed high contribution towards the overall accuracy, with 20.37%, 
16.67% 14.87% respectively. Moreover, the WSFS algorithm showed that the P300, FRN and the total power in 
the frontal channels in the EEG frequency range (4–30 Hz) contribute significantly towards the classification of 
WIN versus rest-EEG conditions. The late positive potential, P300 followed by the FRN and the total power in 
the frontal channels in the EEG frequency range (4–30 Hz) are the EEG features most contributed in classifying 
between LOSE and rest-EEG conditions.

Analysis of lose and rest EEG conditions.  The performance measurement of LOSE versus rest-EEG 
(baseline-EEG) classification, for each participant are presented in Table 2. The performance metrics include the 
accuracy, sensitivity and F1 scores40. These results were calculated using the subset of features that resulted in the 
highest classification rate after cross validation for each participant. The overall average classification accuracy 
is 94.79% (chance level of 50%), while the average sensitivity of LOSE is 92.6% with low variance as shown in 
Table 2. The average sensitivity of the rest-EEG conditions is 94.55% across all participants. F1-scores shows 
an overall average value of 0.9 across all participants, with a minimum value of 0.69 and maximum value of 1.

Analysis of win and rest EEG conditions.  The accuracy, sensitivity and F1 scores for the 2-class classi-
fication, WIN versus rest-EEG (baseline-EEG) conditions, for each participant are presented in Table 3. Similar 
to the previous classification problems, these results were calculated using the sub-set of features that resulted in 
the highest classification rate after cross validation for each participant. The overall average classification accu-

Figure 1.   The percentage of the selected features for each classification problem.
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Table 2.   The accuracy and sensitivity of LOSE and rest-EEG classes, and F1 score results for each participant 
for task 3.

ID Accuracy Sensitivity (lose) Sensitivity (rest-EEG) F1-score

1 99.41 100 99.16 0.99

2 93.16 90.77 94.42 0.89

3 98.92 96.92 100 0.98

4 92.86 92.73 93.33 0.95

5 97.5 100 86.66 0.98

6 82.93 81.25 84.00 0.78

7 96.02 96.36 95.00 0.97

8 87.51 96.00 73.33 0.90

9 95.38 96.00 93.33 0.96

10 98.82 98.46 100 0.99

11 88.75 90.77 80.00 0.92

12 96.31 89.23 100 0.94

13 100 100 100 1

14 99.31 96.00 100 0.97

15 100 100 100 1

16 100 100 100 1

17 89.23 75.71 96.82 0.56

18 98.38 95.00 100 1

19 96.31 90.77 99.23 0.87

20 93.71 88.00 96.00 0.73

21 86.31 70.77 94.42 0.69

Mean± SD 94.79 ± 4.99 92.6 ± 7.9 94.55 ± 7.3 0.9 ± 0.11

Table 3.   The accuracy and sensitivity of Win and rest-EEG classes, and F1 score results for each participant 
for task 3.

ID Accuracy Sensitivity (Win) Sensitivity (rest-EEG) F1-Score

1 100 100 100 1

2 98.00 93.31 99.23 0.94

3 96.23 91.43 97.22 0.90

4 82.52 100 53.31 0.87

5 100 100 100 1

6 88.31 68.92 95.22 0.75

7 100 100 100 1

8 86.43 100 73.31 0.89

9 95 92.00 100 0.95

10 98.21 97.00 100 0.98

11 82.22 100 46.72 0.88

12 98.74 94.32 100 0.96

13 100 100 100 1

14 100 100 100 1

15 100 100 100 1

16 100 100 100 1

17 88.42 43.43 99.25 0.57

18 100 100 100 1

19 93.73 94.32 93.62 0.87

20 95.00 73.42 97.61 0.73

21 90.92 53.41 100 0.68

Mean± SD 94.9 ± 5.6 90.5 ± 16 93.1 ± 15 0.9 ± 0.12
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racy is 94.9%, while the average sensitivity of WIN condition is 90.5% with low variance as shown in Table 3. The 
average sensitivity of the rest-EEG conditions is 93.1% across all participants. F1-scores shows an overall average 
value of 0.9 across all participants, with a minimum value of 0.68 and maximum value of 1.

Distress and non‑distress conditions analysis.  The performance measurement of distress (LOSE) ver-
sus non-distress (WIN) condition classification for each participant are presented in Table 4. These results were 
calculated using the sub-set of features that resulted in the highest classification rate after cross validation for 
each participant. The overall average classification accuracy is 81.36% (chance level of 50%), while the average 
sensitivity of distress condition is 89.97% (with low variance as shown in Table 4). The sensitivity of the non-
distress conditions is lower than that of the distress conditions with average sensitivity value of 63.4% for all 
participants. F1-scores shows an overall average value of 0.68 across all participants, with a minimum value of 
0.51 and maximum value of 0.92.

Validation results.  The results of applying Wilcoxon rank statistical test on the feature vectors show that 
the total frontal power and absolute power difference of F3 and F4 (p value of 8.74e−04 and 0.0234) were sig-
nificant for Win versus lose classification while P300 was not significant (p value of 0.5223). For Lose versus 
rest-EEG classification, total frontal power and LPP were significant features (p value of 3.7483e−200 and 
7.1587e−14); however, P300 did not show any significance (p value of 0.947). In the classification of Win versus 
rest-EEG, only total frontal power was significant (p value of 8.7714e−101). The results for the Wilcoxon rank 
sum test performed over SVM scores of Win versus Lose, win versus rest-EEG and Lose versus rest-EEG clas-
sification showed that SVM scores were significant in each classification problem (p values of 1.3287e−12, 0 and 
1.9545e−179). Note that, zero is the observed p value in MATLAB when the p value is smaller than the smallest 
number that could be presented in MATLAB.

In order to validate the significance of the features that are selected through WSFS (feature selection algo-
rithm) on the classification performance, we applied a permutation test within each classification problem. In 
this permutation test, we randomly assign features to each participant for each classification problem, and this 
assignment is repeated 100 times. The results of the permutation test are shown in Table 5. Average (average over 
100 repetitions) performance measures (accuracy and F1 score) were calculated for Win versus Lose, Lose versus 
rest-EEG and Win versus rest-EEG classifications for each participant. Moreover, the results of the right-sided 
Wilcoxon rank test performed after the permutation task as discussed in the validation subsection of the methods 
section (comparing Table 5 results with results of Tables 2, 3 and 4), show that the accuracies obtained through 
WSFS algorithm are significantly higher than the average accuracy obtained through random feature assignment 
with p value of 1.87E−07, 5.51E−08, 1.74E−05 in Win versus Lose, Lose versus rest-EEG, and Win versus rest-
EEG classification, respectively. Similarly, F1 score obtained through WSFS algorithm significantly differ than 

Table 4.   The accuracy and sensitivity of distress (LOSE) and non-distress (WIN) classes, and F1 score values 
for each participant results for task 3.

ID Accuracy Sensitivity (LOSE) Sensitivity (WIN) F1 score

1 65.88 68.00 62.86 0.60

2 81.05 92.31 56.66 0.65

3 74.00 78.46 65.71 0.65

4 80.00 96.37 44.00 0.56

5 74.00 87.73 48.62 0.56

6 76.82 88.75 55.55 0.61

7 70.58 85.45 43.33 0.51

8 92.53 92.00 93.33 0.90

9 82.66 84.00 80.00 0.75

10 75.00 92.31 42.86 0.53

11 87.37 90.77 80.00 0.80

12 80.00 87.67 65.71 0.70

13 78.95 90.77 53.33 0.61

14 95.00 100 86.66 0.92

15 77.92 80.00 74.32 0.71

16 81.00 95.72 46.66 0.6

17 88.00 91.43 80.00 0.80

18 87.52 100 50.00 0.66

19 84.00 92.31 68.58 0.75

20 92.31 100 66.66 0.78

21 86.31 95.38 66.66 0.74

Mean± SD 81.46 ± 7.32 89.97 ± 7.59 63.4 ± 14.68 0.68 ± 0.11
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the average F1 score selected by random feature assignment by p value of 1.16E−08, 5.30E−06, 4.44E−06 in Win 
versus Lose, Lose versus rest-EEG, and Win versus rest-EEG classification, respectively.

Discussion
The research objective of this study is to identify and analyze EEG features that are able to differentiate between 
the distress and non-distress conditions of individuals with ASD. For this purpose, the study protocol involved 
a card game with deception. We analyzed and extracted temporal and spectral EEG features from the collected 
EEG time-locked to the feedback presentation. Our approach includes a systematic feature selection, the WSFS 
algorithm, that selects a subset of EEG features that contributes towards the overall accuracy of each classifica-
tion problem. Therefore, an initial set of temporal and spectral features were selected based on previous studies 
of cortical activity related to ER of neurotypical individuals and individuals with ASD1,2,4,5,8,10,18,20,21,28. This set 
of features includes spectral features as follows, the total power in alpha, theta, beta frequency bands and in the 
frequency range (4–30 Hz). Moreover, a number of temporal features have been also calculated, the P300, the 
LPP and the FRN. Then, a subset of these features was chosen based on their ability to provide information about 
each classification problem. More specifically, we analyzed the EEG recorded during the task where feedback was 
predetermined to result in LOSE feedback (too slow, wrong) or WIN (correct). The WSFS algorithm started with 
a single feature and added other features satisfying high overall accuracy, as explained in Fig. 4.

The findings of this study suggest that both the power in frontal channels in the frequency range (4–30 Hz) 
and the P300 EEG features are very informative and contribute significantly towards the classification of distress 
and non-distress conditions for individuals with ASD. The P300 showed the highest contribution towards the 
classification of rest-EEG versus LOSE conditions, and rest-EEG versus WIN conditions. These findings align 
with previous studies in neurotypical populations8,32,41,42, where it was shown that positive emotional stimuli 
introduces P300 and LPP, and the negative response inhibition and reappraisal decreases the amplitude of P300 
and affect the duration and amplitude of LPP. Therefore, we argue that P300 and LPP are both ERPs of EEG that 
could be utilized as a measure of ER8,32,41–43.

On the other hand, we found that in addition to the P300 and total frontal power, the FRN showed a high 
significance in classifying the WIN versus rest-EEG and LOSE versus rest-EEG conditions. These ERPs are sen-
sitive to visual stimuli and they have been used for stimulus identification44 and visual stimuli classification45. 
Moreover, the absolute power difference between the EEG channels F3 and F4 showed high sensitivity towards the 
classification of LOSE conditions in both WIN versus LOSE and LOSE versus rest-EEG classification problems. 
Absolute power difference between the frontal channels46 have been used in emotion studies and these studies47,48 
showed that anxiety and distress levels are reduced by increasing left compared to right prefrontal power. There-
fore, in addition to P300 and LPP, absolute power difference between F3 and F4 is also a feature to be further 

Table 5.   The accuracy and F1 score for each classification problem obtained through permutation and 
random feature assignment for each participant.

ID

Win versus lose Lose versus rest-EEG Win versus rest-EEG

Accuracy F1 score Accuracy F1 Score Accuracy F1 score

1 57.44 0.11 74.33 0.18 83.77 0.32

2 68.23 0.00 71.38 0.30 81.42 0.06

3 64.19 0.01 85.52 0.78 83.16 0.33

4 68.03 0.00 84.37 0.90 70.45 0.78

5 64.00 0.00 79.79 0.89 72.01 0.82

6 65.37 0.02 64.53 0.28 74.66 0.00

7 66.42 0.00 77.13 0.87 64.19 0.76

8 60.39 0.00 62.82 0.74 56.50 0.19

9 66.26 0.00 77.42 0.87 64.59 0.75

10 65.26 0.00 86.83 0.92 84.85 0.89

11 67.04 0.03 80.31 0.89 67.16 0.78

12 62.90 0.00 81.38 0.58 84.49 0.41

13 65.79 0.00 80.62 0.67 95.04 0.78

14 62.58 0.02 92.80 0.69 97.95 0.78

15 63.67 0.02 80.31 0.56 95.35 0.81

16 70.61 0.00 74.67 0.38 94.44 0.73

17 69.02 0.00 65.50 0.17 80.36 0.00

18 73.76 0.00 77.31 0.50 86.66 0.11

19 64.94 0.01 82.78 0.73 89.07 0.69

20 78.79 0.00 75.98 0.43 90.26 0.03

21 68.89 0.00 69.31 0.25 81.30 0.03

Mean ± SD 66.36 ± 4.53 0.11 ± 0.02 77.39 ± 7.61 0.60 ± 0.26 80.84 ± 11.55 0.48 ± 0.34
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investigated for ER. Moreover, the results of the Wilcoxon rank test applied on the set of features selected by the 
WSFS algorithm to assess their significance in the classification of Win versus rest-EEG, Lose versus rest-EEG 
and Win versus Lose showed that only certain features that appeared in the list of top 3 selected EEG features 
reached statistical significance. However, these selected features go through nonlinear transformation where SVM 
scores are extracted during classification and they contribute to the classification between conditions after this 
nonlinear transformation. We argue that such a classification approach and extracting new nonlinear combina-
tions of these selected features to obtain SVM scores is very informative. Therefore, we performed Wilcoxon rank 
sum test over SVM scores of Win versus Lose, Win versus rest-EEG and Lose versus rest-EEG classification with 
significance level of 0.05. As a result, SVM scores were significant in each classification procedure. Furthermore, 
we applied permutation task where the features randomly assign to each participant in each classification prob-
lem. It is also important to note that during the random assignments, each participant had a subset of features 
different from the features selected by WSFS algorithm. The Wilcoxon rank sum test revealed that the features 
selected though WSFS algorithm were more significant than the features obtained through permutation task for 
each classification. Overall, these findings confirm that the features selected by WSFS algorithm was significant 
for each classification problem.

Changes in the above-discussed EEG features provided very high performance (accuracy, sensitivity and 
F1-scores) of WIN and LOSE condition detection compared to rest-EEG as also was shown in Tables 2 and 3. On 
the other hand, as shown in Table 4, the average accuracy of classifying between LOSE and WIN conditions is 
81.46% (chance level:50%) with high sensitivity of detecting LOSE conditions of 89.9% (with low variance across 
participants). The sensitivity of the WIN conditions is slightly above chance level, which could be explained as we 
perform trial-by-trial classification and WIN and LOSE conditions directly follow each other during the game. 
This in return may affect the separation between the LOSE and WIN conditions. There is evidence of sustained 
neural processing following the presentation of negatively-valanced stimuli in ASD49 so it is plausible that the 
EEG features reactive to LOSE trials are still reactive during the quick transition to a WIN trial. Further, while 
receiving “correct” cues during the WIN trial, it is the case that participants still may be below the overall amount 
required to win their bonus, therefore leading to sustained negative emotion. Taken together, it is not surprising 
to find lower sensitivity to differentiating WIN versus LOSE and high sensitivity to differentiating both WIN and 
LOSE from rest-EEG. In summary, the introduced set of features showed a high contribution towards the classi-
fication of distress, non-distress and rest-EEG conditions on a single trial basis which suggests that these features 
can be monitored in real-time through this EEG-based BCI to detect changes in distress for ER intervention.

Our overarching goal is to eventually utilize this EEG-based BCI system as an ER intervention tool to tightly 
complement psychotherapeutic clinical treatments. While medications are considered a common and effective 
treatment for ER impairments, the use of medication presents with adverse side effects such as sedation and a 
significant relapse rate50. One promising manualized psychotherapy intervention to improve ER in those with 
ASD is the Emotion Awareness and Skills Enhancement (EASE) program51. EASE targets impaired ER during 
the high-risk transitional period of adolescence into young adulthood. Evaluation of EASE to date has found that 
it is feasible to implement, is acceptable to consumers, and results in medium to large effects for the reduction 
of ER impairments as well as associated depression, anxiety, and problem behaviors51 As evidence-based treat-
ments for ER in ASD become available, there is need to consider how to translate these tools into clinical practice 
and support dissemination of key therapeutic ingredients. As such, there is a growing opportunity and need for 
complimenting such behavioral clinical treatments with various low-cost and easy-to-access technology-based 
tools. The proposed EEG-based BCI system is portable, cost effective and it also has very high temporal resolu-
tion. Our next steps will be to directly integrate EASE strategies in the EEG-based BCI and provide users with 
opportunities to repeat the learned clinical skills during simulated training for ER and distress tolerance. The 
classifier developed and presented in this manuscript will be the foundation of real-time (trial-by-trial) monitor-
ing of potential increase in the distress level of the individuals with ASD, and when an increase in distress level 
is detected, the envisioned BCI system will operate to provide stimuli/cues (i.e., visual stimuli) to trigger the use 
of emotion regulation strategies learned through EASE. The overarching goal of this envisioned EEG-based BCI 
is to improve EASE’s generalization effects to activities outside of the therapy environment for adolescents and 
adults with ASD. Accordingly, this will be the first EEG-based BCI specifically designed for ER intervention for 
individuals with ASD, which will hopefully increase accessibility to intervention where specialists may be harder 
to find, in a format that is likely to appeal to users and that is based on underlying biology.

Methods
Experimental procedure.  Participants.  A total of twenty-one participants with ASD were recruited and 
their guardians provided written informed Consent approved by the University of Pittsburgh Institutional Re-
view Board (IRB #STUDY17070496). Inclusion criteria as follows (1) ages 12–21, inclusive; (2) a clinical diagno-
sis of ASD, confirmed by research reliable administration of the Autism Diagnostic Observation, Second Edition 
(ADOS-2)52. During the consent process, the participants were informed that their safety and the confidentiality 
of the collected data are the primary consideration. Participants were told that at any point during the experi-
mental procedure, if they feel any discomfort, they could stop the experiment. Moreover, all the experimental 
procedures described below is approved by the University of Pittsburgh Institutional Review Board. All partici-
pants received $25 for participation, plus an additional of $50 for winning.

Affective Posner task.  Participants were seated in a comfortable chair facing a computer screen and were asked 
to play a card game based on an Affective Posner task38,39 as shown in Fig. 2. The game consists of four tasks, 
where each task is composed of N number of trials. The first two introductory tasks were completed without EEG 
data collection and without any deception, and each of the first two tasks consisted of 50 trials. The first task was 
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developed to learn the response time of each participant, where only Correct or Wrong feedback were presented. 
The average response time per each participant was estimated and used in task 2 which included the three 
feedbacks (Correct, Wrong, Too Slow). In this second task, the Too Slow feedback is presented if the player took 
longer time to decide the location of the star than their averaged response time learned in task 1. The third task 
includes deception and EEG data collection. Two-minutes of resting-state EEG was collected as baseline before 
task 3. Third task has a deception component where 60% of all the correct responses led to “Too Slow” feedback, 
independent of the actual participant’s response time. To induce an emotional reaction, participants were moti-
vated by a potential bonus of $50 which was dependent on earning a sufficient number of points greater than 
zero. Participants started with a total of 150 points, and this task is composed of 100 trials. If the participant 
received a Correct response during the third task, 10 points were added to the total points. If Wrong or Too Slow 
feedback was presented, 10 points were taken off the total points. If the total number of points was greater than 
0, the participant was considered a winner and qualified for the $50 bonus. The third task was designed such 
that the total number of points was always less than zero at the end of this task. One-minute of resting-state EEG 
followed task 3, followed by a task set similar to task three but without deception, to ensure that the participant 
win a sufficient number of trials (points) to earn the $50 bonus. Figure 2A shows the proposed task paradigm, 
where baseline EEG collection occurs before tasks 3 and 4, followed by a series of trials for each task. Each trial, 
T, consists of a sequence of presented screens as shown in Fig. 2B. The presented analyses in this work focused 
on data from task 3 (the deception trials). In this work, we define every CORRECT feedback as WIN condition, 
and the rest are LOSE conditions.

Data acquisition.  EEG data were collected using DSI-24 system (Wearable Sensing, CA, USA) using 24 chan-
nels. Channel locations are P3, C3, F3, Fz, F4, C4, P4, Cz, A1, Fp1, Fp2, T3, T5, O1, O2, F7, F8, A2, T6 and T4 
according to the international 10–20 system. The reference sensor is placed at the nominal Pz position, while the 
ground at the earlobes. The EEG data were digitized with 300 Hz sampling rate.

Data analysis and feature extraction.  A FIR band-pass filter with cut-off frequencies 0.1 and 40 Hz 
was used to filter the data. Then, three seconds of multichannel EEG data time-locked to the visual feedback 
(WRONG, CORRECT or TOO SLOW) presentation was extracted for each trial. For the baseline EEG data, 

Figure 2.   (A) Task three and four paradigms, where T refers to a complete trial, (B) the proposed complete 
task-trial based on the Affective Posner with deception. For task one and two, there is no baseline EEG and the 
feedback of the first task doesn’t include the too slow feedback screen.
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the 2 min of rest-EEG were divided into three seconds non-overlapping windows of EEG, and each 3 s window 
is considered as one trial with a total number of 40 trials. Temporal and spectral features were calculated from 
the EEG signals collected from the frontal EEG channels; F3, Fz and F4. Welch’s periodogram method of power 
spectral estimation53,54 was used to calculate frequency-based features. A total of eight spectral and temporal 
features were calculated for each trial. The spectral EEG features were calculated as follows; for the frontal EEG 
channels F3 and F4 combined we calculated (1) the total power, (2) the absolute power difference between F3 
and F4 in the frequency range (4–30 Hz). Moreover, for the EEG frontal channels, F3, Fz and F4, we calculated 
the following features, the total power in the (3) Theta (4–7 Hz), (4) Alpha (8- 15 Hz), and (5) Beta (16- 30 Hz) 
frequency bands for each channel separately.

Moreover, for the EEG frontal channels, F3, Fz and F4, we calculated the following temporal features; (6) 
the P300 which is a positive change in the EEG around 300 ms after the stimuli, (7) the FRN which is a negative 
deflection occurring between 200 and 300 ms and (8) the late positive potential (LPP), which is the average EEG 
calculated over a window (850–1600 ms) time-locked to the feedback presentation during this game. Finally, 
these features were normalized using z-score normalization and concatenated to form a feature vector.

Feature selection and classification.  A Support Vector Machine classifier (SVM) was used to evaluate 
the effectiveness of the extracted features in discriminating between three classes of data as shown in Fig. 3. 
Three (two-class) classifiers were designed using radial basis functions kernel. To avoid overfitting, a fivefold 
cross validation was used to train each classifier with a chance level of 50%. A sub-set of the extracted temporal 
and spectral features is selected based on the performance of each feature in discriminating between (1) dis-
tress and non-distress conditions represented by LOSE and WIN conditions, respectively; (2) LOSE and rest-
EEG (baseline) conditions; and, (3) WIN and rest-EEG (baseline) conditions., as shown in Fig. 4. The weighted 
sequential forward algorithm was used to obtain most informative features that significantly contribute to the 
overall performance of each one of the three classifiers. Weighted sequential forward selection (WSFS) algorithm 
is a feature selection technique which has two main components, an objective function and a sequential forward 
selection algorithm. The selection algorithm uses bottom-up search starting from an empty set of features and 
gradually adding features which maximizes the classifier performance. For the objective function, we used the 
misclassification rate to minimize over all feasible feature subsets for classification and maximize the sensitivity 
of each class as shown in Fig. 4.

More specifically, given a feature set = {xi|i = 1, 2, 3, . . .N} , where N is the total number of features. The 
selection algorithm forms an initial empty subset S0 and gradually add each feature, xi ∈ x , one at a time which 
maximizes the correct identification of both classes for each classification problem shown in Fig. 3. The cost func-
tion was chosen in a way to maximize classification rate of the two classes while maintaining a balance between 
their correct-classification rates, represented by their sensitivities. The cost function for the classification between 
the distress and non-distress conditions can be written as follows,

The final selected subset of features after N iterations, SN where size(SN ) ≤ size(x) , can be written as:

where size(SN ) = M after N  iterations. For each participant, the WSFS algorithm generates three subsets of 
features { SN1, SN2 and SN3 } such that SNi representing the most informative features contributing towards the 
accuracy of ith classification problem, as can be seen in Fig. 4. For each participant, considering the features 

J(S) = wdistress ∗ Sensitivitydistress + wnon−distress ∗ Sensitivitynon−distress ,

s.t. wdistress + wnon−distress = 1

SN = {xk , . . . xM} = argM J{xi|i = 1, 2, . . .N}

Figure 3.   Diagram illustrates the three classification problems and the associated data classes collected and 
grouped from the EEG data collected during the third task of the proposed card game. The vertices of the 
triangle show the three classes, while the edges represent the three classification problems.
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selected for {SN1, SN2 and SN3 } and recalling that we are considering a total of eight potential features, a score 
vector was then generated as follows,

where p and q are the participant and classification problem number, respectively, where p = {1, 2, . . . 21} and 
q = {1, 2, 3} . The score y1 is the score of the first feature, which takes the value of one if this feature was selected 
by the WSFS for a specific p and q, and zero otherwise. After that, and for each classification problem, the score 
vectors are summed across participants and the percentage of each feature is plotted, as presented in Fig. 1.

The analysis introduced in this work is based on the EEG data collected during the third task. For each clas-
sification problem presented in Fig. 4, we calculated the accuracy and sensitivity of each class per participant. 
We also calculated the F1 scores. The accuracy reflects the ratio of the total number of correctly identified trials 
over the total number of trials for both classes. While the sensitivity of a class represents the proportion of the 
correctly identified trials of this class. F140 score is also used to assess the performance of the three developed 
classifiers. This metric considers both the precision and recall of the test, precision is the ratio of correctly pre-
dicted patterns to the total predicted patterns; and recall is the ratio of accurately-recognized observations to the 
total actual observations55.This score results in value of 1, at perfect precision and recall values, and zero at worst.

Validation methods.  In order to validate the significance of the selected set of features in separating 
between (1) Win versus rest-EEG, (2) Lose versus rest-EEG and (3) Win versus Lose conditions, we performed 
one-sided Wilcoxon rank statistical test for each one of these classification problems. For each one of these 
problems, we selected three features which showed the highest percentage of selections by the WSFS algorithm. 
Then for each class, in each classification problem, we generated a feature vector containing the values of these 
selected three features for all the trials in this class. After that, we used the Wilcoxon rank statistical test to assess 
whether the difference between these two classes represented by these features, is significant or not. Therefore, 
for the Win versus rest-EEG, the total frontal power, FRN and P300 were selected. For the lose versus rest-EEG, 
the total frontal power, LPP and P300 were chosen, and finally for the Lose versus Win, the total frontal power, 
the absolute power difference of F3 and F4 and P300 were selected. The Wilcoxon rank test is a nonparametric 
hypothesis test, which returns the p value for the null hypothesis. The null hypothesis states that both feature 
vectors, representing both classes in each problem, come from the same distribution56. While, the alternative 

Scorep,q =
{

y1, y2, . . . .y8
}

Figure 4.   Classification steps and the weighted sequential forward selection algorithm.
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hypothesis states that both vectors are different, which means that the two classes are separable. Moreover, we 
applied the Wilcoxon rank test on the generated SVM scores from each classification problem. This was done 
to see whether these scores are significant to separate between each pair of classes for the three classification 
problems shown in Fig. 3.

Another test of validation was done to determine the significance of the selected set of features by randomly 
permuting the features and accordingly assigned randomly selected features to each participant assuring that each 
participant will have different subset of features than the features selected through feature selection algorithm. 
We repeated this permutation 100 times, and for each repetition we performed classification. Then, average 
performance measures (accuracy and F1 score) were calculated for Win versus Lose, Lose versus rest-EEG and 
Win versus rest-EEG classifications for each participant. Moreover, we used the right-side Wilcoxon rank test 
with significance level of 0.05, to compare the accuracy and F1 score values obtained through permutation with 
the accuracy and F1 score values obtained through classifications that used features selected based on feature 
selection algorithm.

Conclusion
An EEG-based BCI system based on Affective Posner task was introduced. This system was designed to identify 
the changes in brain activity of individuals with ASD during rest, non-distress (WIN) and distress (LOSE) condi-
tions. Furthermore, the analysis of the recorded EEG during the third task resulted in extracting EEG features that 
significantly contributed towards the classification between these conditions on a single trial basis. The P300 and 
total power in the (4–30 Hz) EEG frequency range, showed high accuracies in differentiating between distress 
and non-distress conditions. the P300, FRN and total frontal power contributed significantly in the WIN versus 
rest-EEG classification. In addition to these three EEG features, the LPP showed high contribution towards the 
classification of LOSE and rest-EEG conditions with low variance across participants. These results align with 
earlier findings about EEG features that can be extracted from neurotypical and individuals with ASD in response 
to emotional stimuli. This work is a first step towards building a real-time BCI system that could distinguish 
between non-distress (WIN) and distress (LOSE) on a trial by trial basis. Now that we have shown that EEG can 
reliably distinguish between distress and non-distress conditions), in future work, we aim to add capabilities 
to the presented BCI system such that it could monitor brain responses through EEG related to ER activity to 
work along with current clinical behavioral treatment methods, such as EASE, as a technological intervention 
tool. Also, this system could be integrated with virtual reality setup to simulate distressing activities in real-life 
settings, to provide opportunities to practice ER strategies and get real-time, automated feedback. Through such 
an integration, the proposed EEG-guided BCI technology could be used to complement clinical treatments that 
focus on ER to supplement in-person sessions with a therapist, decrease clinician time spent with each patient, 
or provide exposure to key components of treatments for those who do not have access to a therapist. Moreover, 
such a BCI could support all the existing technological approaches to monitor and analyze the brain responses 
during technology-driven interventions. As changes in the EEG features indicate high distressed conditions, 
visual cues that will enforce the participants to use ER strategies will be presented through the EEG-based BCI 
system during real-time ER intervention.

Received: 27 April 2020; Accepted: 1 March 2021

References
	 1.	 van Noordt, S. et al. Inter-trial coherence of medial frontal theta oscillations linked to differential feedback processing in youth 

and young adults with autism. Res. Autism Spectr. Disord. 37, 1–10 (2017).
	 2.	 Stavropoulos, K.K.-M. & Carver, L. J. Oscillatory rhythm of reward: anticipation and processing of rewards in children with and 

without autism. Mol. Autism 9, 4 (2018).
	 3.	 Belmonte, M. K. et al. Autism and abnormal development of brain connectivity. J. Neurosci. 24, 9228–9231 (2004).
	 4.	 Larson, M. J., South, M., Krauskopf, E., Clawson, A. & Crowley, M. J. Feedback and reward processing in high-functioning autism. 

Psychiatry Res. 187, 198–203 (2011).
	 5.	 Ertl, M., Hildebrandt, M., Ourina, K., Leicht, G. & Mulert, C. Emotion regulation by cognitive reappraisal—the role of frontal 

theta oscillations. Neuroimage 81, 412–421 (2013).
	 6.	 Mazefsky, C. A. & Minshew, N. J. CLINICAL PEARL: the spectrum of autism—from neuronal connections to behavioral expres-

sion. Virtual Mentor VM 12, 867 (2010).
	 7.	 Richey, J. A. et al. Neural mechanisms of emotion regulation in autism spectrum disorder. J. Autism Dev. Disord. 45, 3409–3423 

(2015).
	 8.	 Thiruchselvam, R., Blechert, J., Sheppes, G., Rydstrom, A. & Gross, J. J. The temporal dynamics of emotion regulation: an EEG 

study of distraction and reappraisal. Biol. Psychol. 87, 84–92 (2011).
	 9.	 Mazefsky, C. A. & White, S. W. Emotion regulation: concepts & practice in autism spectrum disorder. Child Adolesc. Psych. Clin. 

NA 23, 15–24 (2014).
	10.	 Cuthbert, B. N., Schupp, H. T., Bradley, M. M., Birbaumer, N. & Lang, P. J. Brain potentials in affective picture processing: covari-

ation with autonomic arousal and affective report. Biol. Psychol. 52, 95–111 (2000).
	11.	 Samson, A. C., Hardan, A. Y., Podell, R. W., Phillips, J. M. & Gross, J. J. Emotion regulation in children and adolescents with autism 

spectrum disorder. Autism Res. 8, 9–18 (2015).
	12.	 Aldao, A., Nolen-Hoeksema, S. & Schweizer, S. Emotion-regulation strategies across psychopathology: a meta-analytic review. 

Clin. Psychol. Rev. 30, 217–237 (2010).
	13.	 Guy, L., Souders, M., Bradstreet, L., DeLussey, C. & Herrington, J. D. Brief report: emotion regulation and respiratory sinus 

arrhythmia in autism spectrum disorder. J. Autism Dev. Disord. 44, 2614–2620 (2014).
	14.	 Mazefsky, C. A. et al. The role of emotion regulation in autism spectrum disorder. J. Am. Acad. Child Adolesc. Psychiatry 52, 679–688 

(2013).



12

Vol:.(1234567890)

Scientific Reports |         (2021) 11:6000  | https://doi.org/10.1038/s41598-021-85362-8

www.nature.com/scientificreports/

	15.	 Righi, G. et al. Predictors of inpatient psychiatric hospitalization for children and adolescents with autism spectrum disorder. J. 
Autism Dev. Disord. 48, 3647–3657 (2018).

	16.	 Picci, G. & Scherf, K. S. A two-hit model of autism: adolescence as the second hit. Clin. Psychol. Sci. 3, 349–371 (2015).
	17.	 White, S. W. et al. Students with autism spectrum disorder in college: Results from a preliminary mixed methods needs analysis. 

Res. Dev. Disabil. 56, 29–40 (2016).
	18.	 Lerner, M. D., McPartland, J. C. & Morris, J. P. Multimodal emotion processing in autism spectrum disorders: an event-related 

potential study. Dev. Cogn. Neurosci. 3, 11–21 (2013).
	19.	 Weiss, J. A. Transdiagnostic case conceptualization of emotional problems in youth with ASD: an emotion regulation approach. 

Clin. Psychol. Sci. Pract. 21, 331–350 (2014).
	20.	 Whitehouse, A. J. & Bishop, D. V. Do children with autism ‘switch off ’to speech sounds? An investigation using event-related 

potentials. Dev. Sci. 11, 516–524 (2008).
	21.	 Dawson, G., Webb, S. J., Carver, L., Panagiotides, H. & McPartland, J. Young children with autism show atypical brain responses 

to fearful versus neutral facial expressions of emotion. Dev. Sci. 7, 340–359 (2004).
	22.	 White, S. W. et al. The promise of neurotechnology in clinical translational science. Clin. Psychol. Sci. 3, 797–815 (2015).
	23.	 Lerner, M. D., White, S. W. & McPartland, J. C. Mechanisms of change in psychosocial interventions for autism spectrum disorders. 

Dialogues Clin. Neurosci. 14, 307 (2012).
	24.	 Coyne, J. T., Baldwin, C., Cole, A., Sibley, C. & Roberts, D. M. in International Conference on Foundations of Augmented Cognition. 

469–478 (Springer).
	25.	 Pineda, J., Juavinett, A. & Datko, M. Self-regulation of brain oscillations as a treatment for aberrant brain connections in children 

with autism. Med. Hypotheses 79, 790–798 (2012).
	26.	 Kouijzer, M. E., van Schie, H. T., Gerrits, B. J., Buitelaar, J. K. & de Moor, J. M. Is EEG-biofeedback an effective treatment in autism 

spectrum disorders? A randomized controlled trial. Appl. Psychophysiol. Biofeedback 38, 17–28 (2013).
	27.	 Wang, Y. et al. Relative power of specific EEG bands and their ratios during neurofeedback training in children with autism spec-

trum disorder. Front. Hum. Neurosci. 9, 723 (2016).
	28.	 Hileman, C. M., Henderson, H., Mundy, P., Newell, L. & Jaime, M. Developmental and individual differences on the P1 and N170 

ERP components in children with and without autism. Dev. Neuropsychol. 36, 214–236 (2011).
	29.	 Kouijzer, M. E., van Schie, H. T., de Moor, J. M., Gerrits, B. J. & Buitelaar, J. K. Neurofeedback treatment in autism. Preliminary 

findings in behavioral, cognitive, and neurophysiological functioning. Res. Autism Spectr. Disord. 4, 386–399 (2010).
	30.	 Cowan, J. & Markham, L. in Annual Meeting of the Association for applied Psychophysiology and Biofeedback. 12–13.
	31.	 Murias, M., Webb, S. J., Greenson, J. & Dawson, G. Resting state cortical connectivity reflected in EEG coherence in individuals 

with autism. Biol. Psychiat. 62, 270–273 (2007).
	32.	 Hajcak, G., MacNamara, A. & Olvet, D. M. Event-related potentials, emotion, and emotion regulation: an integrative review. Dev. 

Neuropsychol. 35, 129–155 (2010).
	33.	 Jeste, S. S. & Nelson, C. A. Event related potentials in the understanding of autism spectrum disorders: an analytical review. J. 

Autism Dev. Disord. 39, 495 (2009).
	34.	 Lange, S., Leue, A. & Beauducel, A. Behavioral approach and reward processing: results on feedback-related negativity and P3 

component. Biol. Psychol. 89, 416–425 (2012).
	35.	 Krigolson, O. E. Event-related brain potentials and the study of reward processing: methodological considerations. Int. J. Psycho-

physiol. 132, 175–183 (2018).
	36.	 Key, A. P. F., Dove, G. O. & Maguire, M. J. Linking brainwaves to the brain: an ERP primer. Dev. Neuropsychol. 27, 183–215 (2005).
	37.	 Nelson, C. A. & McCleery, J. P. Use of event-related potentials in the study of typical and atypical development. J. Am. Acad. Child 

Adolesc. Psychiatry 47, 1252–1261 (2008).
	38.	 Posner, M. I. Orienting of attention. Q. J. Exp. Psychol. 32, 3–25 (1980).
	39.	 Deveney, C. M. et al. Neural mechanisms of frustration in chronically irritable children. Am. J. Psychiatry 170, 1186–1194 (2013).
	40.	 Van Rijsbergen, C. J. Information retrieval (1979).
	41.	 Codispoti, M., Ferrari, V. & Bradley, M. M. Repetitive picture processing: autonomic and cortical correlates. Brain Res. 1068, 

213–220 (2006).
	42.	 Dennis, T. A. & Hajcak, G. The late positive potential: a neurophysiological marker for emotion regulation in children. J. Child 

Psychol. Psychiatry 50, 1373–1383 (2009).
	43.	 Nanni, L., Lumini, A. & Brahnam, S. Local binary patterns variants as texture descriptors for medical image analysis. Artif. Intell. 

Med. 49, 117–125 (2010).
	44.	 Patel, S. H. & Azzam, P. N. Characterization of N200 and P300: selected studies of the event-related potential. Int. J. Med. Sci. 2, 

147 (2005).
	45.	 Luck, S. J. & Hillyard, S. A. Electrophysiological correlates of feature analysis during visual search. Psychophysiology 31, 291–308 

(1994).
	46.	 Mennella, R., Patron, E. & Palomba, D. Frontal alpha asymmetry neurofeedback for the reduction of negative affect and anxiety. 

Behav. Res. Ther. 92, 32–40 (2017).
	47.	 Davidson, R. J. Affective style and affective disorders: Perspectives from affective neuroscience. Cogn. Emot. 12, 307–330 (1998).
	48.	 Davidson, R. J. What does the prefrontal cortex “do” in affect: perspectives on frontal EEG asymmetry research. Biol. Psychol. 67, 

219–234 (2004).
	49.	 Mazefsky, C. A., Collier, A., Golt, J. & Siegle, G. J. Neural features of sustained emotional information processing in autism spectrum 

disorder. Autism, 1362361320903137 (2020).
	50.	 Autism, P. Randomized, controlled, crossover trial of methylphenidate in pervasive developmental disorders with hyperactivity. 

Arch. Gen. Psychiatry 62, 1266–1274 (2005).
	51.	 Conner, C. M. et al. Improving emotion regulation ability in autism: the Emotional Awareness and Skills Enhancement (EASE) 

program. Autism 23, 1273–1287 (2019).
	52.	 Gotham, K., Pickles, A. & Lord, C. Standardizing ADOS scores for a measure of severity in autism spectrum disorders. J. Autism 

Dev. Disord. 39, 693–705 (2009).
	53.	 Lim, J. S. et al. Digital Signal Processing (Research Laboratory of Electronics (RLE) at the Massachusetts Institute of Technology 

(MIT), 1987).
	54.	 Welch, P. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, 

modified periodograms. IEEE Trans. Audio Electroacoust. 15, 70–73 (1967).
	55.	 Theodoridis, S. & Koutroumbas, K. Pattern Recognition 4th edn. (Academic Press, 2008).
	56.	 Blair, R. C. & Higgins, J. J. A comparison of the power of Wilcoxon’s rank-sum statistic to that of student’s t statistic under various 

nonnormal distributions. J. Educ. Stat. 5, 309–335 (1980).

Acknowledgements
This work was funded by NSF IIS 1844885, DoD Grant W81XWH-18-1-0284, and Edith L. Trees Charitable 
Trust.



13

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6000  | https://doi.org/10.1038/s41598-021-85362-8

www.nature.com/scientificreports/

Author contributions
S.E.: implemented and performed the experiments, analyzed the data and wrote the manuscript. B.S.: performed 
the experiments, analyzed the data and wrote the manuscript, M.A.: conceived the experiment, analyzed the data 
and critically revised the manuscript, C.C. performed the experiments and critically revised the manuscript, S.W.: 
conceived the experiment and critically revised the manuscript C.M.: conceived the experiment and critically 
revised the manuscript. S.E. and B.S. equally contributed to this work.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https​://doi.
org/10.1038/s4159​8-021-85362​-8.

Correspondence and requests for materials should be addressed to B.T.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-85362-8
https://doi.org/10.1038/s41598-021-85362-8
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Trial by trial EEG based BCI for distress versus non distress classification in individuals with ASD
	Results
	Features analysis. 
	Analysis of lose and rest EEG conditions. 
	Analysis of win and rest EEG conditions. 
	Distress and non-distress conditions analysis. 
	Validation results. 

	Discussion
	Methods
	Experimental procedure. 
	Participants. 
	Affective Posner task. 
	Data acquisition. 

	Data analysis and feature extraction. 
	Feature selection and classification. 
	Validation methods. 

	Conclusion
	References
	Acknowledgements


