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Malaria has produced health issues in many parts of the world. One of the reason is due to the recurrence phenomenon, which can
happen years after the main infection has appeared in the human body. Furthermore, the fumigation intervention, which has
become a major worry in several regions of the world, has yielded unsatisfactory results, as seen by the high number of cases
reported each year in several African countries. We present a novel mathematical model that integrates tafenoquine treatments
to prevent relapse in the human population and saturation fumigation to control mosquito populations in this study. The
endemic threshold, also known as the basic reproduction number, is calculated analytically, as is the existence and local
stability of the equilibrium points. Through careful investigation, we discovered that the malaria-free equilibrium is locally
asymptotically stable if the basic reproduction number is less than one and unstable if it is greater than one. According to the
sensitivity analysis, the utilization of tafenoquine treatment is inversely proportional to the basic reproduction number.
Although our model never exhibits a backward bifurcation at the basic reproduction number equal to one, we have
demonstrated that it is possible; when the basic reproduction number is greater than one, two stable malaria-endemic
equilibrium can exist. As a result, when the basic reproduction number is more than one, the final state will be determined by
the initial condition of the population. As a result, enormous temporal fumigation can shift the stability of our malaria model
from a big endemic size to a smaller endemic size, which is more advantageous in terms of the malaria prevention strategy.
Despite the fact that this is not a case study, the numerical results presented in this article are intended to support any
theoretical analysis of current malaria eradication tactics in the field.

1. Introduction

Malaria is a vector-borne disease caused by the bite of a
female mosquito that has been infected with Plasmodium.
Of more than 100 species, only five Plasmodium species
cause malaria, namely, Plasmodium vivax, Plasmodium
malaria, Plasmodium falciparum, Plasmodium knowlesi,
and Plasmodium ovale [1]. When this Plasmodium has
entered the human bloodstream, it will attack several vital
organs in the human body, especially the liver and red blood
cells [2]. People who have been infected with malaria will
show a variety of symptoms, including chills, fever, and
headache, which can even result in death in most cases in
the pediatric population.

Until now, there have been many interventions launched
by governments in various countries in the world to tackle

the spread of malaria. These interventions include the use
of vaccines, treatment, use of insecticide-treated bed nets
(ITN), and vector control with fumigation and larvicides
[3]. Among these mentioned interventions, vector control
with fumigation is considered as the most promising and
easiest policy to implement [1]. However, several problems
in its implementation arise, such as the tendency of mosqui-
toes to become resistant to fumigants when the intervention
is not well controlled [4] or the problem of limited imple-
mentation costs. In some cases in the field, the high fumiga-
tion intensity needs to be reduced when infected people are
too high. This is due to the difficulty of implementation in
the field when intervention costs must also be allocated to
treatment for infected individuals in the hospitals.

Vaccines for malaria have become one of the main con-
cerns of governments in many parts of the world and the
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World Health Organization [5]. In 2021, the R21/Matrix-M
vaccine has been investigated to be the second malaria vac-
cine, and it is stated that it has reached the minimum effi-
cacy limit required by WHO, which is a minimum efficacy
of 75% [6]. This type of vaccine has an efficacy level of
77% to reduce the chance of successful infection in humans
due to an infected female Anopheles mosquito bite. In addi-
tion to vaccination, treatment interventions are also needed
to prevent the severity or incidence of relapse in malaria
patients. Until now, it was stated that primaquine was the
primary drug used to avoid relapse in individuals infected
with malaria. However, because this drug has to be taken
on a regular basis (every 14 days), it has resulted in many
treatments not being successful [7]. Therefore, MMV and
GlaxoSmithKline (GSK) collaborated to develop a new
malaria drug known as tafenoquine, which is a single dose
treatment for preventing relapse in malaria-infected individ-
uals [8].

The complexity of malaria has attracted the attention of
many researchers to take part in efforts to understand the
mechanism of spread and the best intervention for malaria.
This is due to the complexity of its infection mechanism,
such as recurrence phenomena (relapse, reinfection, and
recrudescence), to the problem of the most appropriate
intervention. Among these researches, mathematical model-
ing would play an essential role. Many authors have intro-
duced mathematical models to understand how malaria
spreads among human and mosquito populations. The first
mathematical model for malaria was introduced by Ross in
the early 19th century [9], where he introduced the mecha-
nism of malaria transmission involving mosquito and
human populations in his model. Ross’ research was then
continued by Macdonald [10] where he introduced the con-
cept of basic reproduction number in his model. Since then,
many mathematical models have been introduced by
researchers to understand various important factors in the
spread of malaria. Authors in [11] proposed a malaria model
considering immunological memory which boost protection
of reinfection phenomenon. Two host types in malaria
transmission are discussed by author in [12]. Furthermore,
a two-age class model for malaria transmission is discussed
in [13]. A periodic biting rate of malaria mosquitoes is mod-
elled by author in [14]. They used Floquet theory to analyze
the stability of their model. Recently, author in [15] pro-
posed a malaria model with optimal control on saturated
treatment rate. Another new strategy of transmission block-
ing drugs for malaria is modelled by Wu and Hu in [16].
They found that increasing the transmission blocking drugs
is a more pronounced effect compared to treatment inter-
vention. Another important factors have been discussed
through mathematical models such as vector-bias effect
[15, 17], relapse [18, 19], reinfection [20, 21], fumigation
[15, 22], temperature and seasonality [23–25], impact of
Wolbachia [26], and coinfection [27]. However, the best that
we know, there is no mathematical model considering the
impact of potential new treatment (tafenoquine) into their
model.

In this paper, we introduce and investigate a new math-
ematical model on malaria transmission. In this model, we

divide the human population into five epidemiological clas-
ses based on their health status while the mosquito popula-
tion into two epidemiological classes. Several vital factors
were introduced into our model: the effect of a potential
new treatment for malaria to prevent relapse; vector-bias
phenomena where mosquitoes are more attracted to bite
the infected individuals; and fumigation intervention which
depends on the number of infected individuals at time t.
We perform our mathematical analysis to show the existence
of a forward bifurcation and forward hysteresis phenomena
on our model, which allows the possibility of existence of
three different endemic equilibrium, where two of them is
locally stable. Based on this phenomenon, we show from a
numerical simulation that a massive fumigation intervention
in a limited time window can change the dynamic direction
of the system from a large endemic equilibrium to a smaller
endemic point. We also show a sensitivity analysis to deter-
mine the most influential parameter to our model.

This paper is organized as follows. We formulate our
model in Section 2. The stability of the malaria-free equilib-
rium point and the form of the respected basic reproduction
number are shown in Section 3. In Section 4, we analyze the
existence of the malaria-endemic equilibrium point. In addi-
tion, we show the possible forward hysteresis from our
model in this section. Some numerical experiments on the
proposed model are shown in Section 5. Finally, some rele-
vant conclusions are given in the last section.

2. Mathematical Model Formulation

The proposed dynamic model for malaria transmission in
this article is inspired by our previous work in [15], by tak-
ing into account two important factors. The first factor
involved in our new model is the involvement of a malaria
relapse prevention drug intervention (for example, tafeno-
quine [28]). The second factor involves fumigation interven-
tion which is not a monotonous function. We assume that
when the number of humans infected with malaria is
approaching the outbreak, the intervention given can be
quite large. However, when the number of infected people
continues to grow, efforts for fumigation will be reduced
because of the difficulty of intervention during the outbreak.

This model divides the human population based on their
health status and whether they received any malaria treat-
ment or not. Hence, let human population be divided into
five epidemiological classes: susceptible ðSÞ, latent ðEÞ,
infected ðIÞ, exposed treated ðTÞ, and recovered ðRÞ. On
the other hand, we classify mosquito population only into
two classes: susceptible ðUÞ and infected ðWÞ. The latent
individual is an individual who has already been exposed
to malaria and has Plasmodium in their lever. If an individ-
ual in E gets treated with tafenoquine to prevent relapse,
then they will be classified into the class of T . Only infected
individual (I) can transmit the Plasmodium into the suscep-
tible mosquito. Based on this assumption, we have the total
human population which is given by

Nh = S + E + T + I + R, ð1Þ
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and the total mosquito population is given by

Nv =U +W: ð2Þ

The malaria model is governed by the following system
of ordinary differential equations:

dS
dt

=Λh −Πh N ,Wð Þ − μhS + ξR,

dE
dt

=Πh N ,Wð Þ − u1 + η + μhð ÞE,
dT
dt

= u1E − 1 − pð Þδ + pκ + μhð ÞT ,
dI
dt

= 1 − pð ÞδT + ηE − γ + μhð ÞI,
dR
dt

= pκT + γI − μh + ξð ÞR,
dU
dt

=Λv −Πv N ,Uð Þ − μv +Ψ I, u2ð Þð ÞU ,

dW
dt

=Πv N ,Uð Þ − μv +Ψ I, u2ð Þð ÞW,

ð3Þ

where ΠhðN ,WÞ and ΠvðN ,UÞ are the infection rate in
human and mosquito population, respectively, while ΨðI,
u2Þ presents the fumigation effectiveness factors.

The per capita of birth on humans and mosquitoes is
denoted by Λh and Λv, respectively. The natural death rate
of humans and mosquitoes is given by μh and μv, respec-
tively. Furthermore, parameters u1 and u2 present medical
treatment intervention with tafenoquine and vector control
with fumigation, respectively. Letpbe the proportion of
exposed individuals who get tafenoquine and succeeded in
avoiding relapse afterκ−1duration of treatment. On the other
hand, we assume that the 1 − p proportion of individuals in
T failed in treatment. Hence, we have ð1 − pÞδT as the tran-
sition from T to I due to treatment failure, where δ−1 is the
incubation period of Plasmodium with the effect of tafeno-
quine. We denote that the recovery rate from malaria is γ,
while ξ−1 is the duration of temporal immunity.

We construct the force of infection in human ðΠhðN ,
WÞÞ as follows. Let b be the average bite per mosquito per
day. In our model, we take into account the preference of
mosquito to be more attracted to bite infected human, rather
than noninfected human. This phenomenon is commonly
known as “vector-bias” phenomenon [29]. Based on this
“vector-biased” assumption, the probability of a mosquito
encountering a susceptible human is given by S/ðS + E + T
+ αI + RÞ, where α > 1 is the vector-bias parameter. Hence,
total bite of all mosquito per day is given by bWðS/ðS + E
+ T + αI + RÞÞ. Assuming νh as the probability that the bite
of infected mosquito succeeded in infecting susceptible
human, then bνhWðS/ðS + E + T + αI + RÞÞ present the total
of susceptible human who get infected by malaria per time.
Since b and νh are constant parameters with a dimension

of bite/day and 1/ðbite × mosquitoÞ, respectively, we assume
βh ≔ bνh. Therefore, we have that

Πh N ,Wð Þ = βhW
S

S + E + T + αI + R
: ð4Þ

Using a similar approach, let νv be the probability of suc-
cessful infection in mosquitoes; the force of infection on
mosquitoes is given by

Πv N ,Uð Þ = βvU
αI

S + E + T + αI + R
, ð5Þ

where βv ≔ bνv with a dimension of bite/day and 1/ð
bite × humanÞ for b and νv , respectively.

Now, we construct our fumigation term ΨðI, u2Þ. We
assume that the fumigation intervention depends on the
number of infected individuals. Indicators of the endemic
of malaria in the field can not be seen from the number of
infected mosquitoes, but it can be identified by the high
number of infected individuals which is reported in the
media. When the number of infected individuals increases,
then the intensity of fumigation will increase. However,
when the number of infected individuals increases more sig-
nificantly, then the effectiveness of fumigation will decrease
since the policymaker may concentrate more on the number
of infected individuals in the hospital, which makes them
overwhelmed to control vector population in the field.
Hence, we assume that ΨðI, u2Þ should have the following
properties:

(i) When the number of the infected individual is zero,
then the fumigation intervention is zero. Hence, we
have Ψð0, u2Þ = 0

(ii) The fumigation intervention increases at the begin-
ning when the number of infected individual start
to increase but will decrease when the number of
infected individual is sufficiently large. Hence, we
have that ðð∂ΨðI, u2ÞÞ/∂IÞ > 0 for I ∈ ð0, IcriticalÞ and
ðð∂ΨðI, u2ÞÞ/∂IÞ ≤ 0 for I ∈ ½Icritical,∞Þ. Note that
Icritical denote the critical number of I when the pol-
icymaker is already overwhelmed to conduct an
effective fumigation intervention in the field

Based on the above assumption, we model our fumiga-
tion intervention as

Ψ I, u2ð Þ = u2
I

a + I2
, ð6Þ

where a > 0 is the saturated coefficient.
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According to the mentioned assumptions on the infec-
tion and fumigation functions, system (3) now is read as

dS
dt

=Λh − βhW
S

S + E + T + αI + R
− μhS + ξR,

dE
dt

= βhW
S

S + E + T + αI + R
− u1 + η + μhð ÞE,

dT
dt

= u1E − 1 − pð Þδ + pκ + μhð ÞT ,
dI
dt

= 1 − pð ÞδT + ηE − γ + μhð ÞI,
dR
dt

= pκT + γI − μh + ξð ÞR,
dU
dt

=Λv − βvU
αI

S + E + T + αI + R
− μv + u2

I

a + I2

� �
U ,

dW
dt

= βvU
αI

S + E + T + αI + R
− μv + u2

I

a + I2

� �
W,

ð7Þ

with a nonnegative initial conditions given at time t = 0.
Figure 1 depicts the flow chart of our malaria transmission
model. Biological interpretation and the unity of all param-
eters in system (7) are given in Table 1.

Let system (7) have an initial condition in the following
set:

D = S, E, T , I, R,U ,Wð Þ ∈ℝ7
+ S,U > 0, E, T , I, R,W ≥ 0j� �

:

ð8Þ

To describe the feasible solution of system (7) and its
biological interpretation, we have the following theorem.

Theorem 1. For initial values in (8), malaria model in system
(7) has a unique solution and remains in D for all time t ≥ 0.

Proof. Please see Appendix A for the proof.

3. Malaria-Free Equilibrium and the Basic
Reproduction Number

The first equilibrium point of our model is the malaria-free
equilibrium point. This equilibrium present a situation
where all nonsusceptible population do not exist in the equi-
librium condition. For this reason, let E = 0, T = 0, I = 0, R
= 0, and W = 0, and then, malaria-free equilibrium ðMFEÞ
is obtained by the following subsystem:

dS
dt

=Λh − μhS,

dU
dt

=Λv − μvU:

ð9Þ

Taking the right hand side of the above system, it follows
that the malaria-free equilibrium of system (7) is given by

MFE = S∗, E∗, T∗, I∗, R∗,U∗,W∗ð Þ = Λh

μh
, 0, 0, 0, 0, Λv

μv
, 0

� �
:

ð10Þ

To conduct further analysis on the qualitative behaviour
of our model, it is important to determine the related basic
reproduction number of our proposed model. In many epi-
demiological models, basic reproduction number holds an
important role in determining that the diseases die out or
exist in the population [34–38]. Basic reproduction number
is defined as the expected number of secondary cases caused
by one primary case during infection period in a completely
susceptible population [39, 40]. The basic reproduction
number is calculated using the next-generation matrix
approach [41]. From system (7), we have that the infected
compartments consist of E, T , I, and W. The Jacobian
matrix of subsystem of infected compartment on system
(7) evaluated in MFE can be written as F +V , where

F =

0 0 0 βh

0 0 0 0
0 0 0 0

0 0 βvΛvα μh
μvΛh

0

2
6666664

3
7777775
,

V =

−u1 − η − μh 0 0 0
u1 − 1 − pð Þδ − κ p − μh 0 0
η 1 − pð Þδ −γ − μh 0
0 0 0 −μv

2
666664

3
777775,

ð11Þ

𝜇hT

𝜇hS

𝜇hE

𝜇hR

𝜇hI

u1 E
pkT

I

T

E RS
Λh

Λv

ɳE

(1 –p) 𝛿T
𝛾I

𝜉R

IIh (N, W)

IIv (N, U)
(𝜇v + ψ (I, u2)) U (𝜇v + ψ (I, u2)) W

U W

Figure 1: Transmission diagram of malaria model in (7).
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where F and V present the transmission and transition
terms. Using formula in [41], we have the next-generation
matrix ðNGMÞ of system (7) which is given by

NGM = −ETFV −1E =
0 βh

μv

αΛvβvμh δ η p + δ pu1 − η κ p − δ η − δ u1 − η μhð Þ
μvΛh u1 + η + μhð Þ δ p − κ p − δ − μhð Þ γ + μhð Þ 0

2
6664

3
7775,

ð12Þ

where ET is the transpose of E, with

E =

1 0
0 0
0 0
0 1

2
666664

3
777775: ð13Þ

Note that each column of F can be spanned by each col-
umn of E. Hence, the basic reproduction number of system
(7) is given by

R0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βvΛvα μh δ η + u1ð Þ 1 − pð Þ + η μh + pκð Þð Þβh

Λhμv
2 δ 1 − pð Þ + μh + pκð Þ u1 + η + μhð Þ γ + μhð Þ

s
:

ð14Þ

More example on the method of next-generation matrix
method to determine the basic reproduction number in var-
ious epidemiological models can be seen in [42–44]. The

above expression can be rewritten as a multiplication
between four important component on malaria transmission
on system (7) as follows.

R0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 ×C2 ×C3 ×C4

p
, ð15Þ

where C1 = βh/ðu1 + η + μhÞ present the number of
new latent infected human per infection period of E, C2
= αβv/μv present the number of new infected mosquitoes
per infection period of W, C3 =Nv/Nh present the ratio
of mosquitoes and human, and C4 = η + u1ð1/ð1 + ððpκ +
μhÞ/ðð1 − pÞδÞÞÞÞ present the impact of tafenoquine
intervention.

According to Theorem 2 in [45], we have the following
theorem regarding the local stability criteria of the malaria-
free equilibrium of system (7).

Theorem 2. The malaria-free equilibrium of system (7) is
locally asymptotically stable if R0 < 1 and unstable if R0 >
1.

3.1. Sensitivity Analysis on the Basic Reproduction Number.
In many mathematical epidemiology models, understanding
the impact of key parameters in determining the size of the
basic reproduction number is essential to find the best opti-
mal strategy. Therefore, we study the normalized sensitivity
analysis of the basic reproduction number using the follow-
ing formula [30]:

ΓR0
ρ = ∂R0

∂p
× p
R0

, ð16Þ

Table 1: Biological interpretation of parameters in system (7).

Par Description Dimension Value Ref.

Λh Number of newborn in human per day Human/Day 1000/65 × 365 [15]

Λv Number of newborn in mosquitoes per day Mosquitoes/Day 1000/21 [15]

βh Infection rate of mosquito to human 1/Mosquito × day 0.022 [30, 31]

βv Infection rate of human to mosquito 1/Human × day 0.24 [30, 31]

α Vector-bias coefficient — 4 [32]

u1 Rate of treatment with tafenoquine 1/Day [0,1] Assumed

u2 Vector control with fumigation 1/Day [0,1] Assumed

μh Natural death rate of human 1/Day 1/65 × 365 [15]

μv Natural death rate of mosquito 1/Day 1/21 [30]

η Natural incubation rate 1/day 0.0833 [18]

p Proportion of treated individual who succeeds in treatment — 0.8 Assumed

δ Incubation rate due to use of tafenoquine 1/Day 0.016 Assumed

κ Recovery rate tafenoquine treatment 1/Day 0.0166 Assumed

γ Recovery rate 1/Day 0.0035 [30]

a Saturation coefficient of fumigation Human 10 Assumed

ξ Waning rate of temporal immunity 1/Day 0.005 [33]
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where ρ is any key parameter in malaria model in system (7).
In our paper, we are only interested in the following param-
eters: βh, βv, α, u1, u2, η, δ, p, κ, γ, ξ, and a. Furthermore, we
do not show the partial derivative of these parameters since
it has a long expressions. Using parameter values as in
Table 1, u1 = 0:2, u2 = 0, and p = 0:8; the normalized sensi-
tivity of R0 is given in Table 2 and visualized in Figure 2.

The normalized indices in Table 2 are a nondimen-
sional value, which present the percentage change of R0
for each increase value of parameter ρ for 1%. For an

example, since Γ
R0
p = −0:6477, then increasing probability

of individuals in T to succeed in treatment for 10% will

reduce R0 for 6.477%. On the other hand, since Γ
R0
βh

=
0:5, then increasing βh for 10% will increase R0 for 5%.
From Figure 2, we can see that βh, βv, α, η, and δ are pro-
portional to R0. Increasing these mentioned values will
increase R0. On the other hand, parameters p, γ, u1,
and κ are inversely proportional to R0. Therefore, increas-
ing the value of p, γ, u1, and κ will reduce R0. In addi-
tion, we can see that fumigation ðu2Þ, rate of loss of
immunity ðξÞ, and saturated parameter ðaÞ do not affect
R0. Figure 2 shows the most to the less influential param-
eter to R0 in descending order, from left to the right.

Figure 3 shows the level set of R0 with respect to u1, α,
and p. From Figure 3(a), we can see that increasing the value
of p reduces R0. It means that more people succeed due to
treatment with tafenoquine; then, the possibility to achieve
malaria-free equilibrium is bigger. Same interpretation to
the rate of treatment u1. We can see that more intense inter-
vention of tafenoquine will reduce R0. In addition, we can
see clearly that better quality of tafenoquine will reduce the
burden of intervention in providing tafenoquine treatment
to achieve malaria-free conditions. The effect of vector-bias
on the success of tafenoquine intervention to reduce R0
can be seen in Figure 3(b). We can see that more bias the
mosquito to be more preferring infected human will increase
theR0, which makes the intervention of tafenoquine should
be given more intense to reduce the value of R0.

4. The Malaria-Endemic Equilibrium

4.1. Existence of Malaria-Endemic Equilibrium. The malaria-
endemic equilibrium of system (7) is given by

MEE = S†, E†, T†, I†, R†,U†,W†� �
, ð17Þ

where

S† = Λh

μh
− E† − I† − T† − R†,

E† = I† δ μh + γð Þ 1 − pð Þ + γ + μhð Þ μh + pκð Þð Þ
δ u1 + ηð Þ 1 − pð Þ + η μh + pκð Þ ,

T† = I†u1 γ + μhð Þ
δ u1 + ηð Þ 1 − pð Þ + η μh + pκð Þ ,

R† = δ γ + μhð Þ 1 − pð Þ + γκp η + μhð Þ + μh ηγ + pκu1ð Þð Þ
δ u1 + ηð Þ 1 − pð Þ + η μh + pκð Þð Þ ξ + μhð Þ ,

U† =
Λv S† + E† + αI† + T† + R†� �

a + I†
� �2	 


Σ3
i=0ci

,

W† =
Λv a + I†

� �2	 

u2I

†� �
+ μv a + I†

� �2	 
 −U†,

ð18Þ

with c0 = αμvðS† + E† + T† + R†Þ, c1 = aαðβv + μvÞ + u2ð
S† + E† + T† + R†Þ, c2 = αu2 + μvðS† + E† + T† + R†Þ, and c3
= αðβv + μvÞ. Note that I† is taken from the positive root
of the following polynomial:

G Ω, Ið Þ = 〠
6

j=1
kjI

j = 0, ð19Þ

where Ω is the set of parameter in system (7), and

k6 = −μ2hμv ξ + μhð Þ δ 1 − pð Þ + μh + pκð Þ α − 1ð Þ u1 + η + μhð Þ
� αβv + μv α − 1ð Þð Þ γ + μhð Þ,

k0 =Λhμv
2 δ 1 − pð Þ + μh + pκð Þ u1 + η + μhð Þ γ + μhð Þ R2

0 − 1
� �

,
ð20Þ

while k5, k4, k3, k2, and k1 have a complex form to be
written in this article. It can be seen that whenever I† > 0,
then E†, T†, R†, and U† are also positive. On the other hand,
S† is always positive since Nh ≤ ðΛh/μhÞ (see the proof of
Theorem 1). On the other hand, since

W† =
Λv a + I†

� �2	 

u2I

†� �
+ μv a + I†

� �2	 
 −U† < Λv

μv
−U† ð21Þ

Table 2: Normalized sensitivity indices of R0 with respect to βh,
βv , α, u1, u2, η, δ, p, κ, γ, ξ, and a.

Par (ρ) ΓR0
ρ Par (ρ) ΓR0

ρ Par (ρ) ΓR0
ρ

βh 0.5 βv 0.5 α 0.5

u1 -0.191 u2 0 η 0.191

δ 0.129 p −0:6477 κ -0.120

γ -0.494 ξ 0 a 0
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and Nv ≤ ðΛv/μvÞ (see the proof of Theorem 1), then we can
guarantee that W† is also positive.

From the expression of polynomial in (19), k6 is always
negative since α > 1, k0 > 0⇐R0 > 1, while another coeffi-
cient is difficult to be determined, whether it was positive
or negative. Hence, using the Descartes rules of sign [46],
there exists at least one positive root of polynomial (19)
whenever R0 > 1. According to this result and the expres-
sion of MEE, we have the following result.

Theorem 3. System (7) has at least one malaria-endemic
equilibrium point if R0 > 1.

Since polynomial in (19) is a six-degree polynomial, it
is possible that system (7) have more than one malaria-
endemic equilibrium point. We use Descartes rules of sign
[46] to analyze the maximum possibility of positive root
of polynomial in (19). The result is given in Table 3 for
the case when R0 > 1, and Table 4 for the case when
R0 < 1.

From Table 2, we can confirm the result in Theorem 3
that we always have at least one malaria-endemic
equilibrium when R0 > 1. If R0 > 1, then we always have
an odd number possibility of the positive root of polynomial
(19), i.e., 1, 3, or 5 positive roots. On the other hand,
malaria-endemic equilibrium is possible to vanish only when
R0 < 1. However, we still possible to have 2, 4, or 6 positive
roots of polynomial (19) when R0 < 1.

4.2. Bifurcation Analysis. In this section, we perform the
bifurcation analysis of our proposed malaria model in
system (7). To do this analysis, we use the well-known
Castillo-Song bifurcation theorem [47] (please see [48–51]
for more examples on the use of this theorem on

epidemiological models). First, for numerical calculation
purposes, let us redefine our proposed system (7) as follows:

f1 ≔Λh − βhx6
x1

x1 + x2 + x3 + αx4 + x5
− μhx1 + ξx5,

f2 ≔ βhx6
x1

x1 + x2 + x3 + αx4 + x5
− u1 + η + μhð Þx2,

f3 ≔ u1x2 − 1 − pð Þδ + pκ + μhð Þx3,
f4 ≔ 1 − pð Þδx3 + ηx2 − γ + μhð Þx4,
f5 ≔ pκx3 + γx4 − μh + ξð Þx5,

f6 ≔Λv − βvx6
αx4

x1 + x2 + x3 + αx4 + x5
− μv + u2

x4
a + x24

� �
x6,

f7 ≔ βvx6
αx4

x1 + x2 + x3 + αx4 + x5
− μv + u2

x4
a + x24

� �
x7,

ð22Þ

where xi for i = 1, 2,⋯7 present S, E, T , I, R, U , and W,
respectively, Next, we determine our bifurcation parameter
to replace R0. By solving R0 = 1 with respect to βh, we
obtain the bifurcation parameter, namely, βh = β∗, as
follows:

βh = β∗ = p − 1ð Þδ − κ p − μhð Þ γ + μhð Þ u1 + η + μhð Þμv2Λh

u1 + ηð Þ p − 1ð Þδ − η κ p + μhð Þð ÞμhβvαΛv
:

ð23Þ
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Figure 2: Histogram of normalized sensitivity analysis of R0:
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The linearization of MFE of system (22) at βh = β∗ is
given by

JjMFE ≔

−μh 0 0 0 ξ 0 c17

0 c22 0 0 0 0 c27

0 u1 c33 0 0 0 0
0 η 1 − pð Þδ −γ − μh 0 0 0
0 0 κ p γ −ξ − μh 0 0
0 0 0 c64 0 −μv 0

0 0 0 βvΛvα μh
μvΛh

0 0 −μv

2
66666666666666664

3
77777777777777775

, ð24Þ

with

c17 = −
p − 1ð Þδ − κ p − μhð Þ γ + μhð Þ u1 + η + μhð Þμv2Λh

u1 + ηð Þ p − 1ð Þδ − η κ p + μhð Þð ÞμhβvαΛv
,

c22 = −u1 − η − μh,

c27 =
p − 1ð Þδ − κ p − μhð Þ γ + μhð Þ u1 + η + μhð Þμv2Λh

u1 + ηð Þ p − 1ð Þδ − η κ p + μhð Þð ÞμhβvαΛv
,

c33 = − 1 − pð Þδ − κ p − μh,

c64 = −
βvΛvα μh
μvΛh

−
u2Λv

aμv
: ð25Þ
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The Jacobian matrix JMFE has a simple zero eigenvalue,
and the other three eigenvalues are explicitly negative ð−μh
,−μh,−ðμh + ξÞÞ, while the other three is coming from the
root of the following polynomial:

P λð Þ = c3λ
3 + c2λ

2 + c1λ + c0 = 0, ð26Þ

where

c3 =Λhμv u1 + μv + 3μh + η + γ + pκ + δ 1 − pð Þð Þ,

c2 = δ 1 − pð Þ η + γ + u1 + μv + 2μhð Þ
� 3μ2h + μh 2κp + 2η + 2γ + 3μv + 2u1ð Þ+⋯�

+ μv

� κp + η + γ + u1ð Þ + γ κp + η + u1ð Þ + pκ η + u1ð ÞÞ,

c1 = μ2v 3μ2h + μh 2 1 − pð Þδ + 2κp + η + γ + u1ð Þ + δ 1 − pð Þ��
� η + γ + u1ð Þ + pκ η + γ + u1ð ÞÞ + η + u1 + μhð Þ
� 1 − pð Þδ + pκ + μhð Þ γ + μhð Þ�Λh +Λvαηβ

∗βvμh,

c0 =Λhμ
2
v γ + μhð Þ u1 + η + μhð Þ 1 − pð Þδ + pκ + μhð Þ

+ β∗
hβvμhαΛv δ 1 − pð Þ η + u1ð Þ + pκη + ημhð Þ: ð27Þ

Since ð1 − pÞ > 0, then ci for i = 0, 1, 2, 3 are positive.
Since all the coefficients of PðλÞ are positive, then all other
three eigenvalues of JjMFE are negative. Therefore, we can
continue using the center manifold theory to analyze the
bifurcation phenomena at R0 = 1. Next, we use the
Castillo-Chavez and Song theorem [47] to analyze the bifur-
cation phenomena of system (7) at R0 = 1.

Table 3: Possible number of positive roots of polynomial GðΩ, IÞ,
when R0 > 1.

Case k6 k5 k4 k3 k2 k1 k0 Possible positive roots

1 — + + + + + + 1

2 — + + + + — + 1 or 3

3 — + + + — + + 1 or 3

4 — + + + — — + 1 or 3

5 — + + — + + + 1 or 3

6 — + + — + — + 1, 3, or 5

7 — + + — — + + 1 or 3

8 — + + — — — + 1 or 3

9 — + — + + + + 1 or 3

10 — + — + + — + 1, 3, or 5

11 — + — + — + + 1, 3, or 5

12 — + — + — — + 1, 3, or 5

13 — + — — + + + 1 or 3

14 — + — — + — + 1, 3, or 5

15 — + — — — + + 1 or 3

16 — + — — — — + 1 or 3

17 — — + + + + + 1

18 — — + + + — + 1 or 3

19 — — + + — + + 1 or 3

20 — — + + — — + 1 or 3

21 — — + — + + + 1 or 3

22 — — + — + — + 1, 3, or 5

23 — — + — — + + 1 or 3

24 — — + — — — + 1 or 3

25 — — — + + + + 1

26 — — — + + — + 1 or 3

27 — — — + — + + 1 or 3

28 — — — + — — + 1 or 3

29 — — — — + + + 1

30 — — — — + — + 1 or 3

31 — — — — — + + 1

32 — — — — — — + 1

Table 4: Possible number of positive roots of polynomial GðΩ, IÞ,
when R0 < 1.

Case k6 k5 k4 k3 k2 k1 k0 Possible positive roots

33 — + + + + + — 0 or 2

34 — + + + + — — 0 or 2

35 — + + + — + — 0, 2, or 4

36 — + + + — — — 0 or 2

37 — + + — + + — 0, 2, or 4

38 — + + — + — — 0, 2, or 4

39 — + + — — + — 0, 2, or 4

40 — + + — — — — 0 or 2

41 — + — + + + — 0, 2, or 4

42 — + — + + — — 0, 2, or 4

43 — + — + — + — 0, 2, 4, or 6

44 — + — + — — — 0, 2, or 4

45 — + — — + + — 0, 2, or 4

46 — + — — + — — 0, 2, or 4

47 — + — — — + — 0, 2, or 4

48 — + — — — — — 0 or 2

49 — — + + + + — 0 or 2

50 — — + + + — — 0 or 2

51 — — + + — + — 0, 2, or 4

52 — — + + — — — 0 or 2

53 — — + — + + — 0, 2, or 4

54 — — + — + — — 0, 2, or 4

55 — — + — — + — 0, 2, or 4

56 — — + — — — — 0 or 2

57 — — — + + + — 0 or 2

58 — — — + + — — 0 or 2

59 — — — + — + — 0, 2, or 4

60 — — — + — — — 0 or 2

61 — — — — + + — 0 or 2

62 — — — — + — — 0 or 2

63 — — — — — + — 0 or 2

64 — — — — — — — 0
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First, we calculate the right and left eigenvector of JjMFE
with respect to the zero eigenvalue. The right eigenvector is
given by w = ðw1,w2,w3,w4,w5,w6,w7ÞT , with

w1 =
1

γ + μhð Þ ξ + μhð Þu1
−μh

3 + p − 1ð Þδ − κ p − ξ − η − γ − u1ð Þμh2
�

+ ξ + η + γ + u1ð Þ p − 1ð Þδ − κ ξ + η + γ + u1ð Þpð
+ −ξ − η − u1ð Þγ − ξ u1 + ηð ÞÞμh + p − 1ð Þ ξ + η + u1ð Þγð
+ ξ u1 + ηð ÞÞδ − κ ξ + η + u1ð Þγ + η ξð Þp − γ ξ u1Þ,

w2 = −
δ p − κ p − δ − μhð Þ

u1
,w3 = 1,

w4 = −
δ η p + δ pu1 − η κ p − δ η − δ u1 − η μh

γ + μhð Þu1
,

w5 =
−δ + κð Þp + δð Þu1 − η δ − κð Þp − δ − μhð Þð Þγ + κ pμhu1

γ + μhð Þ ξ + μhð Þu1
,

w6 = −
aα βvμh + u2Λhð Þ − u1 + ηð Þ p − 1ð Þδ + η κ p + μhð Þð Þw3Λv

u1 γ + μhð ÞaΛhμv
2 ,

w7 = −
Λvα βv μh η + u1ð Þ p − 1ð Þδ − η κ p + μhð Þð Þ

Λhμv
2 γ + μhð Þu1

: ð28Þ

On the other hand, the left eigenvector is given by v = ð
v1, v2, v3, v4, v5, v6, v7Þ where

v1 = 0,

v2 =
η + u1ð Þ p − 1ð Þδ − η κ p + μhð Þ

η + u1 + μhð Þδ p − 1ð Þ ,

v3 = 1,

v4 =
p − 1ð Þδ − κ p − μh

p − 1ð Þδ ,

v5 = 0,
v6 = 0,

v7 =
γ + μhð ÞΛhμv p − 1ð Þδ − κ p − μhð Þ

Λvα βvμhδ p − 1ð Þ :

ð29Þ

It is obvious that v1 = v5 = v6 = 0. Furthermore, f3 and f4
are one degree functions. Thus, we only need to consider the
second-order partial derivative of f2 and f7. By algebraic
computation, we obtain the following second-order partial
derivatives which have nonzero values after substituting
the MFE.

∂2 f2
∂x2∂x7

= ∂2 f2
∂x7∂x2

= −
βhμh
Λh

, ∂2 f2
∂x3∂x7

= ∂2 f2
∂x7∂x3

= −
βhμh
Λh

,

∂2 f2
∂x4∂x7

= ∂2 f2
∂x7∂x4

= −
βhμhα

Λh
, ∂2 f2
∂x5∂x7

= ∂2 f2
∂x7∂x5

= −
βhμh
Λh

,

∂2 f7
∂x1∂x4

= ∂2 f7
∂x4∂x1

= −
βvΛvα μh

2

μvΛh
2 , ∂2 f7

∂x2∂x4
= ∂2 f7
∂x4∂x2

= −
βvΛvα μh

2

μvΛh
2 ,

∂2 f7
∂x3∂x4

= ∂2 f7
∂x4∂x3

= −
βvΛvα μh

2

μvΛh
2 , ∂2 f7

∂x5∂x4
= ∂2 f7
∂x4∂x5

= −
βvΛvα μh

2

μvΛh
2 ,

∂2 f7
∂x4∂x6

= ∂2 f7
∂x6∂x4

= βvα μh
Λh

, ∂2 f7
∂x4∂x7

= ∂2 f7
∂x7∂x4

= −
u2
a
,

∂2 f7
∂x4∂x4

= −2 βvΛvα
2μh

2

μvΛh
2 : ð30Þ

For the bifurcation indicators, we calculate A for system
(22) which is expressed by

A = v2 〠
7

i,j=1
wi

∂2 f2
∂xi∂xj

+ v7 〠
7

i=1
wi

∂2 f7
∂xi∂xj

: ð31Þ

We can confirm that A is always negative (please see the
expression of A in Appendix D). Meanwhile, B is given by

B = v2 〠
7

i=1
wi

∂2 f2
∂xi∂βh

= u1 + ηð Þ p − 1ð Þδ − η κ p + μhð Þð Þ2μhβvαΛv

u1 + η + μhð Þδ 1 − pð ÞΛhμv
2 γ + μhð Þu1

:

ð32Þ

Since all parameters are positive, and ð1 − pÞ > 0, then we
have that B > 0. According to Castillo-Chavez and Song
theorem [47], since the quantity of A is negative and B is
positive, then system (22)) indicates a forward bifurcation
at R0 = 1. We state the result in the following theorem.

Theorem 4. System (7) always exhibits a forward bifurcation
at R0 = 1.

4.3. Numerical Experiments on Theorem 4. In this section, we
show the numerical interpretation of Theorem 4. The first
numerical experiment is for the bifurcation diagram of sys-
tem (7), which is given in Figure 4. We use parameter values
as mentioned in Table 1, except that it states differently.
With this set of parameter values, we have R0 = 1 when βh
= 0:0004079. For the case of a = 400, u1 = 0:2, and u2 = 0,
the bifurcation diagram is shown in Figure 4(a). It can be
seen that the forward bifurcation phenomenon appears,
which indicates there always exists a unique endemic equi-
librium point when R0 > 1, and no endemic equilibrium
when R0 < 1. Furthermore, we can see that the malaria-
endemic equilibrium is always stable (solid red) when R0
> 1. The autonomous simulation for various initial condi-
tions is shown in Figure 5. We use Runge-Kutta adaptive
step size method in MATLAB to run the autonomous simu-
lation in this article [52] (please see [53] for further detail on
the method and its algorithm). It can be seen that when
R0 = 0:8 < 1, then the solution from all different initial con-
ditions tends to the malaria-free equilibrium point
(Figure 5). On the other hand, when R0 > 1, then all trajec-
tories tend to the malaria-endemic equilibrium (Figure 6).

The autonomous simulation of system (7) when forward
hysteresis (Figure 4(b)) appears is given in Figures 7 and 8.
The numerical results is using the same parameter values
as in Figure 4(b). We only conduct two cases for this
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scenario, namely, when R0 > 1 but close to one in which
only one stable malaria-endemic appears (Figure 7) and
when two stable malaria-endemic equilibrium appears
(Figure 8) when R0 > 1, but not too far from 1. In the first
case, as shown in Figure 7, we can see that all trajectories
from all different initial conditions tend to the same
malaria-endemic equilibrium. However, when hysteresis
starts to appear, which causes two stable malaria-endemic

equilibrium, the solutions will tend to two different stable
malaria-endemic equilibrium points, depending on their ini-
tial conditions. We can see that when the initial condition is
close enough to the bigger malaria-endemic equilibrium
(blue curve), then the solution tends to the bigger size of
malaria-endemic equilibrium. The same thing happens
when the initial value of infection is small enough, and then,
the solution leads to the smallest stable malaria-endemic
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(a) Forward bifurcation phenomena of system (7) when u2 = 0 and a = 400
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Figure 4: Type of bifurcation phenomena of system (7). The red figure presents I† in MEEE, the blue curve is I∗ in MFE, and the magenta
curve presents the basic reproduction number as a function of βh. The solid and dotted curve present stable and unstable equilibrium point,
respectively.
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equilibrium. These simulation results indicate that fumiga-
tion may trigger the existence of multiple stable malaria-
endemic equilibrium for some value when R0 > 1. Figure 9
confirms the statement. It can be seen that an increase in
fumigation rate increases the interval when multiple stable
malaria-endemic equilibrium appears.

5. Autonomous Simulation

From the previous mathematical analysis, we found that our
proposed malaria model always exhibits a forward bifurca-
tion at R0 = 1. These results indicate that the basic repro-
duction number becomes the only endemic indicator on
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our proposed model. However, our model may show a mul-
tiple stable endemic equilibrium when R0 > 1. This phe-
nomenon is called a forward hysteresis [54]. We found
that this phenomenon was affected by the intensity of fumi-
gation ðu2Þ and the level of population awareness ðaÞ. Fur-
thermore, our sensitivity analysis indicates how important
is the intervention of tafenoquine to prevent the occurrence

of relapse and fumigation to control the number of Anoph-
eles mosquitoes in the environment. To visualize our men-
tioned results, we perform several numerical simulations
on our autonomous simulations for several scenarios.

5.1. Effect of Vector-Bias. In malaria transmission, vector-
bias has an important role in determining the endemic con-
dition of the population [29]. The larger the vector-bias
values, the more mosquito attracted to hunt infected
humans for their meal. Figure 10 depicts the dynamic of
the solution of our malaria model in (7) for several values
of vector-bias parameter. We use the same parameter values
as in Table 2, except u1 = 0:1, u2 = 0:05, p = 0:8, and varying
α from 1 to 5. With these parameters, R0 is always larger
than 1, which makes the solution of system (7) tends to
the malaria-endemic equilibrium. We can see that an
increased value of the vector-bias parameter at the malaria-
endemic equilibrium situation will increase the total popula-
tion in infected humans but reduce the size of the infected
mosquito population. This means that the more Anopheles
mosquitoes attracted to bite infected humans than healthy
humans can negatively impact the human population, where
the endemic size can increase. Therefore, efforts to control
the mosquito population are essential in this situation.

5.2. Effect of Fumigation Saturation Parameter. The first
autonomous simulation was conducted to show the impact
of the fumigation saturation parameter a. As we mentioned
before, a smaller value a indicates a more prepared commu-
nity to the increasing number of infected individuals. From
the expression of R0 in (15), it can be seen that a does not
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appear in R0. Hence, we conclude that a does not impact
the size of R0. However, as we have shown in Figure 11, a
smaller value of a reduces the size of total infected humans
and mosquitoes in the malaria-endemic equilibrium point.
Therefore, it can be concluded that although the level of
community readiness to carry out fumigation does not affect
the final state of population (endemic or not), it is clear that
the higher the community readiness (the smaller the value of
a), then the smaller the total size of the infected population
in malaria-endemic equilibrium.

5.3. Effect of Different Fumigation Strategy. As we have men-
tioned in sensitivity analysis on R0, we find that fumigation

does not affect the size of R0, but it can reduce the size of
malaria-endemic equilibrium when fumigation intervention
increases, as shown in Figure 12.

Now, we conduct our simulation with three different sce-
narios, based on the measured fumigation control depending
on the implementation time. In the 1st and the 2nd scenarios,
we choose u2 to be changed depending on the time interval,
using the following step function:

u1
stscenario
2 =

0:3, t ≤ 500,
0:9, 500 ≤ t ≤ 2000,
0:3, 2000 ≤ t ≤ 10000,

0
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Figure 10: Simulations showing the effect of vector-bias parameter (α) on the total of infected human (left) and mosquitoes (right). We use
same parameter values as in Table 2, except u1 = 0:1, u2 = 0:05, p = 0:8, and α varying: α = 5 (black), α = 4 (red), α = 3 (green), α = 2 (blue),
and α = 1 (cyan).
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Figure 11: Simulations showing the effect of fumigation saturation parameter (a) on the total of infected human (left) and mosquitoes
(right). We use same parameter values as in Table 2, except u1 = 0:1, u2 = 0:2, p = 0:8, and a varying: a = 20 (blue), a = 50 (green), a =
100 (red), a = 200 (cyan), and a = 300 (black). With this set of parameter, we have that R0 = 1:23.

14 Computational and Mathematical Methods in Medicine



u2
ndscenario
2 =

0:3, t ≤ 10,
0:9, 10 ≤ t ≤ 1510,
0:3, 1510 ≤ t ≤ 10000,

0
BB@ ð33Þ

while the 3rd scenario when u2 = 0:3 for all time t ∈ ½0,
10000�. The result is given in Figure 13. We can see from
Figure 13 that when there exist two stable malaria-endemic
equilibrium points, then proper fumigation intervention

may change the direction of stability of the system, which
in our numerical experiment is from the large endemic size
into small endemic size. When the improvement of fumiga-
tion is given too early (2nd scenario), then after the fumiga-
tion intervention loosened back into 0:3, then the dynamic
of total infected human goes back to the large endemic size.
On the other hand, when the intervention is given several
times after the first implementation (1st scenario), then the
dynamic of total infected humans is continuously going to
the small endemic equilibrium. Based on this, it is necessary
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Figure 12: Effect of fumigation on the endemic size of total infected human (left) and mosquitoes (right). Three different values of u2 are
given: 0 (red), 0.5 (blue), and 1 (green) do not change the value of R0, which is always 1.77.
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Figure 13: Simulations on the total infected human showing the effect of early (green), late (red), and no change (blue) of fumigation
intervention.
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to consider the time for implementing an appropriate
increase in fumigation intervention so that the solution
dynamics can be directed to a smaller endemic point if the
bistability phenomenon appears.

6. Conclusions

Malaria has long been a critical health problem in various
parts of the world. Every year, hundreds of millions of
people are at risk of becoming infected with malaria, with
the majority of cases occurring in Africa. The disease is
spread due to the bite of a female Anopheles mosquito
and is caused by five different types of Plasmodium. Dif-
ferent types of Plasmodium that infect give different
symptoms/serious illness that appears in patients with
malaria. Various interventions have been and are being
researched, such as vaccination, treatment, vector control
with fumigation, and use of insecticide-treated bed net.
The high number of cases in various parts of the world
until now indicates that our understanding of malaria is
still not sufficient to help us optimally control the spread
of malaria.

In this research, we introduce a new malaria model
that considers two important factors: the use of a new
treatment (tafenoquine) to prevent relapse and a saturated
fumigation function. The fundamental properties, the exis-
tence and stability criteria of the equilibrium points, and
how they relate to the basic reproduction number are ana-
lyzed in detail. We use Descartes’s rule of signs to show a
possible number of malaria-endemic equilibrium points
when the basic reproduction is less or larger than one.
We find that it is possible to have more than one endemic
equilibrium when the basic reproduction number is larger
than one. Our bifurcation analysis shows how our model
consistently exhibits a forward bifurcation at the basic
reproduction number equal to one. However, our numeri-
cal simulations show forward bifurcation phenomena with
hysteresis. This phenomenon results in the emergence of
three malaria-endemic equilibrium for a basic reproduc-
tion number larger than one.

Our sensitivity analysis shows that tafenoquine has a
big potential to control the spread of malaria by prevent-
ing the possibility of exposed individuals from relapsing.
Furthermore, we also find that although fumigation does
not affect the basic reproduction number, it can reduce
the number of infected individuals at malaria-endemic
equilibrium. Furthermore, a numerical investigation on
implementing a high intensity of fumigation in a short
time intervention interval may lead to a final switching
condition if the forward with hysteresis phenomena
appears. We find that when fumigation is implemented
in a proper time interval, the direction of endemic equilib-
rium can be “kicked down” into the smaller size of
malaria-endemic equilibrium, which is easier to control
with other intervention strategies. We hope that the results
of our research in this article can provide another perspec-
tive in evaluating the possibility of implementing tafeno-
quine and fumigation in the field.

Appendix

A. Proof of Theorem 1

We proof our theorem by analyzing the behaviour of each
variables on it boundary planes. From malaria model in sys-
tem (7), we have the dynamics on the boundary of ℝ7

+ as fol-
lows.

dS
dt

����
S=0,E≥0,T≥0,I≥0,R≥0,U≥0,W≥0

=Λh > 0,

dE
dt

����
S≥0,E=0,T≥0,I≥0,R≥0,U≥0,W≥0

= βhW
S

S + E + T + αI + R
≥ 0,

dT
dt

����
S≥0,E≥0,T=0,I≥0,R≥0,U≥0,W≥0

= u1E ≥ 0,

dI
dt

����
S≥0,E≥0,T≥0,I=0,R≥0,U≥0,W≥0

= 1 − pð ÞδT + ηE ≥ 0,

dR
dt

����
S≥0,E≥0,T≥0,I≥0,R=0,U≥0,W≥0

= pκT + γI ≥ 0,

dU
dt

����
S≥0,E≥0,T≥0,I≥0,R≥0,U=0,W≥0

=Λv > 0,

dW
dt

����
S≥0,E=0,T≥0,I≥0,R≥0,U≥0,W=0

= βhW
S

S + E + T + αI + R
≥ 0:

ðA:1Þ

It can be seen that all the rates of variables are nonnega-
tive on the boundary of ℝ7

+. Therefore, if we start in the inte-
rior of the nonnegative D, we shall always remain in this
region in view that the direction of the vector field is inward
on the boundary planes. Thus, the nonnegativity of all solu-
tions of system (7) is guaranteed.

Next, we continue to show the uniqueness solution of
system (7) by showing the boundedness of Nh and Nv. Add-
ing the first five equations in system (7) together, we get

dNh tð Þ
dt

=Λh − μh S + E + T + I + Rð Þ, =Λh − μhNh: ðA:2Þ

Solving the above differential equations with respect to
NhðtÞ and with a positive initial condition Nhð0Þ > 0 gives

Nh tð Þ =Nh 0ð Þ exp −μhtð Þ + Λh

μh
: ðA:3Þ

Hence, if we take t⟶∞, then we have that NhðtÞ is
eventually bounded by Λh/μh. To be precise, we have that
the biological feasible region of human population of system
(7) is

0 ≤ S + E + T + I + R ≤
Λh

μh
: ðA:4Þ
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For mosquito population, by adding the last two equa-
tion in system (7), we have

dNv tð Þ
dt

=Λv − μv + u2
I

a + I2

� �
U tð Þ +W tð Þð Þ,

=Λv − μv + u2
I

a + I2

� �
Nv tð Þ,

<Λv − μvNv tð Þ:

ðA:5Þ

Solving the above expression with respect to NvðtÞ and
with positive initial condition Nvð0Þ > 0, we get

Nv tð Þ <Nv 0ð Þ exp −μvtð Þ + Λv

μv
: ðA:6Þ

Hence, if we take t⟶∞, we have that NvðtÞ is eventu-
ally bounded by Λv/μv . Hence, the biological feasible region
of mosquito population is

0 ≤U +W ≤
Λv

μv
: ðA:7Þ

Hence, the proof is complete.

B. Possible Positive Root of Polynomial (7)
when R0 > 1

For an example, substitute parameter values as in Figure 4(b)
and βh = 0:0015 to polynomial GðΩ, IÞ in (19), we have

G Ið Þ = −2:3 × 10−17I6 − 1:2 × 10−14I5

+ 8:3 × 10−13I4 − 4:5 × 10−12I3

+ 3:9 × 10−12I2 − 4:3 × 10−11I + 9:01 × 10−11,
ðB:1Þ

which is the case number 22. Solve GðIÞ = 0 with respect to I,
and then, we have 3 positive roots of I, i.e., 1.91, 6.23, and
53.6.

C. Possible Positive Root of Polynomial (7)
when R0 < 1

For an example, substituting parameter values as in Figure 4
(a) and βh = 0:0002 to polynomial GðΩ, IÞ in (19), we have

G Ið Þ = −2:3 × 10−17I6 − 9:3 × 10−15I5 − 1:9 × 10−13I4

− 7:4 × 10−12I3 − 1:4 × 10−10I2 − 1:4 × 10−9I
− 2:7 × 10−8,

ðC:1Þ

which is the case number 64. Solve GðIÞ = 0 with respect
to I, and then, we have no positive roots.

D. Expression of A

A =A1 +A2, ðD:1Þ

where

A1 = −m12 ημh + δ u1 + ηð Þ 1 − pð Þ + ηpκð Þ2 μ3h + δ 1 − pð Þ + pκ + ηα + ξ + u1 + γ1ð Þμ2h ⋯
�

+ ηα + αu1 + ξ + γ1ð Þ 1 − pð Þδ + pκ ηα + ξ + γ1 + u1ð Þ + γ1 ξ + η + u1ð Þ + ξ ηα + u1ð Þð Þμh ⋯
+ ξ + η + u1ð Þγ1 + ξα η + u1ð Þð Þ 1 − pð Þδ + κ ξ + η + u1ð Þγ1 + ξηαð Þp + γ1ξu1,

A2 = −
1

Λvαβvμhδ 1 − pð Þ γ1 + μhð ÞΛhμv 1 − pð Þδ + pκ + μhð Þ βvΛvαμ
2
h

γ1 + μhð Þ2u21Λ2
h μh + ξð Þμv

2m2m3ð Þ
 "

+ 2 δ 1 − pð Þ + pκ + μhð Þ δ η + u1ð Þ 1 − pð Þ + η pκ + μhð Þð ÞβvΛvαμ
2
h

u21Λ
2
hμv γ1 + μhð Þ ⋯ + 2 δ η + u1ð Þ 1 − pð Þ + η κp + μhð Þð ÞβvΛvαμ

2
h

γ1 + μhð Þu1nμvΛ2
h

⋯

+ 2 δ η + u1ð Þ 1 − pð Þ + η κp + μhð Þð Þ δγ1 η + u1ð Þ 1 − pð Þ + κpγ1 η + u1ð Þκpμhu1 + ηγ1μhð ÞβvΛvαμ
2
h

γ1 + μhð Þ2u21 μh + ξð ÞμvΛ2
h

⋯

+ 2 δ η + u1ð Þ 1 − pð Þ + η κp + μhð Þð Þ αaβvμh + u2Λhð Þ 1 − pð Þ η + u1ð Þδ + η pκ + μhð Þð ÞΛvβvαμh
γ1 + μhð Þ2u21aΛ2

hμ
2
v

⋯

+ 2 δ η + u1ð Þ 1 − pð Þ + η κp + μhð Þð ÞΛvαβvμhu2 δ 1 − pð Þ η + u1ð Þ + η pκ + μhð Þð Þ
γ1 + μhð Þ2u21Λhμ

2
va

⋯ + 2 δ η + u1ð Þ 1 − pð Þ + η κp + μhð Þð ÞβvΛvα
2μ2h

γ1 + μhð Þu1μvΛ2
h

!#
,

ðD:2Þ
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with

m1 =
1

δu21Λ
2
hμ

2
v 1 − pð Þ u1 + η + μhð Þ γ1 + μhð Þ2 μh + ξð Þ ,

m2 = μ3h + 1 − pð Þδ + pκ + ξ + η + γ1 + u1ð Þμ2h ⋯ ξ + η + γ1 + u1ð Þ 1 − pð Þδð
+ κ ξ + η + γ1 + u1ð Þp + ξ + η + u1ð Þγ + ξ η + u1ð ÞÞμh
+⋯ 1 − pð Þ ξ + η + u1ð Þγ1 + ξ η + u1ð Þð Þδ
+ κ ξ + η + u1ð Þγ1 + ηξð Þp + γ1ξu1,

m3 = δ η + u1ð Þ 1 − pð Þ + ηκp + ημhð Þ: ðD:3Þ

Since A1 and A2 are negative, then we have A < 0.
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