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Abstract: Four pentasaccharide resin glycosides, acutacoside F–I (1–4), were isolated from the
aerial parts of Argyreia acuta. These compounds were characterized as a group of macrolactones of
operculinic acid A, and their lactonization site of 11S-hydroxyhexadecanoic acid was esterified at
the second saccharide moiety (Rhamnose) at C-2. The absolute configuration of the aglycone was S.
Their structures were elucidated by established spectroscopic and chemical methods.
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1. Introduction

Resin glycosides, found mostly in plants of the morning glory family (Convolvulaceae), whose
structures include fatty acid aglycone and oligosaccharide groups, were partially esterified with
different fatty acids. Hundreds of resin glycosides have been isolated from different genera, including
Ipomoea [1], Merremia [2], and Pharbitis [3], some of which have potential pharmacological activities,
such as phytogrowth-inhibition [4], antifungal [5], cytotoxicity [6], and antibacterial [7], effects on the
central nervous system [8], as well as multi-drug efflux pumps blocking effects [7,9–11].

Argyreia acuta Lour. (Convolvlaceae) is a climbing shrub, known as twining vine. It is
widely distributed in Guangdong and Guangxi province in China, and is used as folk medicine
for dispelling wind; eliminating dampness; relieving cough; reducing sputum; stopping bleeding
and promoting tissue regeneration; relaxing and activating the tendons; and removing toxicity to
eliminate carbuncles. Saponins, steroids, fatty acids [12], flavonoids, courmains, cardiac glycosides and
phenolics [13], have been found in this species. Our previous studies reported that five resin glycosides,
acutacoside A–E, were obtained from the plant, and some of which showed potential inhibition
against α-glucosidase. [14,15]. As a part of our ongoing chemical studies on the resin glycosides from
Convolvlaceae, four new partially acylated pentasaccharide resin glycosides, designated as acutacoside
F–H, were isolated from A. acuta. These new compounds, macrolactones of operculinic acid A, were
partially esterified with different fatty acids. The lactonization site of the agylcone, jalpinolic acid,
was attached to the second saccharide moiety (Rhamnose) at C-2. Their structures were elucidated on
the basis of extensive spectroscopic data interpretation and chemical degradation.
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2. Results and Discussion

Compounds 1–4 were separated from the dried aerial parts of A. acuta with several
chromatograph methods.

Acutacoside F (1), obtained as a white amorphous powder, was found to have the molecular
formula C72H116O26 on the basis of HRTOFMS (positive mode [M + Na]+ peak at m/z 1419.7766,
calcd. for C72H116O26Na, 1419.7653). The UV spectrum of compound 1 revealed an absorption band
at 278 (0.67) nm. Its IR spectrum displayed absorptions of hydroxyl (3429 cm−1), alkyl (2929 cm−1,
2859 cm−1), carbonyl (1730 cm−1), and aromatic (1684 cm−1). Compound 1 was alkaline hydrolyzed
and detected after methylation by GC-MS; three organic acids and operculinic acid A (5) [14] were
afforded. Subsequent acidic hydrolysis of the glycosidic acid liberated fucose, glucose and rhamnose,
which were identified as D-fucose, L-rhamnose and D-glucose by comparison with those of authentic
samples by the GC-MS method. The organic layer obtained from alkaline hydrolysis of 1 was
methylated and identified by GC-MS analysis. The 2-Methylbutyric acid methyl ester (tR 4.39 min) m/z
[M + H]+ 117 (5), 101 (23), 88 (96), 57 (100), 41 (55), 29 (45), 27 (19); trans-cinnamic acid methyl ester
(tR 13.29 min) m/z [M]+ 162 (40), 131 (100), 103 (66), 77 (32); and n-dodecanoic acid methyl ester
(tR 15.17 min) m/z [M]+ 200 (1), 172 (1), 168 (10), 157 (15), 143(18), 129 (7), 87 (64), 74 (100), 55 (25),
43 (20), 41 (18) were identified. The 2-methylbutyric acid was proven to have an S configuration [16].
The 1H-NMR spectrum of 1 revealed the presence of one benzene ring δH 7.30–7.36 (5H, m);
one trans-olefinic bond δH 6.66 (1H, d, J = 16.0) and 7.83 (1H, d, J = 16.0); and five sugar units in the
molecule [17,18]. The 13C-NMR spectrum of compound 1 showed five anomeric carbon signals at
δC 104.3, 98.5, 99.2, 100.2 and 105.2. These chemical shifts were different from acutacoside A and
acutacoside B but the same as the core of operculinic acid A; according to the data summary [19]
of the resin glycosides, one of the three organic acid groups was esterificated at Rha’-C-2. Five
anomeric hydrogen chemical shifts were obtained at δH 4.78 (1H, d, J = 7.0 Hz), 5.63 (1H, br s),
5.80 (1H, br s), 6.58 (1H, br s) and 5.01 (1H, d, J = 7.8 Hz) by the HSQC spectrum. Then each
monosaccharide unit was established by TOCSY experiments, and the correlative carbons [20]
were assigned by HSQC spectrum data. The correlation sites of monosaccharides in the glycosidic
acid were known [14], which were between H-1 of Rha and C-2 of Fuc; H-1 of Rha’ and C-4 of
Rha; H-1 of Rha” and C-4 of Rha’; H-1 of Glc’ and C-3 of Rha’; and H-1 of Fuc and C-11 of the
11-hydroxyhexadecanoyl moiety (aglycone), see Figure S1. The organic acid groups and lactonization
sits were also assigned by HMBC spectrum data. The organic acid groups’ correlations were
at H-2 of Rha” to C-1 of can; H-4 of Rha” to C-1 of Mba; and H-2 of Rha’ to C-1 of Dodeca;
and the lactonization site was at C-2 of Rha. Analysis of the TOCSY, HSQC, and HMBC spectrum
of compound 1 allowed for the complete assignment of the 1H- and 13C-NMR spectral data
(Table 1). Consequently, the structure of compound 1 was determined to be (S)-jalapinolic acid
11-O-β-D-glucopyranosyl-(1→3)-O-[2-O-trans-cinnamoyl-4-O-(S)-2-methylbutyryl-α-l-rhamnopyranosyl-
(1→4)]-O-[2-O-n-dodecanoyl]-α-L-rhamnopyranosyl-(1→4)-O-α-L-rhamnopyranosyl-(1→2)-O-β-D-
fucopyranoside, intramolecular 1,2′ ′-ester (Figure 1).
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Table 1. NMR data for compounds 1–4 in pyridine-d5.

Position
1 2 3 4

13C 1H 13C 1H 13C 1H 13C 1H

Fuc-1 104.6 4.78 d (7.0) 104.4 4.73 d (7.5) 104.6 4.72 d (7.2) 104.0 4.72 d (7.5)
2 80.2 4.19 dd (7.0, 9.5) 79.7 4.15 dd (7.5, 9.5) 80.2 4.17 dd (7.2, 9.4) 79.7 4.16 dd (7.5, 9.5)
3 73.6 4.15 dd (9.5, 3.0) 73.2 4.03 * 73.7 4.14 dd (9.4, 3.0) 72.8 4.04 *
4 73.0 3.98 d (3.0) 72.1 3.90 * 73.2 3.96 d (3.0) 72.7 3.90 *
5 70.8 3.77 br q (6.5) 71.1 3.73 br q (6.5) 71.1 3.74 br q (6.6) 70.6 3.73 br q (6.5)
6 17.4 1.52 d (6.0) 16.7 1.48 d (6.5) 17.7 1.50 d (6.0) 16.7 1.49 d (6.5)

Rha-1 98.6 5.53 br s 98.3 5.50 br s 98.8 5.51 br s 98.3 5.52 br s
2 73.4 5.95 br s 73.2 5.92 br s 73.7 5.93 br s 73.2 5.93 br s
3 73.2 5.03 dd (3.0, 9.0) 68.7 5.02 dd (3.0, 9.0) 69.3 5.03 dd (3.3, 9.3) 68.7 5.01 dd (3.0, 9.0)
4 82.0 4.19 * 82.0 4.16 dd (9.0, 9.0) 82.5 4.18 * 82.1 4.16 dd (9.0, 9.0)
5 69.2 4.48 * 68.3 4.47 dd (9.0, 5.0) 68.5 4.37 * 68.3 4.47 dd (9.0, 5.0)
6 19.0 1.58 d (5.4) 18.9 1.63 d (5.0) 19.5 1.63 d (5.4) 18.9 1.63 d (5.0)

Rha′-1 99.3 5.80 br s 100.1 5.82 br s 100.6 5.84 br s 100.1 5.82 br s
2 73.2 6.32 br s 73.4 6.31 br s 73.9 6.33 br s 73.4 6.30 br s
3 79.1 4.79 * 78.8 4.78 * 79.3 4.79 dd (2.9, 9.2) 78.7 4.78 *
4 79.9 4.36 * 79.6 4.35 * 80.1 4.36 dd (9.2, 9.2) 79.7 4.35 *
5 69.0 4.52 * 68.0 4.50 * 68.4 4.50 dd (9.2, 6.5) 67.7 4.50 *
6 19.1 1.63 d (6.0) 19.1 1.64 d (6.5) 19.4 1.65 d (6.0) 18.8 1.64 d (6.5)

Rha”-1 100.3 6.58 br s 103.2 6.27 br s 103.7 6.27 br s 103.2 6.26 br s
2 70.8 6.37 br s 69.1 5.25 br s 69.5 5.26 br s 69.1 5.26 br s
3 68.2 6.00 dd (3.1, 10.0) 71.5 6.00 dd (3.0, 10.0) 72.0 6.01 dd (3.1, 10.0) 71.5 6.00 dd (3.0, 10.0)
4 73.0 4.09 * 71.3 6.08 dd (10.0, 10.0) 71.8 6.09 dd (10.0, 10.0) 71.3 6.08 dd (10.0, 10.0)
5 68.4 4.37 * 69.7 4.44 * 70.2 4.48 dd (10.0, 6.2) 69.7 4.47 *
6 18.4 1.77 d (6.3) 17.7 1.42 d (6.5) 18.2 1.43 d (6.2) 17.7 1.42 d (6.5)

Glc-1 105.6 5.01 d (7.8) 105.0 5.07 d (7.5) 105.8 5.09 d (7.8) 105.3 5.08 d (7.5)
2 75.0 3.90 dd (7.8, 9.0) 74.9 3.97 * 75.5 3.95 dd (7.8, 9.0) 74.9 3.97 *
3 78.3 4.07 * 78.2 4.10 * 78.7 4.08 dd * 78.2 4.10 *
4 71.5 3.92 * 68.3 3.93 * 68.7 3.94 * 68.0 3.93 *
5 78.2 3.85 * 77.9 3.83 m 78.4 3.81 * 77.5 3.85 m

6 63.2
4.05 * 62.5 4.09 *

63.2
4.09 *

62.5
4.09 *

4.32 * 4.40 * 4.43 * 4.40 *



Molecules 2017, 22, 440 4 of 8

Table 1. Cont.

Position
1 2 3 4

13C 1H 13C 1H 13C 1H 13C 1H

Ag-1 173.5 173.3 173.4 173.3

2 34.7
2.29 m

34.3
2.27 m

33.5
2.23 m

34.3
2.29 m

2.46 m 2.44 m 2.40 m 2.45 m
11 82.4 3.86 m 82.2 3.80 m 82.7 3.83 m 82.2 3.82 m
16 14.7 0.86 * 14.1 0.83 t (7.0) 14.6 0.86 * 14.1 0.84 t (7.0)

Cna-1 166.5 166.3 166.8 166.3
2 118.9 6.66 d (16.0) 118.5 6.58 d (16.0) 118.9 6.66 d (16.0) 118.3 6.58 d (16.0)
3 146.7 7.83 d (16.0) 145.2 7.85 d (16.0) 145.7 7.86 d (16.0) 145.3 7.85 d (16.0)
1′ 134.7 135.3 135.0 135.3

2′ and 6′ 128.5 7.36 m 128.6 7.43 m 128.8 7.42 m 128.4 7.43 m
3′ and 5′ 129.3 7.30 m 128.9 7.32 m 129.6 7.33 m 129.1 7.33 m

4′ 130.3 7.30 m 130.8 7.32 m 131.1 7.33 m 131.0 7.33 m
Dodeca-1 174.0 173.4 173.4

2 34.4 2.32 * 34.2 2.48 m 34.9 2.34 *
12 14.7 0.87 * 14.1 0.83 t (7.0) 14.6 0.86 *

Mba-1 176.6
2 41.7 2.46 m

2-CH3 16.7 1.23 d (7.0)
4 12.1 0.86 t (7.0)

Bu-1 175.8 7.32 m 174.8 175.8
2 34.0 2.30 m 34.8 2.38 t (7.8) 34.0 2.26 m
4 14.1 0.83 t (7.0) 14.6 0.86 * 14.1 0.84 t (7.0)

Tetradeca-1 173.4
2 34.2 2.53
14 14.1 0.84 t (7.0)

Chemical shifts (δ) are in ppm relative to TMS. The spin coupling (J) is given in parentheses (Hz). Chemical shifts marked with an asterisk (*) indicate overlapped signals. Spin-coupled
patterns are designated as follows: br s = broad singlet, d = doublet, t = triplet, m = multiplet, q = quartet. Abbreviations: Glc = glucose; Rha = rhamnose; Ag = 11-hydroxyhexadecanoyl;
Mba = 2S-methylbutanoyl; Cna = trans-cinnamoyl; Bu = butyryl; Dodeca = n-dodecanoyl; Tetradeca = n-tetradecanoyl.
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Acutacoside G–I (2–4) afforded white, amorphous powders, and gave quasi-molecular ions
at m/z 1405.7697 [M + Na]+, 1405.7466 [M + Na]+ and 1433.8016 [M + Na]+ in HRTOFMS, which
suggested the molecular formulas C71H114O26 (calcd for C71H114O26Na: 1405.7496), C71H114O26

(calcd. for C71H114O26Na: 1405.7496) and C73H118O26 (calcd. for C73H118O26Na:1433.7809). The IR
spectrum gave absorption bands of hydroxyl groups at 3451, 3424 and, 3453 cm−1 and carbonyl
groups at 1733, 1728 and 1734 cm−1. Analysis of the TCOSY, HSQC, and HMBC spectra of
compounds 2–4 allowed for the complete assignment of the 1H- and 13C-NMR spectral data (Table 1).
Independent alkaline hydrolysis of 2–4 afforded a mixture of organic acids and a glycosidic acid,
respectively. A butyric acid group and a trans-olefinic acid group were found in 2–4; a n-dodecanoic
acid was found in 2 and 3; and a n-tetradecanoic acid methyl ester (tR 18.81 min) was found in
4 by GC-MS experiments. The glycosidic acid is operculinic acid A, which was obtained from
alkaline hydrolysis of 2–4. The key HMBC correlations confirmed the esterification positions
of the acyl residues in the oligosaccharide core, thus a trans-cinnamoyl group was located at
C-3 of Rha” in 2–4; a butyl group was located at C-2 of Rha’ in 2 and 4, and located at C-4 of
Rha” in 3; a n-dodecanoyl group was located at C-4 of Rha” in 2; and a n-tetradecanoyl group
was located at C-4 of Rha" in 4. The lactonization position of the aglycone was C-2 of Rha for
2–4. The structure of compound 2 was determined to be (S)-jalapinolic acid 11-O-β-D-glucopyranosyl-
(1→3)-O-[3-O-trans-cinnamoyl-4-O-(S)-n-dodecanoyl-α-l-rhamnopyranosyl-(1→4)]-O-[2-O-butyryl]-
α-L-rhamnopyranosyl-(1→4)-O-α-L-rhamnopyranosyl-(1→2)-O-β-D-fu-copyranoside, intramolecular
1,2”-ester; and the structure of compound 3 was suggested as (S)-jalapinolic acid 11-O-β-
D-glucopyranosyl-(1→3)-O-[3-O-trans-cinn-amoyl-4-O-butyryl-α-l-rhamnopyranosyl-(1→4)]-O-[2-O-
n- dodecanoyl]-α-L-rhamn-opyranos-yl-(1→4)-O-α-L-rhamnopyranosyl-(1→2)-O-β-D-fucopyranoside,
intramolecular 1,2”-ester; and the structure of compound 4 was suggested as (S)-jalapinolic acid
11-O-β-D-glucopyranosyl-(1→3)-O-[3-O-trans-cinnamoyl-4-O-n-tetradecanoyl-α-l-rhamnopyranosyl-
(1→4)]-O-[2-O-butyryl]-α-L-rhamnopyranosyl-(1→4)-O-α-L-rhamnopyranosyl-(1→2)-O-β-D-
fucopyranoside, intramolecular 1,2”-ester (Figure 1).

3. Experimental Section

3.1. General

IR spectra were taken from KBr disks on a Shimadzu FTIR spectrophotometer (Shimadzu
Corp., Kyoto, Japan). The UV spectrum were recorded on a Shimadzu UV-2550 spectrophotometer
(Shimadzu Corp., Kyoto, Japan). All of the 1H- and 13C-NMR spectra were recorded on an INOVA
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500 spectrometer (Varian, Palo Alto, CA, USA), using tetramethylsilane (TMS) as an internal standard.
Two-dimensional NMR spectra include total correlation spectroscopy (TOCSY), heteronuclear single
quantum coherence (HSQC), and heteronuclear multiple-bond coherence (HMBC). The chemical shifts
in the NMR spectrum were recorded as δ values. HR-TOF-MS experiments were performed on an AB
SCIEX Triple TOF 5600 plus MS spectrometer (Applied Biosystems, Foster, CA, USA). Preparative
high-performance liquid chromatography (PHPLC) was performed using a Shimadzu LC-6AD series
instrument (Shimadzu Corp., Kyoto, Japan) equipped with a UV detector at 280 nm and a Shim-Park
RP-C18 column (20 × 200 mm i.d.). GC-MS experiments were performed on a TRACE GC ULTRA
DSQ II instrument (Thermo Electron, Beverly, MA, USA). Optical rotations were measured with an
Anton Paar-MCP600 polarimeter in MeOH solution. The centrifugation was applied with D05 (Hunan
Hexi Instrument Co., Ltd., Changsha, China). Adsorbents for column chromatography were silica
gel (200–300 µm, Qingdao Marine Chemical Co., Ltd., Qingdao, China), Sephadex LH-20 (75–150 µm,
Pharmacia, Uppsala, Sweden), all of the chemicals and solvents used in the current study were of
analytical grade.

3.2. Plant Material

The aerial parts of Argyreia acuta were collected in April 2014 from the Yulin city of the Guangxi
Province, China. The plant material was identified by Associate Professor H.-Y. Ma in Guangdong
Pharmaceutical University (Guangzhou, China). A voucher specimen (No. 201404) was deposited at
School of Traditional Chinese Medicinal Chemistry, Guangdong Pharmaceutical University.

3.3. Extraction and Isolation

Dried aerial parts (30 kg) of A. acuta were cut to small pieces and were extracted two times with
95% EtOH under reflux for 2 h and concentrated under vacuum, which was then extracted three
times sequentially with equal volumes of petroleum ether and chloroform extract (150 g), which was
separated into five fractions (A–E) by normal-phase silica gel column chromatography (CC) (1200 g
of silica gel, 200–300 mesh) using a stepwise gradient elution of CHCl3/MeOH (from 100:0 to 0:100,
v/v). Fracton B (7.3 g) was separated into three subfractions (B-1, B-2 and B-3) on a normal-phase silica
gel column using a stepwise gradient elution of petroleum ether/acetone (from 100:0 to 50:50, v/v).
Fraction B-1 was then passed through a Sephadex LH-20 column with a MeOH eluent to yield three
subfractions (B-1-1, B-1-2 and B-1-3); the B-1-1 subfraction was purified by a reverse-phase HPLC
system (10 mL/min, 280 nm), eluted with MeOH/H2O (99:1, v/v) to afford 1 (9.5 mg, tR 35.37 min);
2 (8 mg, tR 42.61 min); 3 (6 mg, tR 32.05 min) and 4 (10 mg, tR 43.75 min).

3.4. Spectral Data

Acutacoside F (1): White amorphous powder, [α]25
D −24.4◦ (c 0.09, MeOH); UV (MeOH) λmax (log ε) 278

(0.67) nm; IR (KBr) νmax: 3429, 2929, 2859, 1730, 1684, 1141 and 1061 cm−1, 1H-NMR and 13C-NMR
data, see Table 1; HR-TOF-MS m/z 1419.7766 [M + Na]+ (calcd. for C72H116O26Na, 1419.7653).

Acutacoside G (2): White amorphous powder; [α]25
D −18.0◦ (c 0.25, MeOH); UV (MeOH) λmax (log ε)

217 (0.74), 279 (1.02) nm; IR (KBr) νmax: 3451, 2930, 1733 and 1064 cm−1, 1H-NMR and 13C-NMR data,
see Table 1; HR-TOF-MS m/z 1405.7697 [M + Na]+ (calcd. for C71H114O26Na, 1405.7496).

Acutacoside H (3): White amorphous powder; [α]25
D −23.7◦ (c 0.19, MeOH); UV (MeOH) λmax (log ε)

217 (0.37), 280 (0.42) nm; IR (KBr) νmax: 3424, 2929, 1728 and 1067 cm−1, 1H-NMR and 13C-NMR data,
see Table 1; HR-TOF-MS m/z 1405.7466 [M + Na]+ (calcd. for C71H114O26Na, 1405.7496).

Acutacoside I (4): White amorphous powder; [α]25
D −11.3◦ (c 0.15, MeOH); UV (MeOH) λmax (log ε) 217

(0.62), 280 (0.87) nm; IR (KBr) νmax: 3453, 2930, 1734 and 1066 cm−1, 1H-NMR and 13C-NMR data, see
Table 1; HR-TOF-MS m/z 1433.8016 [M + Na]+ (calcd. for C73H118O26Na, 1433.7809).
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3.5. Hydrolysis

In order to identify the kinds of organic acid groups, sugar and the absolute configuration of
aglycone, compounds 1–4 were hydrolyzed with alkaline and acid. The procedures were performed as
described earlier [12].

4. Conclusions

In conclusion, investigation of the aerial parts of A. acuta afforded four new compounds.

Supplementary Materials: The following are available online, alongside Figures S1–S17.
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