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Iron deficiency is the most common micronutrient deficiency

globally and represents a major threat to public health

. Biofortification, the process of enhancing micronutrient

content and bioavailability in staple crops, represents an

exciting sustainable food-based strategy to combat and

prevent iron deficiency, particularly in resource-limited

settings. In this review, we examine the evidence to date of the

efficacy of iron-biofortified staple food crops on improving iron

status in at-risk populations, including rice, pearl millet, and

beans. Three randomized efficacy trials of iron biofortified

interventions were included in this analysis, conducted in the

Philippines, India, and Rwanda. Iron status (hemoglobin, serum

ferritin, soluble transferrin receptor (sTfR), C-reactive protein,

alpha-1 acid glycoprotein) was measured at enrollment,

midline, and endline in each trial. The primary outcomes

evaluated included hemoglobin, serum ferritin, sTfR, and total

body iron. A meta-analysis using random effects models was

conducted to examine the effects of interventions on

hematological outcomes, with the DerSimonian and Laird

method. In meta-analyses of data from the three trials, iron-

biofortified interventions significantly increased serum ferritin

concentrations and total body iron. Evidence to date from

randomized trials suggest that iron-biofortified crops are an

efficacious intervention to improve iron status. In particular,

findings from all three trials also indicate that the effects of

biofortified staple crops were highest among individuals who

were iron deficient at baseline, suggesting the greatest

potential to benefit. Assessment of functional outcomes and

consideration of other high-risk populations such as young

children, are warranted to elucidate the impact of iron-

biofortified interventions on human health.
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Introduction
Iron deficiency is the most common micronutrient defi-

ciency worldwide and disproportionately affects the poor-

est and most vulnerable populations in resource-limited

settings [1]. A substantial body of evidence supports the

relationships between iron deficiency and adverse health

outcomes, and even mild iron deficiency can lead to

deficits in cognitive function in children [2–5], and

reduced physical work capacity in adults [4,6].

Biofortification is the process of increasing the content

and bioavailablity of essential vitamins and minerals in

staple crops, through plant breeding or agronomic prac-

tices, to improve nutritional status [7]. With micronutrient

malnutrition, or hidden hunger, continuing to affect

nearly one-third of the world’s population, biofortification

is a promising and sustainable agriculture-based strategy

to target iron deficiency, particularly in high-risk popula-

tions in resource-limited settings [8�,9,10�,11].

In this review, we summarize the findings from the three

randomized efficacy trials that have been published to

date on the effects of iron-biofortified staple food crops on

iron status in at-risk populations. We also present findings

from a meta-analysis combining the results from these

three randomized trials on the efficacy of iron-biofortified

staple food crops on improving iron status, to inform

public health programs incorporating biofortification as

a strategy to target iron deficiency in diverse population

groups.

Randomized efficacy trials
To date, three randomized efficacy trials have been

conducted to determine the effects of iron-biofortified

staple food crops on iron status, including rice, beans, and

pearl millet. Characteristics of these studies are presented

in Table 1.

The efficacy of consuming iron-biofortified rice (Oryza
sativa) was examined during a 9-month double-blind

randomized feeding trial in 192 religious sisters living

in nine convents in metro-Manila, Philippines [12]. Par-

ticipants were randomized to consume either iron-biofor-

tified rice (3.21 mg/kg Fe) or a local variety of conven-

tional rice (0.57 mg/kg Fe). The iron-biofortified rice

contributed 1.79 mg of iron per day to the diet, compared

to 0.37 mg of iron per day from the control rice. At

baseline, 28% of women were anemic (hemoglobin

<120 g/L) and 34% were iron deficient (serum ferritin

<15.0 mg/L). In analyses among non-anemic women,
www.sciencedirect.com
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Table 1

Characteristics of randomized efficacy feeding trials of iron-biofortified crops

Setting Manila, Philippines [12] Maharashtra, India [13] Huye, Rwanda [14]

Population Adult female (18–45 years)

religious sisters in nine convents

Male and female adolescents

(12–16 years) living in three hostels

Adult female (18–27 years)

university students

Study Design Randomized efficacy trial Randomized efficacy trial Randomized efficacy trial

Randomization By individual By individual By individual

Sample size n = 192 n = 246 n = 195

Intervention Iron-biofortified rice Iron-biofortified pearl millet as Bhakri Iron-biofortified beans

High iron: n = 92

Control: n = 100

High iron: n = 122

Control: n = 124

High iron: n = 94

Control: n = 101

Length of feeding 9 months 6 months 4.5 months
iron-biofortified rice increased serum ferritin concentra-

tions (P = 0.02) and total body iron (P = 0.05), compared

to conventional rice. Findings represented a 20% increase

after controlling for baseline values and daily rice con-

sumption. Overall, the greatest improvements in iron

status were observed in non-anemic women who had

the lowest baseline iron status and in individuals who

consumed the most iron from rice.

The second randomized efficacy trial was conducted to

determine the effects of consuming iron-biofortified pearl

millet (Pennisetum glaucum) on iron status, compared to

conventional pearl millet, among 246 children (12–

16 years) for six months in rural Maharashtra, India

[13��]. The iron-biofortified pearl millet contained

87 mg per kilogram of iron, compared to 30 mg per

kilogram of iron in the conventional pearl millet. All

children received 200–300 g of (dry) pearl millet per

day in the form of Bhakri flatbread during lunch and

dinner. Bhakri was prepared two times per day by seven

cooks who used only one of two types of pearl millet flour

and followed a protocol to standardize bhakri diameter,

weight, and consistency. Iron status, including hemoglo-

bin, serum ferritin (SF), soluble transferrin receptor

(sTfR), and total body iron (TBI), inflammatory biomark-

ers C-reactive protein (CRP) and alpha-1 acid glycopro-

tein (AGP), and anthropometric indices were evaluated at

enrollment, at four months, and at six months. At base-

line, 43% of children were iron deficient (serum ferritin

<15.0 mg/L) and 28% were anemic (hemoglobin <120 g/

L). Iron-biofortified pearl millet significantly increased

serum ferritin concentrations and total body iron after

four months compared to the conventional pearl millet.

Among children who were iron deficient at baseline, those

who received iron-biofortified pearl millet were 1.64 times

more likely to become iron replete by six months com-

pared to those received the control pearl millet (RR: 1.64,

95% CI: 1.07, 2.49, P = 0.02). The effects of iron-biofor-

tified pearl millet on iron status were greater among

children who were iron deficient at baseline than children

who were not iron deficient at baseline, suggesting a

greater potential to benefit. This trial was registered at

clinicaltrials.gov as NCT02152150.
www.sciencedirect.com 
The third randomized controlled trial was conducted to

determine the efficacy of iron-biofortified beans (Phaseo-
lus vulgaris) on improving iron status in women of repro-

ductive age in Huye, Rwanda [14��]. A total of 195 female

university students (aged 18–27 years) who were iron

insufficient (serum ferritin <20.0 mg/L) at baseline were

randomly assigned to receive either iron-biofortified

beans containing 86 mg of iron per kilogram, or standard

unfortified beans, containing 50 mg of iron per kilogram,

two times per day for 128 days. Random serial sampling

was used to collect blood during each of the eight middle

weeks of the randomized feeding trial. A total of 86% of

participants were iron deficient (serum ferritin <15.0 mg/
L) and 36% were anemic (hemoglobin <120 g/L) at

baseline. The intervention group receiving the iron-bio-

fortified beans consumed 14.5 mg of iron per day, whereas

the control group receiving conventional beans consumed

8.6 mg of iron per day (mean � SD, 14.5 � 1.6 vs.

8.6 � 0.8, P < 0.05). The intervention group receiving

iron-biofortified beans had significantly greater increases

in hemoglobin (3.8 g/L), serum ferritin (1.10 mg/L), and

total body iron (0.5 mg/kg), compared to the group con-

suming conventional beans after 128 days of follow-up.

This trial was registered at clinicaltrials.gov as

NCT01594359.

In summary, the three randomized efficacy trials pub-

lished to date demonstrate that biofortification is an

efficacious strategy to improve iron status in diverse

settings including the Philippines, India, and Rwanda,

and in at-risk populations such as women of reproductive

age and school-age adolescent children. Findings also

indicate that the effects of biofortified staple crops were

highest among individuals who were iron deficient at

baseline and among participants who consumed the great-

est amount of the biofortified crop, suggesting the great-

est potential to benefit.

Meta-analyses
Based on the demonstrated efficacy of biofortification

as a strategy to improve iron status in the three above-

described randomized trials, we conducted a meta-

analysis to synthesize evidence for the efficacy of
Current Opinion in Biotechnology 2017, 44:138–145
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Table 2

Primary outcomes

Continuous Categorical

Hemoglobin, g/L <120 g/L

Serum ferritin, mg/L <15.0 mg/L

sTfR, mg/L >8.3 mg/L

Total body iron, mg/kga <0.0 mg/kg

a Total body iron (TBI) = �[log10 (sTfR (mg/L) � 1000/SF (mg/L) �
2.8229]/0.1207 (Cook’s equation) [15].
iron-biofortified interventions on iron status. In the anal-

yses below, we used a meta-analyses approach to estimate a

summary measure for the potential benefit that may be

observed with different iron-biofortified crops in different

age groups to inform future trials and effectiveness studies.

The primary outcomes evaluated are presented in

Table 2. The primary outcomes evaluated included

hemoglobin, serum ferritin, and sTfR concentrations,

total body iron, anemia, and iron deficiency. Anemia

was defined as hemoglobin less than 120 g/L, in accor-

dance with World Health Organization criteria. Total

body iron (TBI) was estimated with the approach origi-

nally proposed by Cook et al. [15]. Iron deficiency was

defined as serum ferritin less than 15.0 mg/L for the

primary analyses and as TBI less than 0 mg/kg or sTfR

greater than 8.3 mg/L in additional analyses.

Meta-analyses were conducted using random effects

models (DerSimonian and Laird method), and the
Figure 1.1
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Effect of iron-biofortified crop interventions on changes in serum ferritin con
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weights used are reported in the figures. Models were

tested for heterogeneity and analyses were conducted

using SAS software, version 9.4 (SAS Institute, Inc., Cary,

NC, USA).

Iron deficiency and anemia were common in these

populations: at baseline, 31% of participants were anemic

(Hb <120 g/L) and 54% were iron deficient (serum ferri-

tin <15.0 mg/L) in the overall sample. The prevalence of

iron deficiency ranged from 34% in the Philippines to

86% in Rwanda (43% in India), and the prevalence of

anemia ranged from 28% in the studies in the Philippines

and India to 36% in Rwanda.

In meta-analyses of data from the three trials, iron-

biofortified crop interventions significantly increased

serum ferritin concentrations (Figure 1.1), compared to

conventional crops with a mean increase of 1.10 mg/L of

serum ferritin (ln (SF): 0.10 mg/L; 95% CI: 0.02, 0.18;

P = 0.02). Similarly, iron-biofortified crop interventions

significantly increased total body iron (Figure 2.1) during

the feeding trials, with a mean increase of 0.43 mg/kg

(95% CI: 0.10, 0.76; P = 0.01). However, there were no

statistically significant effects of iron-biofortified inter-

ventions on hemoglobin (Figure 3.1; P = 0.25) or sTfR

(data not shown; P > 0.05) concentrations, compared to

conventional crops.

In analyses of data from the three trials among individuals

who were iron deficient (serum ferritin <15.0 mg/L) at

baseline, iron-biofortified crop interventions significantly
25.26% 0.09 [–0.08 , 0.25]

0.05 [–0.11 , 0.22]

0.12 [0.01 , 0.24]

0.10 [0.02 , 0.18]

23.79%

50.96%

100.00%

rence

0.20
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Figure 1.2

Philippines 9.55%

16.09%

74.37%

100.00%

Mean Difference

–0.40 0.00 0.40

0.13 [–0.13 , 0.39]
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0.13 [0.03 , 0.24]
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India

Rwanda

Summary Estimate
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Effect of iron-biofortified crop interventions on changes in serum ferritin concentrations, among individuals who were iron deficient (SF <15.0 mg/L)

at baseline (mg/L; natural logarithmically transformed).
increased serum ferritin concentrations (Figure 1.2), com-

pared to conventional crops (ln(SF): 0.13; 95% CI: 0.03,

0.24; P = 0.01). In analyses among individuals who had

low total body iron (<0 mg/kg) at baseline, there were no
Figure 2.1
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Rwanda

Summary Estimate

Mean Dif

–0.50 0.5

Effect of iron-biofortified crop interventions on changes in total body iron (m
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significant increases in TBI in individuals consuming the

iron-biofortified crops compared to conventional crops

(Figure 2.2; P = 0.10). In analyses among individuals who

were anemic (Hb <120 g/L) at baseline, iron-biofortified
ference

0 1.50

18.12% 0.42 [–0.35 , 1.19]

26.85% 0.28 [–0.36 , 0.91]

55.03% 0.50 [0.06 , 0.94]

100.00% 0.43 [0.10 , 0.76]
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g/kg).
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Figure 2.2
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Philippines
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7.86% 0.34 [–1.53 , 2.22]

13.99% 0.07 [–1.33 , 1.47]

78.15% 0.51 [–0.08 , 1.11]

100.00% 0.44 [–0.09 , 0.96]

–2.00 0.00 2.00

Effect of iron-biofortified crop interventions on changes in total body iron (mg/kg) among individuals who were iron deficient (TBI <0 mg/kg) at

baseline.
crop interventions significantly increased hemoglobin con-

centrations (Figure 3.2) during the feeding trials, compared

to conventional crops, with a mean increase of 2.45 g/L

(P = 0.04).
Figure 3.1
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In analyses of data among individuals who were not

anemic at baseline (Hb �120 g/L) iron-biofortified crops

significantly increased both serum ferritin concentrations

and total body iron, with a mean increase of 1.15 mg/L
Current Opinion in Biotechnology

erence
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Figure 3.2
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Effect of iron-biofortified crop interventions on changes in hemoglobin concentrations (g/L) among individuals who were anemic (Hb <120 g/L) at

baseline.
of serum ferritin (ln(SF): 0.14; 95% CI: 0.04, 0.24;

P < 0.01) (Figure 4.1) and 0.52 mg/kg of total body iron

(0.52 mg/kg; 95% CI: 0.12, 0.92; P = 0.01) (Figure 4.2),

respectively.
Figure 4.1
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India
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Summary Estimate

–0.10 0.2

Mean Diff

Effect of iron-biofortified crop interventions on changes in serum ferritin con

baseline (mg/L; natural logarithmically transformed).

www.sciencedirect.com 
Findings from these meta-analyses provide insights into

the efficacy of biofortification as a strategy to improve iron

status, and may inform future trials and effectiveness

studies of the potential benefit of iron-biofortified crops
0.21 [0.03 , 0.39]29.28%

0.11 [–0.09 , 0.31]24.07%

0.11 [–0.04 , 0.25]46.65%

0.14 [0.04 , 0.24]100.00%

0 0.40

erence
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Figure 4.2
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0.43 [–0.11 , 0.98]52.68%
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–0.50 0.50 1.50
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Effect of iron-biofortified crop interventions on changes in total body iron (mg/kg) among individuals who were not anemic (Hb �120 g/L) at

baseline.
on iron status in different age groups. In particular,

findings suggest that the benefits of biofortified stable

crops were greatest among individuals who were iron

deficient at baseline. Meta-analyses among non-anemic

individuals also indicated that non-anemic individuals

had a greater benefit in terms of iron status (serum ferritin

and TBI), consistent with evidence that absorbed iron is

preferentially allocated to iron stores after hemoglobin

concentrations are repleted.

This analysis has several limitations which warrant cau-

tion in the interpretation of findings. For example, the

diversity of the populations and the interventions in the

combined randomized trials represents a potential limi-

tation. Other limitations include only consideration of

baseline and endline data for these analyses, as a different

sampling scheme was used across the three different

randomized trials. This precludes our ability to detect

changes between baseline and midline, as observed in the

India pearl millet trial, and more sensitive time-to-event

analyses within the duration of the follow-up period

across randomized trials.

Conclusions and future directions
Findings to date from randomized trials suggest that iron-

biofortified crops are an efficacious intervention to

improve iron status, including serum ferritin and total

body iron. In particular, findings from all three trials

suggest that the benefits of biofortified stable crops were
Current Opinion in Biotechnology 2017, 44:138–145 
greatest among individuals who were iron deficient at

baseline and among participants who consumed the great-

est amount of the biofortified crop. Assessment of func-

tional outcomes and consideration of other high-risk

populations such as young children, are warranted along

with effectiveness studies to scale-up the use of iron-

biofortified staple food crops to improve human health.
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