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pounds were characterized by 1 H-, 13 C-, 19 F- and 195 Pt-NMR 
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Subject Chemistry 

Specific subject area Inorganic, organic and medicinal chemistry 

Type of data General protocol for synthesis with structure, NMR and MS data; in 

supplementary data –NMR and mass spectra. 

How data were acquired For the tetrazolato-bridged dinuclear platinum(II) complexes, the 1 H-, 
13 C-, 19 F-and 195 Pt-NMR spectra were recorded on ( 1 H 400 MHz, Agilent, Santa 

Clara, CA, US) or a Varian NMR System ( 1 H 600 MHz, Agilent) at 293 K. All 1 H- 

and 13 C-NMR spectra were referenced to TSP [sodium 

3-trimethylsilyl-propionate-2,2,3,3-d(4), δ = 0], 195 Pt chemical shifts to K 2 PtCl 4 
( δ = −1614), and 19 F chemical shifts to CF 3 COOH ( δ = −76.55). MS was 

performed by using a micrOTOF-Q quadrupole–time-of-flight mass 

spectrometer (Bruker, Billerica, MA, US) in the positive ion mode. 

For the 5-R-1 H -tetrazole derivatives, 1 H- and 13 C-NMR spectra were measured 

in CDCl 3 with tetramethylsilane (TMS) as the internal standard on a Varian 

Mercury-300 or Agilent 400-MR-DD2 spectrometers. 19 F-NMR spectra were 

recorded at 282 MHz (Varian Mercury-300) or 376 MHz (Agilent 

400-MR-DD2), and the chemical shifts were measured relative to CF 3 CO 2 H as 

an external standard. High-resolution mass spectrometry spectra were 

determined by using a JMS-700(2) mass spectrometer (JEOL Ltd., Tokyo, Japan) 

operating in positive-ion mode. Melting points were determined using a 

Yanagimoto micromelting apparatus. 

Data format Raw and analyzed. 

Parameters for data collection Data were collected for characterisation purposes. 

Description of data collection Data were collected via the raw output files from the respective hardware. 1 H 

and 13 C or 19 F NMR spectra were recorded as fid files. 

Data source location Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 

Suzuka, Japan. 34.852990, 136.586422 

Department of Pharmaceutical Organic Chemistry, Osaka University of 

Pharmaceutical Sciences, Takatsuki, Japan. 34.864006, 135.574493 

Data accessibility With the article 

Related research article S. Komeda, H. Yoneyama, M. Uemura, T. Tsuchiya, M. Hoshiyama, T. Sakazaki, K. 

Hiramoto, S. Harusawa 

Synthesis and structure–activity relationships of tetrazolato-bridged dinuclear 

platinum(II) complexes: A small modification at tetrazole C5 markedly 

influences the in vivo antitumor efficacy 

Journal of Inorganic Biochemistry 

https://doi.org/10.1016/j.jinorgbio.2018.12.009 

alue of the Data 

• The data contain the synthetic procedure for preparation of the anticancer tetrazolato-

bridged dinuclear platinum(II) complexes [{ cis -Pt(NH 3 ) 2 } 2 ( μ-OH)( μ-5-R-tetrazolato-

N 2, N 3)] n + ( n = 1 or 2) and their bridging ligands, 5-R-1 H -tetrazoles. 

• The data provide valuable guidance for researchers working on inorganic, organic and medic-

inal chemistry, and on drug-discovery research. 

• The data serve as characterization of 15 original tetrazolato-bridged complexes and 5-R-1 H

tetrazoles. 

• Some tetrazolato-bridged complexes may enter clinical trial as promising anticancer drug

candidates. 

. Data Description 

With a unique DNA binding mode [1–9] and a different cellular uptake pathway [ 5 , 10 ]

han currently available platinum-based drugs, tetrazolato-bridged dinuclear platinum(II) com-

lexes (tetrazolato-bridged complexes) with the general formula [{ cis -Pt(NH 3 ) 2 } 2 ( μ-OH)( μ-5-R-

https://doi.org/10.1016/j.jinorgbio.2018.12.009
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Fig. 1. Structures of the series of tetrazolato-bridged dinuclear Pt(II) complexes, among which 15 new tetrazolato- 

bridged complexes were newly synthesized. 

Fig. 2. Structures of newly synthesized 5-substituted 1 H -tetrazoles (5-R-1 H -tetrazoles) 

 

 

 

 

 

 

 

 

 

 

 

tetrazolato- N 2, N 3)] 2 + ( Fig. 1 ) are currently being developed as next-generation platinum-based

drugs, [11–14] and many are reported to be effective against cancers with intrinsic [5] or ac-

quired [ 3 , 10 ] resistance to platinum-based drugs. Complexes 1 –15 were newly synthesized, along

with seven 5-R-1 H -tetrazole derivatives ( SH ; Fig. 2 ), which were synthesized by the reactions of

sodium azide and inactive nitriles in DMF in a microwave reactor to provide efficient transfor-

mation into tetrazoles. These newly prepared compounds were characterized by using 1 H-, 13 C-,
19 F- or 195 Pt-NMR spectroscopy and mass spectrometry. 

2. Experimental Design, Materials and Methods 

2.1. General information 

2.1.1. Synthesis of tetrazolato-bridged dinuclear Pt(II) complexes 

K 2 PtCl 4 was obtained from Tanaka Kikinzoku Kogyo K.K. (Tokyo, Japan), and 5-

(trifluoromethyl)-1 H -tetrazole was purchased from Fluorochem Ltd (Hadfield, UK). The tetrazole

derivatives [13] (ethyl 1 H -tetrazole-5-carboxylate, propyl 1 H -tetrazole-5-aceate, 5-(cyclohexyl)-

1 H -tetrazole and 5-(adamantyl)-1 H -tetrazole) were prepared according to published methods.

Other tetrazole derivatives ( SH20, SH22, SH23, SH33, SH34, SH40 and SH41 ) were newly pre-
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ared and synthetic procedures are described below. The 1 H-NMR spectra of 1, 2, 4 - 12, 14 and

5 , 13 C- and 

195 Pt-NMR spectra of 1 –15 , and 

19 F-NMR spectra of 13 –15 were recorded on ( 1 H

00 MHz, Agilent, Santa Clara, CA, US) or a Varian NMR System ( 1 H 600 MHz, Agilent) at 293

 and are shown in Fig. S1–S4. All 1 H- and 

13 C-NMR spectra were referenced to TSP [sodium 3-

rimethylsilyl-propionate-2,2,3,3-d(4), δ = 0], 195 Pt chemical shifts to K 2 PtCl 4 ( δ = −1614), and
9 F chemical shifts to CF 3 COOH ( δ = −76.55). For 1 –15, MS was performed by using a micrOTOF-

 quadrupole–time-of-flight mass spectrometer (Bruker, Billerica, MA, US) in the positive ion

ode, and the mass spectra are shown in Fig. S5. 

.1.2. Synthesis of 5-R-1H-Tetrazoles 

Microwave-assisted reactions were performed in a Milestone MultiSYNTH multimodal reac-

or with thermal control. Reactions with air- and moisture-sensitive compounds were carried out

nder an Ar atmosphere. Anhydrous solvents were purchased from WAKO Chemical Co. Solvents

ere removed in a rotary evaporator under reduced pressure. Fuji Silysia FL-60D silica gel was

sed for flash column chromatography. TLC was performed on pre-coated TLC plates (WAKO

ilica gel 70 F 254 ). 
1 H- and 

13 C-NMR spectra were measured in CDCl 3 with tetramethylsilane

TMS) as the internal standard on a Varian Mercury-300 or Agilent 400-MR-DD2 spectrome-

ers. 19 F-NMR spectra were recorded at 282 MHz (Varian Mercury-300) or 376 MHz (Agilent

00-MR-DD2), and the chemical shifts were measured relative to CF 3 CO 2 H as an external stan-

ard. High-resolution mass spectrometry spectra were determined by using a JMS-700(2) mass

pectrometer (JEOL Ltd., Tokyo, Japan) operating in positive-ion mode. Melting points were de-

ermined using a Yanagimoto micromelting apparatus and were uncorrected. 

.2. General procedure 

.2.1. Synthesis of tetrazolato-bridged dinuclear Pt(II) complexes 

5-R-1 H -tetrazole (1.79 mmol) was dissolved in 5 mL MeOH and added to a solution of [ cis -

t(NH 3 ) 2 (μ-OH)] 2 (NO 3 ) 2 (1.0 g, 1.62 mmol) in 25 mL of water. The solution was stirred and

eated at 40 °C for 24 h in the dark and then filtered; the filtrate was evaporated to dryness

sing a centrifugal evaporator (CVE-30 0 0; Tokyo Rikakikai Co, Ltd). The resulting powder was

ollected on a glass filter, washed with 2-propanol and diethyl ether, and recrystallised from

ater (compound 1, 2, 4, 5 - 7, 11 ) or methanol ( 12, 13 ) using the centrifugal evaporator. For the

ynthesis of 3, a 1 M lithium hydroxide solution (300 μL) was added to a solution prepared by

issolving 0.20 g of compound 1 in 5 mL of distilled water, which was stirred for approximately

0 min at room temperature. The resulting white precipitate was filtered and washed with 2-

ropanol and diethyl ether, recovered by filtration, dried in a vacuum desiccator. For the synthe-

is of 9 or 10 , a 1 M lithium hydroxide solution (300 μL) was added to a solution prepared by

issolving 0.20 g of compound 4 or 8 in 5 mL of distilled water, and the resulting solution was

tirred for approximately 10 min at room temperature. The pH of the solution was adjusted to

 with 0.1 M aqueous nitric acid and then lyophilized. The resulting white powder was washed

ith 2-propanol and diethyl ether. The dried powder was re-dissolved, and the pH of the so-

ution was adjusted to 7 with 0.1 M aqueous nitric acid, and the solution was then evaporated

o dryness. This process was repeated three times to replace any remaining calboxylate ions (as

ounterions) with nitrate ions. The resulting white powder was washed with 2-propanol and di-

thyl ether. For the synthesis of 14 or 15 , a solution of 5-alkyl-1 H- tetrazole (1.79 mmol) in 15 mL

f MeOH was added to a solution of [ cis -Pt(NH 3 ) 2 (μ-OH)] 2 (NO 3 ) 2 (1.0 g, 1.62 mmol) in 30 mL

f water. The solution was stirred vigorously at 50 °C for 48 h in the dark and then lyophilized.

he resulting white powder was collected on a glass filter, washed with 2-propanol and diethyl

ther, and recrystallized from methanol. 
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[{cis-Pt(NH 3 ) 2 } 2 (μ-OH)(μ-ethyltetrazolato-5-carboxylate-N2,N3)](NO 3 ) 2 ( 1 ) 

Yield: 384 mg (32.0%). 1 H NMR (400 MHz, D 2 O, Fig. S1.1): δ = 1.42 (t, 3H, J = 7.4 Hz), 4.52

(q, 2H, J = 7.2 Hz). 13 C NMR (151 MHz, D 2 O, Fig. S2.1): δ = 16.1 (1C), 66.7 (1C), 159.2 (1C),

161.6 (1C). 195 Pt NMR (129 MHz, D 2 O, Fig. S4.1): δ = −2186. MS (ESI, Fig. S5.1) [M-H] + : 615.1

(M = [{ cis- Pt(NH 3 ) 2 } 2 (μ-OH)(μ-ethyl tetrazolato-5-carboxylate -N2,N3 )] 2 + ) 

[{cis-Pt(NH 3 ) 2 } 2 (μ-OH)(μ-propyltetrazolato-5-acetate-N2,N3)](NO 3 ) 2 ( 2 ) 

Yield: 212 mg (17.0%). 1 H NMR (400 MHz, D 2 O, Fig. S1.1): δ = 0.91 (t, 3H, J = 7.4 Hz), 1.67

(sx, 2H, J = 7.4 Hz), 4.12 (s, 2H), 4.16 (t, 2H, J = 7.4 Hz). 13 C NMR (151 MHz, D 2 O, Fig. S2.1):

δ = 12.4 (1C), 24.1 (1C), 33.6 (1C), 71.0 (1C), 161.8 (1C), 174.3 (1C). 195 Pt NMR (129 MHz, D 2 O,

Fig. S4.1): δ = −2179. MS (ESI, Fig. S5.1) [M-H] + : 643.1 (M = [{ cis- Pt(NH 3 ) 2 } 2 (μ-OH)(μ-propyl

tetrazolato - 5-acetate- N2,N3 )] 2 + ) 

[{cis-Pt(NH 3 ) 2 } 2 (μ-OH)(μ-tetrazolato-5-carboxylate-N2,N3)](NO 3 ) ( 3 ) 

Yield: 171 mg (89.0%). 13 C NMR (151 MHz, D 2 O, Fig. S2.1): δ = 166.6 (1C), 184.9 (1C).
195 Pt NMR (129 MHz, D 2 O, Fig. S4.1): δ = −2181. MS (ESI, Fig. S5.1) [M]: 587.0 (M = [{ cis-

Pt(NH 3 ) 2 } 2 (μ-OH)(μ-tetrazolato-5-carboxylate -N2,N3 )] + ) 

[{cis-Pt(NH 3 ) 2 } 2 (μ-OH)(μ-5-(acetoxy)methyltetrazolato-N2,N3](NO 3 ) 2 ( 4 ) 

Yield: 138 mg (11.3%). 1 H NMR (400 MHz, D 2 O, Fig. S1.2): δ = 2.15 (s, 3H), 5.40 (s, 2H).
13 C NMR (151 MHz, D 2 O, Fig. S2.2): δ = 23.0, 59.5, 163.4, 176.2. 195 Pt NMR (129 MHz, D 2 O,
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ig. S4.2): δ = −2181. MS (ESI, Fig. S5.1) [M-H] + : 615.1 (M = [{ cis- Pt(NH 3 ) 2 } 2 (μ-OH)(μ-5-

acetoxy)methyltetrazolato- N2,N3 ] 2 + ) 

{cis-Pt(NH 3 ) 2 } 2 (μ-OH)(μ-5-(propionyloxy)methyltetrazolato-N2,N3)](NO 3 ) 2 ( 5 )

Yield: 115 mg (9.6%). 1 H NMR (400 MHz, D 2 O, Fig. S1.2): δ = 1.11 (t, 3H, J = 7.6 Hz), 2.46 (2H,

), 5.41 (s, 2H, J = 7.6 Hz). 13 C NMR (151 MHz, D 2 O, Fig. S2.2): δ = 11.0, 29.9, 59.4, 163.5, 179.7.
95 Pt NMR (129 MHz, D 2 O, Fig. S4.2): δ = −2181. MS (ESI, Fig. S5.1) [M-H] + : 629.1 (M = [{ cis-

t(NH 3 ) 2 } 2 (μ-OH)(μ-5-(propionyloxy)methyl tetrazolato- N2,N3 )] 2 + ) 

{cis-Pt(NH 3 ) 2 } 2 (μ-OH)(μ-5-(butyryloxy)methyltetrazolato-N2,N3)](NO 3 ) 2 ( 6 )

Yield: 263 mg (21.5%). 1 H NMR (600 MHz, D 2 O, Fig. S1.2): δ = 0.91 (t, 3H, J = 7.2 Hz), 1.62 (sx,

H, J = 7.2 Hz), 2.43 (t, 2H, J = 7.2 Hz), 5.41 (2H, s). 13 C NMR (151 MHz, D 2 O, Fig. S2.2): δ = 15.6,

0.7, 38.3, 59.4, 163.5, 178.9. 195 Pt NMR (129 MHz, D 2 O, Fig. S4.2): δ = −2181. MS (ESI, Fig. S5.2)

M-H] + : 643.1 (M = [{ cis- Pt(NH 3 ) 2 } 2 (μ-OH)(μ-5-(butyryloxy)methyltetrazolato- N2,N3 )] 2 + ) 

{cis-Pt(NH 3 ) 2 } 2 (μ-OH)(μ-(propionyloxy)ethyltetrazolato-N2,N3)](NO 3 ) 2 ( 7 )

Yield: 403 mg (33.0%). 1 H NMR (400 MHz, D 2 O, Fig. S1.2): δ = 1.06 (t, 3H, J = 7.6 Hz), 2.36

q, 2H, J = 7.6 Hz), 3.28 (t, 2H, J = 6.4 Hz), 4.50 (t, 2H, J = 6.4 Hz). 13 C NMR (151 MHz, D 2 O, Fig.

2.2): δ = 12.6, 17.8, 35.3, 56.4, 160.5, 175.9. 195 Pt NMR (129 MHz, D 2 O, Fig. S4.2): δ = −2179.

S (ESI, Fig. S5.2) [M-H] + : 643.1 (M = [{ cis- Pt(NH 3 ) 2 } 2 (μ-OH)(μ-(propionyloxy)ethyltetrazolato-

2,N3 )] 2 + ) 
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[{cis-Pt(NH 3 ) 2 } 2 (μ-OH)(μ-5-(butyryloxy)ethyltetrazolato-N2,N3)](NO 3 ) 2 ( 8 ) 

Yield: 93 mg (6.6%). 1 H NMR (400 MHz, D 2 O, Fig. S1.3): δ = 0.86 (t, 3H, J = 7.2 Hz), 1.55 (sx,

2H, J = 7.2 Hz), 2.32 (t, 2H, J = 7.2 Hz), 3.29 (t, 2H, J = 6.4 Hz), 4.51 (t, 2H, J = 6.4 Hz). 13 C NMR

(151 MHz, D 2 O, Fig. S2.3): δ = 15.6, 20.8, 27.6, 38.5, 65.2, 165.4, 179.6. 195 Pt NMR (129 MHz,

D 2 O, Fig. S4.3): δ = −2179. MS (ESI, Fig. S5.2) [M-H] + : 657.1 (M = [{ cis- Pt(NH 3 ) 2 } 2 (μ-OH)(μ-5-

(butyryloxy)methyl tetrazolato- N2,N3 )] 2 + ) 

[{cis-Pt(NH 3 ) 2 } 2 (μ-OH)(μ-5-hydroxymethyltetrazolato-N2,N3)](NO 3 ) 2 ( 9 ) 

Yield: 28 mg (15.0%). 1 H NMR (400 MHz, D 2 O, Fig. S1.3): δ = 4.89 (s, 2H). 13 C NMR (151

MHz, D 2 O, Fig. S2.3): δ = 57.4, 166.9. 195 Pt NMR (129 MHz, D 2 O, Fig. S4.3): δ = −2181. MS (ESI,

Fig. S5.2) [M-H] + : 573.1 (M = [{ cis- Pt(NH 3 ) 2 } 2 (μ-OH)(μ-5-hydroxymethyltetrazolato- N2,N3 )] 2 + ) 

[{cis-Pt(NH 3 ) 2 } 2 (μ-OH)(μ-5-hydroxyethyltetrazolato-N2,N3)](NO 3 ) 2 ( 10 ) 

Yield: 30 mg (18.0%). 1 H NMR (400 MHz, D 2 O, Fig. S1.3): δ = 3.13 (t, 3H, J = 6.8 Hz), 3.97 (t,

2H, J = 6.8 Hz). 13 C NMR (151 MHz, D 2 O, Fig. S2.3): δ = 30.7, 62.1, 166.2. 195 Pt NMR (129 MHz,

D 2 O, Fig. S4.3): δ = −2178. MS (ESI, Fig. S5.2) [M-H] + : 587.1 (M = [{ cis- Pt(NH 3 ) 2 } 2 (μ-OH)(μ-5-

hydroxyethyltetrazolato- N2,N3 )] 2 + ) 

[{cis-Pt(NH 3 ) 2 } 2 (μ-OH)(μ-5-mono-fluoromethyltetrazolato-N2,N3)](NO 3 ) 2 ( 11 ) 

Yield: 320 mg (28.2%). 1 H NMR (400 MHz, D 2 O, Fig. S1.3): δ = 5.67 (d, 2H, 2 J HF = 47 Hz). 13 C

NMR (151 MHz, D 2 O, Fig. S2.3): δ = 77.6 (d, 1 J CF = 164 Hz), 163.2. 19 F NMR (564 MHz, D 2 O, Fig.
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3): δ = −215.1 (t, 1F, 2 J FH = 48 Hz). 195 Pt NMR (129 MHz, D 2 O, Fig. S4.3): δ = −2183. MS (ESI,

ig. S5.3) [M-H] + : 575.0 (M = [{ cis- Pt(NH 3 ) 2 } 2 (μ-OH)(μ-5-monofluoromethyltrazolato- N2,N3 )] 2 + )

{cis-Pt(NH 3 ) 2 } 2 (μ-OH)(μ-5-difluoromethyltetrazolato-N2,N3)](NO 3 ) 2 ( 12 )

Yield: 262 mg (22.5%). 1 H NMR (400 MHz, D 2 O, Fig. S1.4): δ = 7.15 (t, 1H, 2 J HF = 53 Hz).
3 C NMR (151 MHz, D 2 O, Fig. S2.4): δ = 110.8 (t, 1 J CF = 238 Hz), 161.7 (d, 2 J CF = 28.1 Hz).
9 F NMR (564 MHz, D 2 O, Fig. S3): δ = −116.8 (d, 2F, 2 J FH = 54 Hz). 195 Pt NMR (129 MHz,

 2 O, Fig. S4.4): δ = −2184. MS (ESI, Fig. S5.3) [M-H] + : 593.0 (M = [{ cis- Pt(NH 3 ) 2 } 2 (μ-OH)(μ-

-difluoromethyltrazolato- N2,N3 )] 2 + ) 

{cis-Pt(NH 3 ) 2 } 2 (μ-OH)(μ-5-trifluoromethyl tetrazolato-N2,N3)](NO 3 ) 2 ( 13 )

Yield: 259 mg (21.7%). 13 C NMR (151 MHz, D 2 O, Fig. S2.4): δ = 121.5 (q, 1 J CF = 269 Hz), 158.8

d, 2 J CF = 42 Hz). 19 F NMR (564 MHz, D 2 O, Fig. S3): δ = 62.7 (s, 3F). 195 Pt NMR (129 MHz,

 2 O, Fig. S4.4): δ = −2184. MS (ESI, Fig. S5.3) [M-H] + : 611.0 (M = [{ cis- Pt(NH 3 ) 2 } 2 (μ-OH)(μ-5-

rifluoromethyltrazolato- N2,N3 )] 2 + ) 

{cis-Pt(NH 3 ) 2 } 2 (μ-OH)(μ-5-cyclohexyltetrazolato-N2,N3)](NO 3 ) 2 ( 14 )

Yield: 430 mg (35.3%). 1 H NMR (600 MHz, CD 3 OD, Fig. S1.4): δ = 1.29 (m, 1H), 1.41 (m, 2H),

.55 (m, 2H), 1.72 (m, 1H), 1.80 (m, 2H), 1.98 (m, 2H), 2.98 (1H, m). 13 C NMR (CD 3 OD, Fig. S2.4):

= 28.2, 34.1, 37.7, 172.6. 195 Pt NMR (CD 3 OD, Fig. S4.4): δ = −2172. MS (ESI, Fig. S5.3) [M-H] + :
25.1 (M = [{ cis- Pt(NH 3 ) 2 } 2 (μ-OH)(μ-5-cyclohexyltetrazolato- N2,N3 )] 2 + ) 
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[{cis-Pt(NH 3 ) 2 } 2 (μ-OH)(μ-5-(adamantan-1-yl)tetrazolato-N2,N3)](NO 3 ) 2 ( 15 ) 

Yield: 364 mg (28.0%). 1 H NMR (600 MHz, CD 3 OD, Fig. S1.4): δ = 1.76-1.84 (m, 6H), 2.01

(m, 6H), 2.07 (m, 3H). 13 C NMR (CD 3 OD, Fig. S2.4): δ = 30.7, 36.2, 38.7, 43.7, 175.8. 195 Pt NMR

(D 2 O, Fig. S4.4): δ = −2175. MS (ESI, Fig. S5.3) [M-H] + : 677.1 (M = [{ cis- Pt(NH 3 ) 2 } 2 (μ-OH)(μ-5-

(adamantan-1-yl)tetrazolato- N2,N3 )] 2 + ) 

2.2.2. Synthesis of 1H-Tetrazole derivatives 

NaN 3 (975 mg, 15 mmol) and Et 3 N 

. HCl (2065 mg, 15 mmol) were added to a solution of

the nitrile (5 mmol) in PhNO 2 (10 mL). The reaction mixture was exposed to MW irradiation

at 100 °C for 2 h. The reaction mixture treated with EtOAc (100 mL), and extracted with 4%

aq. NaOH (50 mL × 3). The combined aqueous layers were washed with EtOAc, acidified with

6 N HCl, and extracted with EtOAc (100 mL × 2). The combined organic layers were dried over

Na 2 SO 4 , filtrated, and evaporated to afford a crude residue that was purified by using column

chromatography on silica gel with EtOAc [15] . For the synthesis of SH40 , to a solution of 2-

fluoroacetonitrile (885 mg, 15 mmol) in DMF (10 mL) NaN 3 (1950 mg, 30 mmol) and Et 3 N ·HCl

(4120 mg, 30 mmol) were added. After stirring for 3 h at 80 °C, the reaction mixture was dis-

solved in EtOAc (150 mL). The organic layer was washed with 2 N HCl (50 mL × 4) and then

brine, and then dried over Na 2 SO 4 , filtered, and concentrated to afford a crude residue that was

recrystallized from hexane to give white needles (m.p. 79–80 °C). For the synthesis of SH41 ,to

a solution of 2,2-difluoroacetonitrile (1155 mg, 15 mmol) in DMF (10 mL) NaN 3 (1950 mg, 30

mmol) and Et 3 N ·HCl (4120 mg, 30 mmol) were added. After stirring for 20 h at r.t., the reac-

tion mixture was dissolved in EtOAc (150 mL). The organic layer was washed with 2 N HCl (50

mL × 4), brine, and then dried over Na 2 SO 4 , filtered, and concentrated to afford a crude residue

that was recrystallized from hexane to give prisms of compound (m.p. 98–99 °C). 

(1H-tetrazol-5-yl)methyl acetate ( SH23 , 5-[(acetoxy)methyl]-1H-tetrazole) 

Yield: 450 mg (63%). 1 H NMR (300 MHz, CDCl 3 ): δ = 2.17 (s, 3H), 5.55 (s, 2H). 13 C NMR (75

MHz, CDCl 3 ): δ = 20.5, 55.0, 153.1, 171.3. 

(1H-tetrazol-5-yl)methyl propionate ( SH22 , 5-[(propionyloxy)methyl]-1H-tetrazole) 

Yield: 385 mg (49%). 1 H NMR (400 MHz, CDCl 3 ): δ = 1.12 (t, 3H, J = 7.6 Hz), 2.44 (q, 2H.

J = 7.6 Hz), 5.59 (s, 2H). 13 C-NMR (100 MHz, CDCl 3 ): δ = 8.6, 27.0, 54.8, 153.2, 174.5. HRMS (EI):

m / z [M 

+ ] calcd for C 5 H 9 N 4 O 2 : 157.0725; found: 157.0730. 
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1H-tetrazol-5-yl)methyl butyrate ( SH34 , 5-[(butyryloxy)methyl]-1H-tetrazole) 

Yield: 600 mg (70%). 1 H NMR (400 MHz, CDCl 3 ): δ = 0.91 (t, 3H, J = 7.6 Hz), 1.64 (sx, 2H,

 = 7.6 Hz), 2.39 (t, 2H, J = 7.6 Hz), 5.60 (s, 2H). 13 C NMR (100 MHz, CDCl 3 ): δ = 13.4, 18.0, 35.4,

4.7, 153.2, 173.6. HRMS (EI): m / z [M 

+ ] calcd for C 6 H 11 N 4 O 2 : 171.0882; found: 171.0879. 

-(1H-tetrazol-5-yl)ethyl propionate ( SH20 , 5-[(propionyloxy)ethyl]-1H-tetrazole) 

Yield: 404 mg (47%). 1 H NMR (400 MHz, CDCl 3 ): δ = 1.09 (t, 3H, J = 7.2 Hz), 2.33 (q, 2H,

 = 7.2 Hz), 3.49 (t, 2H, J = 6.4 Hz), 4.58 (t, 2H, J = 6.4 Hz). 13 C NMR (75 MHz, CD 3 OD):

= 9.2, 24.4, 28.0, 62.2, 155.4, 175.6. HRMS (EI): m / z [M 

+ ] calcd for C 6 H 11 N 4 O 2 : 171.0882;

ound: 171.0881. 

-(1H-tetrazol-5-yl)ethyl butyrate ( SH33 , 5-[(butyryloxy)ethyl]-1H-tetrazole) 

Yield: 482 mg (52%). 1 H NMR (400 MHz, CDCl 3 ): δ = 0.88 (t, 3H, J = 7.2 Hz), 1.57 (sx, 2H,

 = 7.2 Hz), 2.28 (t, 2H, J = 7.2 Hz), 3.49 (t, 2H, J = 6.4 Hz), 4.58 (t, 2H, J = 6.4 Hz). 13 C NMR

100 MHz, CDCl 3 ): δ = 13.5, 18.2, 23.8, 35.9, 60.9, 154.2, 174.0. HRMS (EI): m / z [M 

+ ] calcd for

 7 H 13 N 4 O 2 : 185.1039; found: 185.1037. 

-(Fluoromethyl)-1H-tetrazole ( SH40 ) 

Yield: 966 mg (63%). 1 H NMR (300 MHz, CD 3 OD): δ = 5.75 (d, 2H, J = 46.8 Hz). 13 C NMR

75 MHz, CD 3 OD): δ = 75.0 (d, J = 165.0 Hz), 155.0. 19 F NMR (282 MHz, CD 3 OD): δ = −221.7 (t,

 = 46.8 Hz). HRMS (EI): m / z [M 

+ ] calcd for C 2 H 3 FN 4 : 102.0342; found: 102.0339. 

-(Difluoromethyl)-1H-tetrazole ( SH41 ) 

Yield: 1419 mg (79%). 1 H NMR (400 MHz, CD 3 OD): δ = 7.24 (t, 1H, J = 52.8 Hz). 13 C-NMR

100 MHz, CD 3 OD): δ = 109.5 (t, J = 236.0 Hz), 156.6. 19 F NMR (376 MHz, CD 3 OD): δ = −117.2

d, J = 52.8 Hz). HRMS (EI): m / z [M 

+ ] calcd for C 2 H 2 F 2 N 4 : 120.0248; found: 120.0243. 
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