38566 measured reflections

 $R_{\rm int} = 0.027$

319 restraints

 $\Delta \rho_{\rm max} = 0.48 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

3462 independent reflections

3186 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 3-hydroxy-13-methyl-4'-phenyl-2'-(3.4.5-trimethoxyphenyl)-6,7,8,9,11,12,13,14,15,16-decahydrospiro[cyclopenta[a]phenanthrene-16,3'pyrrolidine]-5'-carboxylate

E. Theboral Sugi Kamala,^a R. Murugan,^b S. Nirmala,^a L. Sudha^{c*} and S. Sriman Narayanan^b

^aDepartment of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, India, ^bDepartment of Analytical Chemistry, University of Madras, Guindy Campus, Chennai 600025, India, and ^cDepartment of Physics, SRM University, Ramapuram Campus, Chennai 600 089, India Correspondence e-mail: sudharose18@gmail.com

Received 5 October 2008; accepted 23 October 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.047; wR factor = 0.132; data-to-parameter ratio = 8.1.

In the title compound, $C_{39}H_{45}NO_7$, the pyrrolidine ring is connected to an estrone group, a trimethoxy benzene and a phenyl ring. The pyrrolidine ring exhibits a twist conformation and the other five-membered ring an envelope conformation. Molecules are linked by N-H···O hydrogen bonds, C- $H \cdots \pi$ interactions and $C - H \cdots O$ hydrogen bonds.

Related literature

For general background, see: García-Peláez et al. (2004); Holland and Roy (1995); Obniska et al. (2002); Suzuki et al. (1994). For bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983).

H₂C CH₃ TH NH OCH2CH3

Experimental

Crystal data

C ₃₉ H ₄₅ NO ₇	$V = 3696.82 (14) \text{ Å}^3$
$M_r = 639.76$	Z = 4
Monoclinic, C2	Mo $K\alpha$ radiation
a = 26.1776 (6) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 10.3379 (2) Å	T = 293 (2) K
c = 13.6631 (3) Å	$0.30 \times 0.30 \times 0.25 \text{ mm}$
$\beta = 91.1250 \ (10)^{\circ}$	

Data collection

Bruker Kappa APEXII diffractometer Absorption correction: multi-scan (Blessing, 1995) $T_{\min} = 0.977, T_{\max} = 0.981$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.132$ S = 1.113462 reflections 425 parameters

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	D-H	···A
$O2 - H2A \cdots N1^{i}$ $C39 - H39A \cdots O3^{ii}$ $C29 - H29A \cdots Cg1^{iii}$	0.82 0.96 0.96	1.99 2.56 3.00	2.782 (4) 3.378 (4) 3.820 (4)	163 144 144	
Symmetry codes: $-x + \frac{1}{2}, y + \frac{1}{2}, -z + 1.$	(i) $x + \frac{1}{2}, y$	$y - \frac{1}{2}, z;$ (ii)	$-x + \frac{1}{2}, y - \frac{1}{2}, \cdot$	-z + 2;	(iii)

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

ETSK thanks Professor M. N. Ponnuswamy and Professor D. Velmurugan, Department of Crystallography and Biophysics, University of Madras, India, for their guidance and valuable suggestions. ETSK also thanks SRM Management for their support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2805).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

- Bruker (2004). SMART, SAINT and XPREP. Bruker AXS Inc., Madison,-Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

García-Peláez, B., Ferrer-Lorente, R., Gómez-Ollés, S., Fernández-López, J. A., Remesar, X. & Alemany, M. (2004). J. Dairy Sci. 87, 2331-2336.

Holland, M. B. & Roy, D. (1995). Carcinogenesis, 16, 1955-1961.

Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.

Obniska, J., Zeic, A. & Zagorska, A. (2002). Acta Pol. Pharm. **59**, 209–213. Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122. Spek, A. L. (2003). J. Appl. Cryst. **36**, 7–13. Suzuki, T., Nagasu Kawai, H., Fujiwara, K. & Tsuji, T. (1994). *Tetrahedron Lett*, **44**, 6095-6098.

Acta Cryst. (2008). E64, o2219-o2220 [doi:10.1107/S1600536808034582]

Ethyl 3-hydroxy-13-methyl-4'-phenyl-2'-(3,4,5-trimethoxyphenyl)-6,7,8,9,11,12,13,14,15,16-decahydrospiro[cyclopenta[*a*]phenanthrene-16,3'-pyrrolidine]-5'-carboxylate

E. T. S. Kamala, R. Murugan, S. Nirmala, L. Sudha and S. S. Narayanan

Comment

Estrone is a powerful growth-inducing hormone that is present in milk, mainly in the form of fatty acid esters, at concentrations that promote growth in experimental animals (García-Peláez *et al.*, 2004). Estrone treatment increased proliferation in mammary epithelial cells. In addition, estrone exposure altered cell cycle kinetics (Holland & Roy, 1995). Derivatives of pyrrolidine are found to have anticonvulsant properties (Obniska *et al.*,2002). Optically active pyrrolidines have been used as intermediates in controlled asymmetric synthesis (Suzuki *et al.*,1994).

Fig 1 shows the *ORTEP* plot of compound (I). Bond lengths and angles are comparable with other reported values (Allen *et al.*, 1987).

In the molecule the five membered ring N1/C2/C1/C4/C3 exhibits *twist* conformation with assymetry parameters (Nardelli,1983) ΔC_s (C4) =15.6 (3), ΔC_2 (C2) =2.4 (3), and with the puckering parameters (Cremer and Pople,1975) q2 = 0.359 (3) Å, and $\varphi 2 = 125.5$ (5)°. The ring C4/C5/C6/C19/C20 exhibits *envelope* conformation with envelope on C19 with the assymetry parameters ΔC_s (C19) = 2.4 (3) and with the puckering parameters q2 = 0.422 (3)Å and $\varphi 2 = 110.8$ (4)°

The six membered ring C9/C10/C15/C16/C17/C18 is perpendicular to the pyrrolidine ring C1/C2/N1/C3/C4 making a dihedral angle of 89.44 (11)° and planar with the five membered ring C4/C5/C6/C19/C20 with a dihedral angle of 2.20 (11).

In the crystal packing, atoms O2 and N1 are involved in intermolecular N—H···O interactions and atom O3 is involved in intermolecular C - H···O interactions. The molecules pack into distinct layers facilitated by C - H··· π interactions.

Experimental

1.0 mole of (*Z*)-16-arylidene estrone (0.78 g) and 1.0 mol of ethyl {[(1E)-(3,4,5-trimethoxyphenyl) methylene] amino} acetate (1.0 g) was stirred in 20 ml of acetonitrile contain AgOAc (0.01 g) and triethylamine (2 ml). The reaction was allowed to stir overnight and the reaction was monitored by TLC. After the completion of reaction, the crude white solid was filtered and then purified by preparative HPLC using water and acetonitrile as eluent. The final pure compound was recrystallized using 2:8 ratio of acetone: hexane.

Refinement

In the absence of anomalous scatterers Friedel pairs have been merged. H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C–H = 0.93 or 0.96 Å and $U_{iso}(H)=1.2-1.5U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids.

Fig. 2. The packing of the molecules viewed down *c* axis. Hydrogen bonds are indicated by dashed lines and C—H··· π interactions are also shown.

Ethyl 3-hydroxy-13-methyl-4'-phenyl-2'-(3,4,5-trimethoxyphenyl)- 6,7,8,9,11,12,13,14,15,16-decahydrospiro[cyclopenta[a]phenanthrene- 16,3'-pyrrolidine]-5'-carboxylate

Crystal data	
C ₃₉ H ₄₅ NO ₇	$F_{000} = 1368$
$M_r = 639.76$	$D_{\rm x} = 1.149 {\rm ~Mg~m}^{-3}$
Monoclinic, C2	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: C 2y	Cell parameters from 38566 reflections
<i>a</i> = 26.1776 (6) Å	$\theta = 1.5 - 30.7^{\circ}$
<i>b</i> = 10.3379 (2) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 13.6631 (3) Å	T = 293 (2) K
$\beta = 91.1250 \ (10)^{\circ}$	Prism, colourless
$V = 3696.82 (14) \text{ Å}^3$	$0.30\times0.30\times0.25~mm$
Z = 4	

Data collection

Bruker KappaAPEXII diffractometer	3462 independent reflections
Radiation source: fine-focus sealed tube	3186 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.027$
T = 293(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ω and ϕ scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (Blessing, 1995)	$h = -31 \rightarrow 31$
$T_{\min} = 0.977, \ T_{\max} = 0.981$	$k = -12 \rightarrow 12$
38566 measured reflections	$l = -16 \rightarrow 15$

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H-atom parameters constrained
$wR(F^2) = 0.132$	$w = 1/[\sigma^2(F_o^2) + (0.082P)^2 + 1.3827P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.11	$(\Delta/\sigma)_{\rm max} < 0.001$
3462 reflections	$\Delta \rho_{\text{max}} = 0.48 \text{ e } \text{\AA}^{-3}$
425 parameters	$\Delta \rho_{\rm min} = -0.24 \ {\rm e} \ {\rm \AA}^{-3}$
319 restraints	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.0112 (9)

Special details

methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
C1	0.15174 (10)	0.2439 (3)	0.8431 (2)	0.0417 (6)
H1	0.1599	0.2242	0.9117	0.050*
C2	0.11604 (10)	0.3642 (3)	0.8400 (2)	0.0460 (7)
H2	0.0836	0.3374	0.8093	0.055*
C3	0.17981 (9)	0.3995 (3)	0.7236 (2)	0.0407 (6)
Н3	0.1638	0.3548	0.6676	0.049*
C4	0.20146 (9)	0.2927 (3)	0.79377 (18)	0.0367 (6)
C5	0.23722 (10)	0.3500 (3)	0.87263 (18)	0.0380 (6)
C6	0.28956 (10)	0.2904 (3)	0.86410 (19)	0.0400 (6)
C7	0.33546 (11)	0.3760 (4)	0.8831 (2)	0.0569 (8)
H7A	0.3366	0.4019	0.9514	0.068*
H7B	0.3327	0.4535	0.8433	0.068*
C8	0.38453 (11)	0.3024 (4)	0.8583 (2)	0.0591 (9)
H8A	0.4135	0.3602	0.8659	0.071*
H8B	0.3892	0.2317	0.9044	0.071*
C9	0.38342 (10)	0.2479 (3)	0.7540 (2)	0.0459 (7)
Н9	0.3827	0.3227	0.7099	0.055*
C10	0.43051 (10)	0.1699 (3)	0.7281 (2)	0.0491 (7)
C11	0.47581 (11)	0.1772 (4)	0.7813 (2)	0.0525 (7)
H11	0.4775	0.2290	0.8369	0.063*

F 1	•	1.	1					1.	1 .		18%	1
Fractional	atomic	coordinates	and	isotronic i	nr	oauwalont	isotronic	dign	lacomont	naramotors	(A=)
1 i actionat	aiomic	coorainaics	unu	ison opic		cgnivaicni	isonopic	aispi	accment	parameters	11	

C12	0.51874 (11)	0.1095 (4)	0.7539 (3)	0.0581 (8)
H12	0.5489	0.1171	0.7905	0.070*
C13	0.51690 (11)	0.0307 (4)	0.6726 (2)	0.0568 (8)
C14	0.47166 (13)	0.0182 (5)	0.6216 (3)	0.0717 (11)
H14	0.4699	-0.0366	0.5676	0.086*
C15	0.42859 (12)	0.0850 (5)	0.6485 (2)	0.0669 (10)
C16	0.37936 (15)	0.0587 (8)	0.5916 (3)	0.118 (3)
H16A	0.3851	0.0757	0.5228	0.141*
H16B	0.3711	-0.0323	0.5979	0.141*
C17	0.33571 (11)	0.1342 (4)	0.6219 (2)	0.0580 (9)
H17A	0.3049	0.0859	0.6061	0.070*
H17B	0.3346	0.2135	0.5839	0.070*
C18	0.33529 (10)	0.1692 (3)	0.7300 (2)	0.0398 (6)
H18	0.3360	0.0896	0.7688	0.048*
C19	0.28882 (9)	0.2477 (3)	0.75683 (18)	0.0354 (5)
H19	0.2904	0.3273	0.7180	0.042*
C20	0.23490 (9)	0.1939 (3)	0.7407 (2)	0.0391 (6)
H20A	0.2317	0.1084	0.7692	0.047*
H20B	0.2260	0.1896	0.6715	0.047*
C21	0.21851 (9)	0.4925 (3)	0.68252 (19)	0.0395 (6)
C22	0.23850 (11)	0.5940 (3)	0.7375 (2)	0.0428 (6)
H22	0.2258	0.6113	0.7993	0.051*
C23	0.27723 (12)	0.6695 (3)	0.7007 (2)	0.0466 (7)
C24	0.29617 (11)	0.6431 (3)	0.6073 (2)	0.0482 (7)
C25	0.27614 (11)	0.5418 (3)	0.55345 (19)	0.0450 (7)
C26	0.23668 (10)	0.4680 (3)	0.5897 (2)	0.0423 (6)
H26	0.2224	0.4019	0.5519	0.051*
C27	0.28307 (18)	0.8008 (5)	0.8430 (3)	0.0772 (11)
H27A	0.3020	0.8736	0.8682	0.093*
H27B	0.2883	0.7277	0.8853	0.093*
H27C	0 2474	0.8218	0.8398	0.093*
C28	0.38287(18)	0 6790 (7)	0 5804 (4)	0 1085 (19)
H28A	0.4057	0.7396	0.5509	0.130*
H28B	0.3864	0.5960	0.5497	0.130*
H28C	0.3911	0.6716	0.6490	0.130*
C29	0 28402 (16)	0 4093 (4)	0.4123(2)	0.0656 (9)
H29A	0.3019	0 4074	0.3516	0.079*
H29B	0.2479	0 4091	0 3991	0.079*
H29C	0.2931	0.3346	0.4505	0.079*
C30	0.12845(12)	0 1248 (3)	0 7966 (2)	0.0509(7)
C31	0.1356(2)	0.0062(4)	0 8399 (4)	0.0837(13)
H31	0.1546	0.0003	0.8979	0.100*
C32	0.1148 (3)	-0.1060(5)	0.7983 (5)	0.100 0.120(2)
H32	0 1199	-0.1855	0.8288	0.143*
C33	0.0873 (3)	-0.0988(6)	0.7140 (5)	0.1109 (19)
H33	0.0732	-0 1733	0.6865	0 133*
C34	0.0803 (2)	0.0170 (6)	0 6697 (4)	0.0965 (16)
H34	0.0614	0.0216	0.6113	0 116*
C35	0 10066 (15)	0 1279 (4)	0 7099 (3)	0.0680 (10)
	0.10000 (10)	····		0.0000 (10)

H35	0.0956	0.2065	0.6781	0.082*
C36	0.10410 (11)	0.4229 (4)	0.9382 (3)	0.0603 (9)
C37	0.0691 (2)	0.3797 (8)	1.0936 (4)	0.120 (2)
H37A	0.0974	0.4174	1.1306	0.144*
H37B	0.0430	0.4453	1.0846	0.144*
C38	0.0492 (3)	0.2730 (11)	1.1447 (4)	0.171 (4)
H38A	0.0373	0.3011	1.2072	0.205*
H38B	0.0754	0.2091	1.1541	0.205*
H38C	0.0213	0.2362	1.1075	0.205*
C39	0.28908 (13)	0.1760 (4)	0.9367 (2)	0.0575 (8)
H39A	0.3214	0.1320	0.9354	0.069*
H39B	0.2623	0.1170	0.9183	0.069*
H39C	0.2833	0.2079	1.0015	0.069*
N1	0.13869 (9)	0.4615 (3)	0.7770 (2)	0.0521 (7)
H1A	0.1295	0.5412	0.7721	0.062*
01	0.22398 (8)	0.4254 (2)	0.93491 (14)	0.0518 (5)
O2	0.55830 (9)	-0.0346 (3)	0.64077 (19)	0.0773 (9)
H2A	0.5829	-0.0194	0.6771	0.093*
O3	0.10751 (10)	0.5359 (3)	0.9562 (2)	0.0814 (9)
O4	0.08664 (12)	0.3347 (3)	0.99822 (19)	0.0842 (9)
O5	0.30005 (10)	0.7705 (2)	0.74826 (17)	0.0641 (7)
O6	0.33211 (10)	0.7226 (3)	0.56819 (18)	0.0708 (7)
07	0.29758 (9)	0.5228 (3)	0.46488 (15)	0.0590 (6)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0373 (13)	0.0503 (15)	0.0380 (13)	0.0004 (12)	0.0077 (10)	0.0014 (12)
C2	0.0314 (13)	0.0572 (18)	0.0494 (15)	-0.0013 (12)	0.0049 (11)	-0.0071 (14)
C3	0.0294 (12)	0.0489 (15)	0.0438 (13)	0.0008 (11)	0.0005 (10)	0.0030 (13)
C4	0.0330 (12)	0.0394 (13)	0.0379 (12)	0.0011 (11)	0.0033 (10)	-0.0006 (12)
C5	0.0386 (13)	0.0412 (14)	0.0344 (12)	0.0029 (12)	0.0039 (10)	0.0009 (12)
C6	0.0368 (13)	0.0463 (15)	0.0368 (13)	0.0070 (12)	-0.0018 (10)	-0.0014 (12)
C7	0.0415 (15)	0.072 (2)	0.0566 (17)	0.0004 (15)	-0.0050 (13)	-0.0224 (17)
C8	0.0362 (14)	0.079 (2)	0.0620 (18)	-0.0012 (15)	-0.0075 (13)	-0.0192 (18)
C9	0.0325 (13)	0.0553 (17)	0.0498 (15)	0.0026 (13)	-0.0011 (11)	0.0011 (14)
C10	0.0327 (13)	0.0632 (18)	0.0513 (16)	0.0037 (13)	0.0038 (11)	0.0072 (15)
C11	0.0336 (14)	0.0558 (17)	0.0679 (19)	-0.0019 (13)	-0.0018 (12)	0.0006 (16)
C12	0.0305 (13)	0.065 (2)	0.078 (2)	0.0023 (14)	-0.0050 (13)	0.0093 (19)
C13	0.0363 (14)	0.073 (2)	0.0610 (19)	0.0101 (15)	0.0103 (13)	0.0167 (18)
C14	0.0452 (17)	0.112 (3)	0.0578 (19)	0.016 (2)	0.0070 (14)	-0.014 (2)
C15	0.0367 (15)	0.112 (3)	0.0526 (17)	0.0153 (18)	0.0035 (13)	-0.010 (2)
C16	0.050 (2)	0.225 (7)	0.078 (3)	0.037 (3)	-0.0085 (19)	-0.071 (4)
C17	0.0374 (14)	0.085 (2)	0.0515 (17)	0.0059 (16)	0.0002 (12)	-0.0226 (17)
C18	0.0317 (12)	0.0443 (14)	0.0435 (14)	0.0052 (11)	0.0028 (10)	-0.0001 (12)
C19	0.0323 (12)	0.0379 (13)	0.0359 (12)	0.0053 (11)	0.0001 (9)	-0.0016 (11)
C20	0.0327 (13)	0.0430 (15)	0.0416 (14)	0.0025 (11)	0.0021 (10)	-0.0044 (12)
C21	0.0314 (12)	0.0442 (15)	0.0427 (14)	0.0064 (11)	-0.0006 (10)	0.0054 (12)

C22	0.0426 (14)	0.0450 (15)	0.0410 (14)	0.0040 (12)	0.0073 (11)	0.0034 (12)
C23	0.0510 (16)	0.0418 (15)	0.0472 (15)	-0.0010 (13)	0.0031 (12)	0.0018 (13)
C24	0.0482 (16)	0.0516 (17)	0.0449 (15)	-0.0057 (13)	0.0066 (12)	0.0081 (13)
C25	0.0442 (15)	0.0551 (17)	0.0357 (13)	0.0044 (13)	0.0026 (11)	0.0085 (13)
C26	0.0401 (13)	0.0475 (16)	0.0391 (14)	0.0019 (12)	-0.0036 (11)	0.0058 (12)
C27	0.099 (3)	0.070 (2)	0.064 (2)	-0.024 (2)	0.017 (2)	-0.016 (2)
C28	0.061 (3)	0.145 (5)	0.120 (4)	-0.030 (3)	0.023 (3)	-0.018 (4)
C29	0.083 (2)	0.069 (2)	0.0449 (17)	0.002 (2)	0.0097 (15)	-0.0035 (16)
C30	0.0479 (16)	0.0509 (17)	0.0545 (18)	-0.0075 (14)	0.0158 (13)	0.0025 (14)
C31	0.105 (3)	0.060 (2)	0.086 (3)	-0.019 (2)	0.006 (2)	0.017 (2)
C32	0.158 (6)	0.055 (3)	0.146 (5)	-0.036(3)	0.024 (5)	0.013 (3)
C33	0.135 (5)	0.080 (3)	0.118 (4)	-0.057 (3)	0.017 (4)	-0.015 (3)
C34	0.107 (4)	0.099 (4)	0.083 (3)	-0.052 (3)	0.004 (3)	-0.016 (3)
C35	0.075 (2)	0.065 (2)	0.064 (2)	-0.025 (2)	0.0030 (18)	-0.0038 (18)
C36	0.0352 (14)	0.080 (3)	0.066 (2)	0.0036 (16)	0.0065 (13)	-0.022 (2)
C37	0.121 (4)	0.174 (6)	0.066 (3)	0.014 (4)	0.044 (3)	-0.029 (4)
C38	0.201 (7)	0.237 (10)	0.077 (3)	0.035 (8)	0.069 (4)	0.023 (6)
C39	0.0578 (18)	0.075 (2)	0.0403 (15)	0.0201 (17)	0.0034 (13)	0.0109 (16)
N1	0.0324 (11)	0.0493 (14)	0.0749 (18)	0.0119 (11)	0.0116 (11)	0.0090 (13)
01	0.0530 (11)	0.0588 (13)	0.0436 (10)	0.0108 (10)	0.0032 (9)	-0.0135 (10)
O2	0.0427 (12)	0.116 (2)	0.0739 (15)	0.0270 (14)	0.0088 (11)	0.0065 (16)
03	0.0622 (15)	0.080 (2)	0.102 (2)	0.0025 (14)	0.0078 (14)	-0.0431 (18)
O4	0.099 (2)	0.096 (2)	0.0591 (14)	0.0074 (17)	0.0375 (14)	-0.0088 (15)
05	0.0755 (15)	0.0619 (15)	0.0554 (12)	-0.0238 (13)	0.0129 (11)	-0.0080 (12)
06	0.0726 (16)	0.0733 (17)	0.0673 (15)	-0.0251 (14)	0.0218 (12)	0.0038 (13)
07	0.0677 (14)	0.0703 (15)	0.0396 (10)	-0.0097 (12)	0.0127 (9)	0.0016 (11)

Geometric parameters (Å, °)

C1—C30	1.509 (4)	C20—H20B	0.9700
C1—C2	1.555 (4)	C21—C26	1.386 (4)
C1—C4	1.561 (4)	C21—C22	1.387 (4)
С1—Н1	0.9800	C22—C23	1.382 (4)
C2—N1	1.458 (4)	С22—Н22	0.9300
C2—C36	1.511 (4)	C23—O5	1.362 (4)
С2—Н2	0.9800	C23—C24	1.404 (4)
C3—N1	1.460 (4)	C24—O6	1.366 (4)
C3—C21	1.512 (4)	C24—C25	1.378 (4)
C3—C4	1.562 (4)	C25—O7	1.358 (3)
С3—Н3	0.9800	C25—C26	1.384 (4)
C4—C5	1.533 (4)	С26—Н26	0.9300
C4—C20	1.536 (4)	C27—O5	1.411 (4)
C5—O1	1.210 (3)	С27—Н27А	0.9600
C5—C6	1.509 (4)	С27—Н27В	0.9600
C6—C7	1.511 (4)	С27—Н27С	0.9600
C6—C19	1.530 (4)	C28—O6	1.410 (6)
C6—C39	1.544 (5)	C28—H28A	0.9600
С7—С8	1.537 (5)	C28—H28B	0.9600
С7—Н7А	0.9700	C28—H28C	0.9600

C7H7B	0.9700	C29_07	1 417 (5)
	1 532 (4)	C29—H29A	0.9600
C8—H8A	0.9700	C29—H29B	0.9600
C8—H8B	0.9700	C29—H29C	0.9600
C9—C10	1 521 (4)	C_{30} C_{31}	1 373 (6)
C9—C18	1 530 (4)	$C_{30} - C_{35}$	1.378(5)
С9—Н9	0.9800	$C_{31} - C_{32}$	1.396 (7)
C10—C11	1 380 (4)	C31—H31	0.9300
C10-C15	1 399 (5)	C_{32} C_{33}	1 348 (9)
C11-C12	1 382 (5)	C32—H32	0.9300
C11—H11	0.9300	C_{33} C_{34}	1 353 (9)
C12-C13	1 378 (5)	С33—Н33	0.9300
C12_H12	0.9300	C34-C35	1 376 (6)
C12—1112 C13—02	1.356(4)	C34—H34	0.9300
C13_C14	1.350 (4)	C35 H35	0.9300
$C_{13} = C_{14}$	1.309 (3)	C36_O3	1.197(5)
C14C15	0.0200	C36_04	1.197(5)
C14—III4	0.9300	$C_{30} = C_{4}$	1.314(3)
C15 - C10	1.510 (5)	$C_{37} = C_{38}$	1.411(12)
	1.430 (3)	$C_{37} = 04$	1.400 (3)
С16—П16А	0.9700	C37—H37A	0.9700
C10—H10B	0.9700	C3/—H3/B	0.9700
	1.522 (4)	Сзо—пзол	0.9600
C17—H17A	0.9700	C38—H38B	0.9600
C1/—H1/B	0.9700	C38—H38C	0.9600
C18-C19	1.515 (4)	С39—Н39А	0.9600
C18—H18	0.9800	C39—H39B	0.9600
C19—C20	1.529 (4)	C39—H39C	0.9600
C19—H19	0.9800	NI—HIA	0.8600
C20—H20A	0.9700	02—H2A	0.8200
C30—C1—C2	113.8 (2)	С20—С19—Н19	106.0
C30—C1—C4	114.6 (2)	С6—С19—Н19	106.0
C2—C1—C4	103.7 (2)	C19—C20—C4	102.9 (2)
C30—C1—H1	108.2	C19—C20—H20A	111.2
C2—C1—H1	108.2	C4—C20—H20A	111.2
C4—C1—H1	108.2	C19—C20—H20B	111.2
N1—C2—C36	109.9 (3)	C4—C20—H20B	111.2
N1—C2—C1	108.4 (2)	H20A—C20—H20B	109.1
C36—C2—C1	115.6 (3)	C26—C21—C22	120.1 (3)
N1—C2—H2	107.5	C26—C21—C3	117.8 (3)
С36—С2—Н2	107.5	C22—C21—C3	121.9 (2)
C1—C2—H2	107.5	C23—C22—C21	120.1 (3)
N1—C3—C21	114.3 (2)	C23—C22—H22	120.0
N1—C3—C4	105.4 (2)	C21—C22—H22	120.0
C21—C3—C4	116.1 (2)	O5—C23—C22	125.2 (3)
N1—C3—H3	106.8	O5—C23—C24	115.0 (3)
С21—С3—Н3	106.8	C22—C23—C24	119.7 (3)
С4—С3—Н3	106.8	O6—C24—C25	120.4 (3)
C5—C4—C20	104.1 (2)	O6—C24—C23	119.8 (3)
C5—C4—C1	108.9 (2)	C25—C24—C23	119.7 (3)

C20—C4—C1	118.5 (2)	O7—C25—C24	115.2 (3)
C5—C4—C3	111.5 (2)	O7—C25—C26	124.3 (3)
C20—C4—C3	112.6 (2)	C24—C25—C26	120.5 (3)
C1—C4—C3	101.4 (2)	C25—C26—C21	119.9 (3)
O1—C5—C6	126.2 (2)	С25—С26—Н26	120.1
O1—C5—C4	124.4 (2)	C21—C26—H26	120.1
C6—C5—C4	109.3 (2)	O5—C27—H27A	109.5
C5—C6—C7	117.9 (3)	O5—C27—H27B	109.5
C5—C6—C19	101.4 (2)	H27A—C27—H27B	109.5
C7—C6—C19	109.2 (2)	O5—C27—H27C	109.5
C5—C6—C39	104.1 (2)	H27A—C27—H27C	109.5
C7—C6—C39	110.8 (3)	H27B—C27—H27C	109.5
C19—C6—C39	113.2 (3)	O6—C28—H28A	109.5
C6—C7—C8	109.7 (3)	O6-C28-H28B	109.5
С6—С7—Н7А	109.7	H28A—C28—H28B	109.5
С8—С7—Н7А	109.7	O6—C28—H28C	109.5
С6—С7—Н7В	109.7	H28A—C28—H28C	109.5
С8—С7—Н7В	109.7	H28B-C28-H28C	109.5
Н7А—С7—Н7В	108.2	O7—C29—H29A	109.5
C9—C8—C7	112.7 (2)	O7—C29—H29B	109.5
С9—С8—Н8А	109.0	H29A—C29—H29B	109.5
С7—С8—Н8А	109.0	O7—C29—H29C	109.5
С9—С8—Н8В	109.0	H29A—C29—H29C	109.5
С7—С8—Н8В	109.0	H29B—C29—H29C	109.5
H8A—C8—H8B	107.8	C31—C30—C35	117.1 (4)
C10-C9-C18	109.6 (3)	C31—C30—C1	119.9 (3)
C10—C9—C8	114.2 (2)	C35—C30—C1	123.0 (3)
C18—C9—C8	113.3 (2)	C30—C31—C32	121.2 (5)
С10—С9—Н9	106.4	С30—С31—Н31	119.4
С18—С9—Н9	106.4	C32—C31—H31	119.4
С8—С9—Н9	106.4	C33—C32—C31	119.9 (5)
C11—C10—C15	117.4 (3)	С33—С32—Н32	120.0
C11—C10—C9	122.8 (3)	C31—C32—H32	120.0
C15—C10—C9	119.8 (2)	C32—C33—C34	119.8 (5)
C10-C11-C12	121.7 (3)	С32—С33—Н33	120.1
C10—C11—H11	119.2	С34—С33—Н33	120.1
C12—C11—H11	119.2	C33—C34—C35	120.7 (5)
C13—C12—C11	120.1 (3)	С33—С34—Н34	119.7
C13—C12—H12	119.9	C35—C34—H34	119.7
C11—C12—H12	119.9	C34—C35—C30	121.2 (4)
O2—C13—C14	118.6 (3)	С34—С35—Н35	119.4
O2—C13—C12	122.5 (3)	C30—C35—H35	119.4
C14—C13—C12	118.9 (3)	O3—C36—O4	125.1 (4)
C13—C14—C15	121.4 (4)	O3—C36—C2	124.0 (4)
C13—C14—H14	119.3	O4—C36—C2	110.8 (3)
C15—C14—H14	119.3	C38—C37—O4	108.5 (6)
C14—C15—C10	120.3 (3)	С38—С37—Н37А	110.0
C14—C15—C16	117.7 (4)	O4—C37—H37A	110.0
C10-C15-C16	121.9 (3)	С38—С37—Н37В	110.0

C17—C16—C15	115.1 (4)	O4—C37—H37B	110.0
C17—C16—H16A	108.5	Н37А—С37—Н37В	108.4
C15-C16-H16A	108.5	С37—С38—Н38А	109.5
C17—C16—H16B	108.5	С37—С38—Н38В	109.5
C15-C16-H16B	108.5	H38A—C38—H38B	109.5
H16A—C16—H16B	107.5	С37—С38—Н38С	109.5
C16—C17—C18	115.2 (3)	H38A—C38—H38C	109.5
С16—С17—Н17А	108.5	H38B—C38—H38C	109.5
C18—C17—H17A	108.5	С6—С39—Н39А	109.5
С16—С17—Н17В	108.5	С6—С39—Н39В	109.5
С18—С17—Н17В	108.5	Н39А—С39—Н39В	109.5
H17A—C17—H17B	107.5	С6—С39—Н39С	109.5
C19—C18—C17	112.6 (2)	Н39А—С39—Н39С	109.5
C19—C18—C9	109.0 (2)	Н39В—С39—Н39С	109.5
C17—C18—C9	108.3 (2)	C2—N1—C3	107.7 (2)
C19—C18—H18	109.0	C2—N1—H1A	126.1
C17-C18-H18	109.0	C3—N1—H1A	126.1
C9—C18—H18	109.0	C13—O2—H2A	109.5
C18—C19—C20	120.9 (2)	C36—O4—C37	117.0 (4)
C18—C19—C6	113.0 (2)	C23—O5—C27	117.7 (3)
C20—C19—C6	103.7 (2)	C24—O6—C28	114.6 (4)
C18—C19—H19	106.0	C25—O7—C29	117.9 (3)
C30-C1-C2-N1	-114.0 (3)	C17—C18—C19—C6	-176.6 (3)
C4—C1—C2—N1	11.1 (3)	C9—C18—C19—C6	-56.4 (3)
C30-C1-C2-C36	122.1 (3)	C5—C6—C19—C18	-173.3 (2)
C4—C1—C2—C36	-112.8 (3)	C7—C6—C19—C18	61.6 (3)
C30—C1—C4—C5	-145.9 (3)	C39—C6—C19—C18	-62.3 (3)
C2—C1—C4—C5	89.5 (3)	C5—C6—C19—C20	-40.5 (3)
C30-C1-C4-C20	-27.4 (3)	C7—C6—C19—C20	-165.6 (2)
C2—C1—C4—C20	-151.9 (2)	C39—C6—C19—C20	70.4 (3)
C30—C1—C4—C3	96.3 (3)	C18—C19—C20—C4	170.4 (2)
C2-C1-C4-C3	-28.3 (3)	C6—C19—C20—C4	42.3 (3)
N1—C3—C4—C5	-78.9 (3)	C5—C4—C20—C19	-26.6 (3)
C21—C3—C4—C5	48.7 (3)	C1—C4—C20—C19	-147.7 (2)
N1—C3—C4—C20	164.5 (2)	C3—C4—C20—C19	94.4 (2)
C21—C3—C4—C20	-67.8 (3)	N1—C3—C21—C26	-139.7 (3)
N1—C3—C4—C1	36.9 (3)	C4—C3—C21—C26	97.2 (3)
C21—C3—C4—C1	164.6 (2)	N1—C3—C21—C22	45.1 (3)
C20—C4—C5—O1	-174.4 (3)	C4—C3—C21—C22	-78.0 (3)
C1—C4—C5—O1	-47.1 (4)	C26—C21—C22—C23	-1.1 (4)
C3—C4—C5—O1	64.0 (3)	C3—C21—C22—C23	174.0 (3)
C20—C4—C5—C6	1.6 (3)	C21—C22—C23—O5	-179.3 (3)
C1—C4—C5—C6	128.9 (2)	C21—C22—C23—C24	0.1 (4)
C3—C4—C5—C6	-120.0 (2)	O5—C23—C24—O6	-4.7 (4)
O1—C5—C6—C7	-41.2 (4)	C22—C23—C24—O6	175.8 (3)
C4—C5—C6—C7	142.9 (3)	O5—C23—C24—C25	179.2 (3)
O1—C5—C6—C19	-160.2 (3)	C22—C23—C24—C25	-0.3 (4)
C4—C5—C6—C19	23.9 (3)	O6—C24—C25—O7	5.0 (4)
O1—C5—C6—C39	82.0 (4)	C23—C24—C25—O7	-178.9 (3)

C4—C5—C6—C39	-93.9 (3)	O6—C24—C25—C26	-174.5 (3)
C5—C6—C7—C8	-173.0 (3)	C23—C24—C25—C26	1.6 (4)
C19—C6—C7—C8	-58.1 (3)	O7—C25—C26—C21	177.9 (3)
C39—C6—C7—C8	67.3 (3)	C24—C25—C26—C21	-2.6 (4)
C6—C7—C8—C9	54.4 (4)	C22—C21—C26—C25	2.4 (4)
C7—C8—C9—C10	-177.8 (3)	C3-C21-C26-C25	-172.9 (2)
C7—C8—C9—C18	-51.3 (4)	C2-C1-C30-C31	-139.2 (4)
C18—C9—C10—C11	-145.8 (3)	C4-C1-C30-C31	101.7 (4)
C8—C9—C10—C11	-17.4 (5)	C2-C1-C30-C35	42.2 (4)
C18—C9—C10—C15	33.1 (4)	C4—C1—C30—C35	-76.8 (4)
C8—C9—C10—C15	161.5 (3)	C35—C30—C31—C32	-1.0 (7)
C15-C10-C11-C12	3.8 (5)	C1—C30—C31—C32	-179.6 (5)
C9-C10-C11-C12	-177.2 (3)	C30—C31—C32—C33	0.2 (10)
C10-C11-C12-C13	-1.0 (5)	C31—C32—C33—C34	0.4 (11)
C11—C12—C13—O2	177.8 (3)	C32—C33—C34—C35	-0.3 (10)
C11-C12-C13-C14	-1.8 (6)	C33—C34—C35—C30	-0.4 (8)
O2-C13-C14-C15	-178.0 (4)	C31—C30—C35—C34	1.1 (6)
C12—C13—C14—C15	1.6 (6)	C1-C30-C35-C34	179.6 (4)
C13-C14-C15-C10	1.3 (7)	N1-C2-C36-O3	7.9 (4)
C13-C14-C15-C16	-176.3 (5)	C1—C2—C36—O3	131.0 (4)
C11-C10-C15-C14	-4.0 (6)	N1-C2-C36-O4	-176.0 (3)
C9-C10-C15-C14	177.0 (4)	C1—C2—C36—O4	-52.9 (4)
C11-C10-C15-C16	173.5 (5)	C36—C2—N1—C3	139.8 (2)
C9-C10-C15-C16	-5.5 (6)	C1—C2—N1—C3	12.5 (3)
C14—C15—C16—C17	-178.6 (5)	C21—C3—N1—C2	-160.0 (2)
C10-C15-C16-C17	3.8 (8)	C4—C3—N1—C2	-31.3 (3)
C15-C16-C17-C18	-31.5 (7)	O3—C36—O4—C37	1.3 (6)
C16-C17-C18-C19	-179.9 (4)	C2-C36-O4-C37	-174.8 (4)
C16—C17—C18—C9	59.5 (5)	C38—C37—O4—C36	176.6 (5)
C10-C9-C18-C19	179.6 (2)	C22—C23—O5—C27	0.2 (5)
C8—C9—C18—C19	50.7 (3)	C24—C23—O5—C27	-179.3 (3)
C10-C9-C18-C17	-57.6 (3)	C25—C24—O6—C28	-86.9 (4)
C8—C9—C18—C17	173.5 (3)	C23-C24-O6-C28	97.0 (4)
C17—C18—C19—C20	59.7 (4)	C24—C25—O7—C29	170.9 (3)
C9—C18—C19—C20	179.8 (2)	C26—C25—O7—C29	-9.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O2—H2A···N1 ⁱ	0.82	1.99	2.782 (4)	163
C39—H39A···O3 ⁱⁱ	0.96	2.56	3.378 (4)	144
C29—H29A…Cg1 ⁱⁱⁱ	0.96	3.00	3.820 (4)	144
С1—Н1…О4	0.98	2.54	2.901 (4)	101
	1/2	1/2 1/2 1		

Symmetry codes: (i) x+1/2, y-1/2, z; (ii) -x+1/2, y-1/2, -z+2; (iii) -x+1/2, y+1/2, -z+1.

Fig. 1

