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The effect of genetic variation on promoter usage
and enhancer activity
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The identification of genetic variants affecting gene expression, namely expression quanti-

tative trait loci (eQTLs), has contributed to the understanding of mechanisms underlying

human traits and diseases. The majority of these variants map in non-coding regulatory

regions of the genome and their identification remains challenging. Here, we use natural

genetic variation and CAGE transcriptomes from 154 EBV-transformed lymphoblastoid cell

lines, derived from unrelated individuals, to map 5376 and 110 regulatory variants associated

with promoter usage (puQTLs) and enhancer activity (eaQTLs), respectively. We

characterize five categories of genes associated with puQTLs, distinguishing single from

multi-promoter genes. Among multi-promoter genes, we find puQTL effects either specific to

a single promoter or to multiple promoters with variable effect orientations. Regulatory

variants associated with opposite effects on different mRNA isoforms suggest compensatory

mechanisms occurring between alternative promoters. Our analyses identify differential

promoter usage and modulation of enhancer activity as molecular mechanisms underlying

eQTLs related to regulatory elements.
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For more than a decade, numerous genome-wide association
studies (GWAS) have identified thousands of single
nucleotide variants (SNVs) associated with human traits and

diseases. The contribution of SNVs located within promoter and
enhancer elements to disease etiology is well established1,2.
However, understanding the consequences of these regulatory
variants on the human transcriptome remains a major challenge
for accurate interpretation of GWAS signals and for the precise
identification of causal variants. This issue has been addressed in
population studies combining individual genotypes and tran-
scriptome profiles; a design capable of finding associations
between SNVs and mRNA levels, namely expression quantitative
trait loci (eQTLs)3,4.

Several observations support the functional implication of
eQTLs on gene promoters. First, eQTLs have been recurrently
found enriched within promoter regions of their associated
genes4–6. In addition, regulatory variants have been found asso-
ciated with alternative transcript usage5,7,8, including variation in
mRNA 5′-end position. Also, given that human genes have, on
average, more than four TSSs9 (transcriptional start sites), dif-
ferential TSS, or promoter usage deserves to be further investi-
gated to better understand eQTL effects.

Moreover, eQTLs are also enriched in enhancer
elements5,6,10,11. Briefly, enhancers are cis-regulatory regions
located remotely from promoters and contribute to the regulation
of gene expression by increasing transcription levels and
providing information not encoded in proximal promoters, such

as the developmental timing or tissue specificity of expression.
Enhancers contain binding sites for transcription factors
and chromatin looping mediator proteins necessary for them
to act on target genes in a distance-independent manner12.
Yet, the systematic identification of enhancers’ target genes
requires precise description of enhancer–promoter interactions,
based on chromatin conformation assays or functional
experiments using genome editing. As a consequence, the target
genes of most enhancers remain poorly annotated, increasing the
difficulty of interpreting regulatory variants located within
enhancers, and in understanding their contribution to human
disease.

We hypothesize that mapping genetic variants associated with
promoter and enhancer functions can provide novel insights into
the mechanism through which eQTLs exert their effects on gene
expression. To this end, we quantify genome-wide promoter
usage and enhancer activity using CAGE (Cap Analysis of Gene
Expression)13 transcriptome profiling and test the resulting
molecular phenotypes for association with nearby genetic variants
to discover cis-QTLs (Fig. 1a). We report the discovery of 5376
and 110 QTLs that are associated with promoter usage and
enhancer activity, respectively. These analyses suggest a strong
implication of genetic variants in the molecular regulation of
promoter usage. Finally, this study provides an original approach,
using CAGE technology, to decipher possible mechanisms of how
genetic variation exerts its effect on gene expression through the
modulation of enhancer activity.
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Results
QTL mapping on CAGE transcriptome profiles. We analyzed
154 transcriptomes from unrelated individuals of central
European descent (Supplementary Table 1), applying the CAGE
technology to nucleus-enriched total RNA extracted from EBV-
transformed lymphoblastoid cell lines (LCLs). CAGE libraries
were sequenced at a mean depth of 16.2 × 106 (±4.3 × 106) reads
uniquely mapping to the reference genome (Supplementary
Fig. 1a). CAGE tags were mapped to the robust CAGE peaks set
of the FANTOM promoter atlas9, yielding, after filtering, 38,759
CAGE peaks across all samples (Supplementary Fig. 1b).
According to FANTOM atlas annotations, the CAGE peaks are
associated with 13,351 genes and 7424 intergenic TSSs, indicative
of potential novel transcripts. Individual genotype information
was retrieved from previous studies14,15 and, following imputa-
tion and filtering, a total of 7,508,202 variants were kept for
downstream analyses. Any sample mislabeling between sequen-
cing and genotyping data was detected and fixed with an efficient
approach16 that we developed (Supplementary Fig. 1c).

Using normalized CAGE peak expression values and genotypes
(Supplementary Fig. 2), we mapped promoter usage-QTLs
(puQTLs) in cis using the QTLtools software17. Topologically
associating domains18,19 (TADs, Supplementary Fig. 3a) were
used to define the tested cis-windows, assuming that proximal
and distal regulatory elements acting on a same gene reside
within the same TAD. Following this procedure, we mapped 5376
puQTLs at the significance threshold of 5% FDR (Supplementary

Fig. 3b). These puQTLs consist of 4876 unique regulatory variants
associated with 5376 CAGE peaks (read promoters) assigned to
2697 protein-coding and 489 non-coding genes, as well as 849
putative novel transcripts. We then combined the human
transcript catalog (GENCODE-V19)20 and histone marks profil-
ing21 to annotate the puQTL CAGE peaks not associated with
genes. The majority of these carry histone marks characteristic of
promoter regions (n= 515) and can be classified as either
antisense promoters (n= 271) or putative promoters localized
within a gene or in an intergenic region (n= 244) (Fig. 1b).
Interestingly, 227 CAGE peaks carry histone marks characteristic
of enhancer regions and thus can be considered as enhancer-
RNAs (eRNAs)22.

The general features of puQTLs are similar to eQTLs. They
localize close to TSSs (Fig. 1c), within open chromatin regions
(DNase I hypersensitive sites, Supplementary Fig. 3c) carrying
histone modifications specific to active transcription (H3K27ac,
H3K4me1, and H3K4me3) and are depleted in regions of
repressive H3K27me3 marks (Fig. 1d). We calculated the
enrichment of transcription factor-binding sites overlapping
puQTLs, using ChIP-seq data (ENCODE data23, Supplementary
Fig. 3d). Among the enriched transcription factors, we detected
CEBPB (p value= 8.99 × 10−5) involved in immune and inflam-
matory responses, IKZF1 (p value= 9.99 × 10−6) implicated
in the regulation of lymphocyte differentiation and BCL11A
(p value= 1.09 × 10−4) downregulated during hematopoietic cell
differentiation and thus possibly associated with B-cell
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Fig. 2 puQTL-associated gene classification. a Classification procedure for the puQTL-associated genes. b Relative size of each group of puQTL-associated
genes. c–f Representative puQTLs examples for group-2 (c), group-3 (d), group-4 (e), and group-5 (f). g Replication of puQTLs for each group in RNA-seq
data using π1 statistics
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malignancies. We also found enrichment for the transcriptional
co-activator, EP300 (p value= 9.99 × 10−6), similarly to the GTEx
study6 observation on splicing-QTLs.

We then estimated the significance of the overlap between
puQTLs and disease-associated variants reported in the GWAS
catalog24. We found 1024 puQTLs (out of 4876 unique variants)
overlapping linkage disequilibrium (LD) intervals containing
GWAS hits (OR: 1.25, CI: 1.16–1.35, p value= 0.0009). Such
significant enrichment has been previously reported for QTLs
associated with other molecular phenotypes (eQTLs5,6, splicing
QTLs7, and methylation QTLs25). To refine the analysis and
decipher whether the effect of the puQTLs and GWAS variants
are concordant (i.e., tagging the same functional variant), we
applied the regulatory trait concordance (RTC)26 method. Briefly,
RTC accounts for local LD structure and regresses out the genetic
effect of the GWAS variant from the CAGE peak expression data,
to measure if the puQTLs association is still significant. The RTC
scores range between 0 and 1, reflecting not concordant or
concordant effects of the pair of puQTL and the GWAS hit,
respectively. We found 51 puQTLs passing the high-confidence
concordance threshold (RTC> 0.9, Supplementary Table 2) for
35 GWAS hits associated with a variety of phenotypic traits
including systemic lupus erythematosus and inflammatory bowel
disease. This finding proves the potency of our approach to detect
functional variants implicated in disease etiology.

The FANTOM promoter atlas CAGE peaks are ranked, for
each gene, according to the total read counts observed in their

data sets9. Considering this classification, we find that 52% of the
puQTLs are associated with secondary CAGE peaks potentially
involving alternative promoters (Supplementary Fig. 4a). In
addition, 2289 puQTL-associated genes display more than one
CAGE peak and thus likely have several promoters (Supplemen-
tary Fig. 4b). Together, these observations suggest that puQTLs
are potentially implicated in the regulation of differential
promoter usage.

Regulatory variants associated with promoter usage. We
classified the genes associated with puQTLs into five groups
(Fig. 2a, b). Group-1 includes single promoter genes (991 genes)
and genes with several CAGE peaks distant by less than 200 nt,
which we consider as 5′ RNA variations under the regulation of a
single promoter element. Then we considered puQTLs effect sizes
(ß, regression slope) and direction to sort multi-promoter genes.
First, 1550 multi-promoter genes with puQTLs significantly
affecting a single CAGE peak constitute group-2 (Fig. 2c). Group-
3 includes 217 multi-promoter genes with puQTLs having
opposite effects (ß of different signs) on distant CAGE peaks
(Fig. 2d). Group-4 includes 375 multi-promoter genes with
puQTLs having concordant effects (ß of same sign) on different
CAGE peaks with similar effect sizes (Fig. 2e). Lastly, group-5
includes 127 multi-promoter genes with puQTLs having
concordant effects (ß of same sign) on different CAGE peaks with
different effect sizes (Fig. 2f).
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We hypothesized that not all puQTLs have an effect on the
total mRNA production from a gene and that there exists either
compensatory or antagonist mechanisms among different
promoters. We addressed this question by estimating the fraction
of puQTLs that are also associated with total mRNA levels,
measured from RNA-seq for 154 individuals4,5 (Supplementary
Table 3). We measured the enrichment of low p values according
to the proposal of the Geuvadis consortium5. Briefly, we applied
the π1 statistics27 to estimate the proportion of truly alternative
features for the 2894 puQTLs associated with genes for which
mRNA levels were quantified. We find 83% of the puQTLs being
also significant eQTLs (Supplementary Fig. 5). This proportion
decreases to 68% for the puQTLs that have opposite effects on
multi-promoter genes (group-3), while it ranges between 81 and
88% for the other groups (Fig. 2g). We concluded that about a
third of group-3 genes, whose total mRNA levels do not

significantly vary within the population, are associated with
puQTLs triggering promoter shifts and therefore generating
different isoform prevalence. An illustrative example is the TTC23
gene (ENSG00000103852.8) from group-3. TTC23 is represented
in our data set with three CAGE peaks, localized in two promoter
regions 1.6 kb apart (Fig. 3a). The SNV rs8028374 was mapped as
a puQTL with significant opposite effects on the two promoter
regions (ß= 0.56 for p1 and ß= −1.03 for p2) (Fig. 3b). Notably,
we did not find significant eQTL for the TTC23 mRNA
level in data from Stranger and colleagues4 (Fig. 3c) or the
GTEx consortium6. Additional examples include the CD97
(ENSG00000123146.15) and FAM76B (ENSG00000077458.8)
genes (Supplementary Fig. 6a, b). The partial shifts observed
between promoters reveal a plasticity in promoter usage that is
potentially implicated in preserving suitable steady-state mRNA
levels.
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One example of a multi-promoter gene for which
promoter usage analysis provides a hypothetical mechanism
underlying the effect of an associated eQTL is DENND2D
(ENSG00000162777.12). The seven DENND2D CAGE peaks are
distributed in three distinct promoters within a 4.3 kb region
(Fig. 3d). We detected only one promoter region, with two CAGE
peaks, significantly associated with a puQTL (rs35430374, p value
= 2.54 × 10−11 for p4 and p value= 1.50 × 10−12 for p7, Fig. 3e).
This signal was replicated using the expression values for exons
specific of transcript isoforms produced from either of the three
promoter regions (Supplementary Fig. 6c). Remarkably, the same
variant is detected as an eQTL (p value= 1.73 × 10−6) for total
mRNA levels (Fig. 3f), which suggests that activation of an
alternative promoter (here p4) results in the observed eQTL
effect. Indeed, the CAGE peak p4 appears to be driving the largest
fraction of the observed variance for the mRNA level. Similar
cases were observed among puQTL associated with genes of
group-3, such as MCM8 (ENSG00000125885.9) and TLR1
(ENSG00000174125.3) (Supplementary Fig. 6d, e).

Taken together, the integration of puQTLs and eQTLs provides
new insights into the mechanisms underlying eQTLs, explaining
the prevalence of transcript isoforms and the relative participa-
tion of alternative promoters to the transcriptional output of
genes.

Regulatory variants associated with enhancer activity. Among
the previously non-annotated CAGE peaks associated with
puQTLs, the 213 located in enhancer regions (Fig. 1b), as defined
by characteristic chromatin modification patterns21, are TSSs of
eRNAs22. Bidirectional-capped RNA production has been
described as a hallmark of active enhancers and used to detect
and measure enhancer activity in numerous human and mouse
cell types28,29.

We sought to use the CAGE transcriptome profiling to gain
further insights into the implication of regulatory variants on
enhancer regions, mapping variants associated with eRNA levels,
considered here as a proxy of enhancer activity.

Following a comparable approach to that used for promoter
usage, we mapped the CAGE tags to the FANTOM enhancer atlas
elements28 and quantified the expression of 3558 transcriptionally
active enhancers. We performed cis-QTL mapping for enhancer
activity using TADs as cis-windows, mapping 110 enhancer
activity-QTLs (eaQTLs) associated with enhancer transcriptional
activity at the significance threshold of 5% FDR (Supplementary
Fig. 7a). eaQTLs are enriched in the proximity of associated
enhancers (Fig. 4a), within open chromatin regions (Supplemen-
tary Fig. 7b), and in loci carrying histone marks specific of
enhancer elements and active transcription (Fig. 4b). In
accordance with a previous report for enhancers and promo-
ters30, higher H3K4me1 signals than H3K4me3 signals are
observed with ChIP-seq at eaQTLs sites, while the opposite trend
characterized puQTLs despite a fraction of them overlapping
enhancer elements (Supplementary Fig. 7c).

We hypothesized that a combination of puQTL and eaQTL
analyses may contribute to the identification of regulatory
variants associated with gene expression, which effects are
essentially exerted on enhancer regions. To address this question,
we used the Enhancer-FANTOM Robust Promoter associations28

to link 66 enhancers with 293 CAGE peaks in 322 unique eaQTL-
enhancer–promoter triplets. Among these triplets, 39 include
eaQTLs which are also mapped as puQTLs or in LD with a
puQTL (Spearman’s ρ> 0.8) (Fig. 4c). An illustrative example is
the ARL4C gene (ENSG00000188042.5) (Fig. 4d). The rs1464264
variant was mapped as a puQTL for the two ARL4C promoters
(p value= 1.64 × 10−8 for p1 and p value= 5.33 × 10−10 for p2)

(Fig. 4e), as an eaQTL for two enhancers (p value= 2.62 × 10−7

for e1 and p value= 4.26 × 10−5 for e2) paired with ARL4C
(Fig. 4f) and as an eQTL (p value= 7.74 × 10−7) (Fig. 4g). These
observations allow us to build a hypothetical mechanism for the
ARL4C-associated eQTL, which includes increased activity of the
enhancer located ~200 kb downstream of the ARL4C promoter.
The higher level of ARL4C mRNA observed in the presence of the
alternative allele state is, under this hypothetical model, driven by
the increased activity of the distant enhancer region resulting
from the genetic variation. A similar scenario was observed for
the SWAP70 gene (Switching B-cell complex subunit 70,
ENSG00000133789.10) and an enhancer region localized 50 kb
upstream of it (Supplementary Fig. 7d–g).

Finally, for the set of 39 regulatory variants identified as both
eaQTLs and puQTLs, we assessed causal molecular relationships
for model networks including (1) the eaQTL variants, (2) the
enhancer transcriptional activity, and (3) the paired promoter
expression values. Using causal inference testing (cit R package)31

for 92 triplets (39 eaQTL-associated enhancers paired with 78
promoters), we tested independently two models that considers
enhancer transcriptional activity as the molecular mediator of
gene expression and vice versa (Supplementary Fig. 8a). The
effect of regulatory variants, mapped as puQTLs and eaQTLs, on
enhancer activity was found causal for the association observed
with the target gene expression level for 17 triplets at the
significance threshold of 5% FDR, involving 12 eaQTLs
(Supplementary Fig. 8b).

Taken together, we provide here the first set of human
regulatory variants associated with enhancer activity based on
eRNA quantification and illustrate the potential of using
complementary molecular phenotypes to dissect the mechanism
(s) underlying enhancer related eQTLs.

Discussion
We described here a collection of 5376 puQTLs and 110 eaQTLs;
regulatory variants associated with promoter usage and enhancer
activity, respectively. By levering the CAGE technology to
quantify these molecular phenotypes, this study highlights how
CAGE transcriptome profiling coupled with QTL mapping can
help dissect the genetic mechanisms underlying eQTLs and
potentially disease-associated variants.

We find extensive overlap between puQTLs mapped from
CAGE data and eQTLs mapped from RNA-seq, as a result of the
expected high correlation between the mRNA quantification
provided by both technologies32. While the analysis of exon usage
with RNA-seq requires increased sequencing depth33, it enables
an exon-wise quantification that complements the specific TSS
information provided by CAGE. The combination of the two
approaches (i.e., RNA-seq and CAGE cis-QTL mapping) there-
fore constitutes an effective strategy to give a broader view of the
molecular mechanisms underlying regulatory variants. We
leveraged these advantages to discover puQTLs involved in dif-
ferential promoter usage and by extension to differential tran-
script isoform production. Our approach identified, among genes
of groups-2, -3, and -5 (Fig. 2), regulatory processes for 5′-end
transcript variations adding on the current knowledge of alter-
native transcript-splicing QTLs5,7,8. While we opted to analyze
the effects of genetic variation on differential promoter usage, a
recent study has mapped regulatory variants associated with the
TSS usage (tssQTLs) by performing single nucleotide resolution
TSS phenotyping in fruit-flies using CAGE34. They describe
tssQTLs not affecting transcript levels, in line with our
observations.

The low expression level and poor annotation of lncRNAs35

limit the power to identify lncRNA-eQTLs36. Nevertheless, eQTL
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studies on lncRNAs, even restricted to a few hundred non-coding
genes, established a substantial contribution of lncRNA-
associated regulatory variants to human phenotypes5,36–39. As
anticipated by a recent report40, and revealed in our study with
the detection of puQTLs associated with 489 lncRNAs and 271
antisense transcripts, the precise genome-wide TSS mapping and
the accurate quantification of low-expressed non-coding tran-
scripts are complementary features that CAGE can provide for
conducting QTL mapping, compared to RNA-seq. Moreover, our
strategy could further contribute to the characterization of
potential roles for lncRNAs in human traits, by combining it with
the recently produced atlas of putative functional human
lncRNA41. This atlas has over 9000 lncRNAs, including about
3000 enhancer-associated lncRNAs.

Evidence supporting the so called “multiple enhancer variant”
hypothesis for GWAS traits has been reported for loci carrying
multiple regulatory variants within enhancers and cooperatively
altering the expression of target genes42. Although high-
throughput reporter assays have been used to test regulatory
consequences of non-coding variants on reporter genes11,43,44,
the lack of native chromatin context represents the main limita-
tion of these methods that do not investigate epistatic interactions
between multiple variants. The approach developed in our study
to map eaQTLs constitutes a potential strategy to unravel reg-
ulatory mechanisms involving multiple variants within enhancer
elements.

Overall, this study reveals that differential promoter usage is an
important consequence of functional variation in the human
genome. Our eaQTL mapping analysis provides the opportunity
to dissect mechanisms underlying regulatory variants located
within enhancer elements. Finally, our study highlights how
CAGE transcriptome profiling coupled with QTL mapping fur-
thers our understanding of eQTL effects and contributes to the
effective interpretation of disease-associated variants.

Methods
Cell culture. EBV-transformed LCLs (Supplementary Table 1) purchased from the
Coriell Cell Repository (CEU, n= 86, with the authorization of the ethical com-
mittee of the University of Geneva Medical School) or from the GenCord collection
(n= 68, informed consent was obtained from all human subjects and the project
approved by the local ethics committee at the University Hospital of Geneva
CER 10-046)45 were cultured in conventional medium for LCLs (RPMI 1640,
GlutaMAX; Gibco) with 15% fetal bovine serum (Gibco), 50 Uml−1 penicillin and
50 µg ml−1 streptomycin (Gibco). While harvesting cells in growing phase (<106

cells ml−1), culture media were systematically tested for mycoplasma infection
(Venor GeM Mycoplasma detection kit, Sigma-Aldrich) prior to proceeding with
RNA extraction.

RNA preparation. For each cell line, a nucleus-enriched RNA fraction was isolated
from 20 million cells, as detailed in Fort and colleagues46. Briefly, cells were
first lysed in chilled lysis buffer (0.8 M sucrose, 150 mM KCl, 5 mM MgCl2, 6 mM
2-mercaptoethanol, and 0.5% NP-40) and centrifuged for 5 min at 10,000×g (4 °C).
Nuclei pellets were washed twice with lysis buffer before resuspension in TRIzol
Reagent (Life Technologies). The RNeasy kit (Qiagen) was used according to the
manufacturer’s protocol to extract nucleus-enriched RNA fractions. During the
RNA purification process, samples were treated with DNase I (TURBO DNA-free
kit, Ambion) following the manufacturer’s recommendations.

CAGE library preparation and data processing. CAGE libraries were prepared
from 3 µg of RNA, using the reagents and following the protocols published by
Takahashi and colleagues47. Briefly, the initial reverse transcription was performed
using random primers and in the presence of sorbitol and trehalose. Then, the
enrichment of capped RNAs was obtained with initial oxidation of the 5′-cap RNA
diol group, resulting in a dialdehyde that was then coupled with long-arm biotin
hydrazide before capture of biotinylated RNA/cDNA hybrids on streptavidin-
coated magnetic beads. Samples were treated with RNase-I, cleaving single-
stranded RNA and discarding cDNA that did not reach the 5′-cap. Finally, RNA/
cDNA hybrids were denatured with alkali to recover cap-selected single-stranded
cDNAs. Sample multiplexing was achieved by introducing barcode sequences
within 5′-linkers that were ligated to the 3′ extremity of first-strand cDNA. The 5′-
linkers were also used for priming the second-strand cDNA synthesis and for

CAGE tag generation using the EcoP15I restriction enzyme. Following 3′-linker
ligation and prior to loading on the sequencing platform, a final CAGE library
amplification using nine PCR cycles was performed.

CAGE libraries were sequenced on the Illumina HiSeq 2500 platform with a
read length of 50 bases. Sequences with ambiguous base calling were discarded,
samples reads split by barcodes and artefactual linker/adapter sequences removed
using TagDust (v2.2)48. Reads were of 26–42 bases in length. CAGE tags were
mapped to the reference genome hg19/GRCh37 using Delve (V1.0)49 and Burrows-
Wheeler Aligner (BWA V0.5.6)50. Two mismatches were allowed for the mapping
procedure and only reads with MapQ values over 20, and therefore mapping to
single loci of the reference genome, were used in our analyses. Finally, reads
mapping to ribosomal RNA were eliminated.

Of the 164 samples originally sequenced, 8 with less than 5 × 106 mapped
CAGE tags were discarded, in line with sequencing depth recommendations for the
CAGE technology47.

Promoter expression. Genomic coordinates of 195,296 robust autosomal human
FANTOM CAGE peaks and their gene assignment annotations were retrieved in
May 2016 from http://fantom.gsc.riken.jp/5/data/. CAGE tag counts per CAGE
peak were normalized for sequencing depth, converting tag counts to tags per
million mapped reads (TPM) and, similarly to the FANTOM promoter atlas9,
TPM values were further normalized between samples using the relative loga-
rithmic expression (RLE) normalization procedure from edgeR51. We applied a
minimum expression threshold on the mean expression over all individuals
included in the study of 0.5 RLE-TPM (Supplementary Fig. 1b), and constructed an
expression matrix including 38,759 autosomal CAGE peaks for the 154 individuals.

Genotype data. GenCord individuals were genotyped with the Illumina 2.5M
Omni chip in a previous study15. Variants were imputed into 1000 Genomes
phase-314 using SHAPEIT2 (V2.20)52 and IMPUTE2 (V2.3.2)53, yielding 9.1 × 106

SNVs. The genotyping data for the CEU individuals included in our study were
retrieved from the whole-genome sequencing analyses performed by the 1000
Genomes Project Consortium14. We combined these two data sets and filtered for
an information score above 0.5 and a minimum alternative allele counts of 10. We
were left with genotype data at 7,508,202 autosomal variants for the 154
individuals.

Genotype sequencing data consistency control. Allelic consistency between
genotype and CAGE tag sequences was assessed with the match BAM to VCF
(MBV) methods (QTLtools package V1.1)16. Of the 156 samples passing the
sequencing depth threshold, no amplification bias was detected and samples from
two individuals, with suspicion of cross-sample contamination, were removed from
the study (Supplementary Fig. 1c).

Mapping QTLs. We mapped puQTLs and eaQTLs using QTLtools (V1.1)17, with
the following sets of covariates: for the puQTLs, the first 3 PCs were derived from
genotype data and the first 20 PCs were derived from promoter-normalized
expression values. We controlled for stratification due to sample collections
(Supplementary Fig. 2a) and library preparation batches (Supplementary Fig. 2b) in
the normalized promoter usage data. For the eaQTL mapping, we used the first 3
PCs derived from genotype data and the first 12 PCs derived from enhancer-
normalized activity values.

We delimited the set of variants to be tested per molecular phenotype by using
TADs, as defined by Hi-C data on LCLs19. To determine whole-genome
significance, first 1000 permutations were performed to adjust nominal p values
for the number of independent tests performed for each promoter or enhancer
per cis-window. Second, adjusted p values were corrected for the total number
of promoters or enhancers tested genome-wide using the q value R package
(V2.2.2)54. We finally extracted puQTL or eaQTL with q value <0.05, which
corresponds to a 5% FDR.

Enrichment analysis. The QTLtools fenrich module (V1.1)17 tests if a set of QTLs
fall within functional annotations more often than is expected by chance. We used
this module with annotations retrieved from the UCSC Table Browser on Sep-
tember 2016. These data are available for the GM12878 LCL, including 75 ChIP-
seq experiments for four histone marks (H3K4me1, H3K4me3, H3K27ac, and
H3K27me3) and 71 transcription factors (ENCODE uniform peaks)23 as well as
DNase I hypersensitivity (ENCODE/University of Washington). 1000 permuta-
tions were performed on the functional landscape, here all promoters detected (n
= 38,759), to obtain expected overlap values.

GWAS hits enrichment. To assess how many puQTLs are overlapping GWAS
variants, we selected puQTLs either matching the variants reported in the GWAS
catalog24 or near to a GWAS variant (±500 kb) with a R-squared greater than 0.5.
To estimate the expected overlap by chance of puQTLs and GWAS hits, we pre-
formed 1000 permutations using random variants with allelic frequencies and
distances to TSSs that are similar to those of puQTLs.
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The RTC analysis was performed using the QTLtools rtc module (V1.1)17 using
the GWAS catalog24 (accessed in May 2017).

Classification of puQTL-associated genes. We initially grouped puQTL-
associated genes with either a single CAGE peak or with several CAGE peaks when
less than 200 nt apart. The other multi-promoter genes were categorized based on
the effect of puQTLs on their different CAGE peaks. To this end, the effect size and
associated p value for each CAGE peak of corresponding puQTL-associated genes
were calculated, and puQTL-promoter associations with a p value <0.05 were
considered. We grouped genes associated with puQTLs having significant con-
cordant regulatory effects (ß, regression slope) into group-4 and group-5 based on
the effect size ratio (ER= |max(ß)|/|min(ß)|), grouping genes with different effects
on CAGE peaks when ER> 2.

RNA-seq mRNA quantifications and eQTL mapping. We retrieved mapped
RNA-seq data (BAM files) for 154 Central European individuals4,5 (Supplementary
Table 2). We performed gene and exon quantification using QTLtools quant17 and
GENCODE-V19 as the reference for transcripts. Genotype data for these samples
were retrieved from whole-genome sequencing analyses performed by the 1000
Genomes Project Consortium14. We used QTLtools cis (V1.1)17 module with
nominal pass, gene expression matrixes and, as set of covariates, we used the first 3
PCs derived from genotype data and the first 20 PCs derived from gene-normalized
expression values.

TSS annotation. The CAGE peaks retrieved from the FANTOM promoter atlas
were annotated using the GENCODE-V1920 transcripts reference set and the
ChromHMM21 segmentation based on ENCODE ChIP-seq histone marks from
the LCL GM12878. Our hierarchical annotation procedure has four steps. First,
FANTOM CAGE peaks within 500 nt upstream of annotated TSSs or residing
within a 5′-UTR first exon or a 5′-UTR first intron were annotated as “Annotated
genes”. The other CAGE peaks were annotated as “Not annotated transcript” and
further categorized in “enhancer,” “promoter,” or “other” based on epigenetic
features. Finally, the “promoter” was subdivided into “Anti-sense promoter” and
“Putative promoter” based on genomic localization.

Enhancer activity quantification. Enhancer regions transcriptionally active in our
cohort of LCLs were selected with a procedure similar to the approach detailed
in the FANTOM enhancer atlas28, where they detected enhancers based on
balanced bidirectional transcriptional hallmarks22. First, 63,991 autosomal
enhancer regions were retrieved in May 2016 from the FANTOM atlas
(http://fantom.gsc.riken.jp/5/data/). Enhancer elements characterized with bidir-
ectional transcription patterns in our samples were selected. To this end, we first
produced CAGE tag clusters using the Paraclu method (V9)55, with CAGE tag
5′ genomic coordinates as input and (i) a minimum of five tags per cluster, (ii) a
(maximum density)/(baseline density)≥ 2 and (iii) a maximal cluster length of 200
nt. To select enhancer regions with a bidirectional transcriptional pattern, we
required the overlap of two CAGE tag clusters on opposite DNA strands within a
400 nt window from the enhancer region center.

We then calculated normalized expression for both flanking 200 nt windows
(F and R) to determine, for each enhancer region, a directionality score, D= (F−R)/
(F + R). Counts of CAGE tags per F and R windows were normalized for
sequencing depth, converting tag counts to tags per million mapped reads (TPM)
and, similarly to FANTOM9, TPM values were further normalized between
samples using the RLE normalization procedure from edgeR51. We then
filtered enhancer regions to have non-promoter-like directionality pattern,
requiring |D| < 0.8. Finally, we summed the twice normalized expression of the
200 nt flanking windows to assign a single expression value to each enhancer, and
discarded enhancers with null expression in more than 50 individuals. We built an
expression matrix for 3558 enhancers for 154 individuals.

Data availability. The sequencing CAGE data generated in this study are available
in the ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/arrayexpress) under
accession number E-MTAB-5835. Derived data supporting the findings of this
study are available from the corresponding author on request.
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