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Butler enables rapid cloud-based analysis of
thousands of human genomes
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We present Butler, a computational tool that facilitates large-
scale genomic analyses on public and academic clouds. Butler
includes innovative anomaly detection and self-healing func-
tions that improve the efficiency of data processing and analy-
sis by 43% compared with current approaches. Butler enabled
processing of a 725-terabyte cancer genome dataset from the
Pan-Cancer Analysis of Whole Genomes (PCAWG) project in
a time-efficient and uniform manner.

Cloud computing offers easy and economical access to compu-
tational capacity at a scale that had previously been available to only
the largest research institutions. To take advantage, large biologi-
cal datasets are increasingly analyzed on various cloud computing
platforms, using public, private and hybrid clouds' with the aid of
workflow systems. When employed in global projects, such systems
must be flexible in their ability to operate in different environments,
including academic clouds, to allow researchers to bring their com-
putational pipelines to the data, especially in cases where the raw data
themselves cannot be moved. The recently developed cloud-based
scientific workflow frameworks Nextflow’, Toil’ and GenomeVIP*
focus their support largely on individual commercial cloud comput-
ing environments—mostly Amazon Web Services—and lack com-
plete functionality for other major providers. This limits their use in
studies that require multi-cloud operation due to practical and regu-
latory requirements™®. Butler, in contrast, provides full support for
operation on OpenStack-based commercial and academic clouds,
Amazon Web Services, Microsoft Azure and Google Compute
Platform, and can thus enable international collaborations involving
the analysis of hundreds of thousands of samples where distributed
cloud-based computation is pursued in different jurisdictions®~’.

A key lesson learned from large-scale projects including the
PCAWG project’, which has pursued a study of 2,658 cancer genomes
sequenced by the International Cancer Genome Consortium and
the Cancer Genome Atlas, is that analysis of biological data of het-
erogeneous quality, generated at multiple locations with varying
standard operating procedures, frequently suffers from artifacts that
lead to many failures of computational jobs and that can consider-
ably limit a project’s progress. Sequencing library artifacts, sample
contamination and nonuniform sequencing coverage® can cause
data and software anomalies that challenge current workflows.
Delays in recognizing and resolving these failures can notably affect
data processing rate and increase project duration and costs. In con-
trast to previous tools, Butler provides an operational management
toolkit that quickly discovers and resolves expected and unexpected
failures (Fig. 1a,b and Supplementary Note 1).
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The toolkit functions at two levels of granularity: host level and
application level. Host-level operational management is facilitated
via a health metrics system that collects system measurements
at regular intervals from all deployed virtual machines (VMs).
These metrics are aggregated and stored in a time-series database
within Butler’s monitoring server. A set of graphical dashboards
reports system health to users while supporting advanced que-
rying capabilities for in-depth troubleshooting (Supplementary
Fig. 8). Application-level monitoring is facilitated via systematic
log collection (Supplementary Fig. 4) and extraction wherein the
logs are stored in a queryable search index’. These tools provide
multidimensional visibility into operational bottlenecks and error
conditions as they occur, in a manner that is aggregated across hun-
dreds of VMs. On top of these data, a rule-based anomaly detection
engine defines normal operating conditions that, when breached,
trigger handling routines that can notify the user by sending e-mail,
Slack or Telegram messages, and enables automated restarting of
offending workflows, underlying services or entire VMs, allowing
the cluster to self-heal (Fig. 1b).

These monitoring and operational management capabilities
set Butler apart from current scientific workflow frameworks**!°
(Supplementary Table 1), which do not contain anomaly detection
modules and are therefore unable to automatically resolve key issues
that frequently occur during large-scale analyses. For example,
Butler’s operational modules are able to identify and resolve failures
of the cloud workflow scheduler, workflows that run perpetually
and never finish (indicative of underlying problems), and crashed
and unresponsive VMs that, in practice, may prevent workflows
from setting a failed status and thus would prevent triggering of
error handling logic in other workflow systems.

These capabilities indeed enable highly efficient data process-
ing in studies, such as PCAWG, where analyses are run by multiple
groups at different times and on different clouds. Butler can invoke
a variety of analysis algorithms, including genome alignment, vari-
ant calling and execution of R scripts. These can either be prein-
stalled or run as Docker' images or Common Workflow Language
(CWL)"* tools and workflows. Butler’s workflows accept parameters
via JavaScript Object Notation (JSON) configuration files, which
are stored in a database to maintain reproducibility. Workflow tasks
scheduled for execution are deposited into a distributed task queue
from which available worker nodes will pick them up, allowing
analyses to be distributed over thousands of computing nodes. It is
worth noting that for some small-scale projects executed over rela-
tively short timelines, the increased complexity of setting up and
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Fig. 1| Butler framework architecture. a, The framework consists of several
interconnected components, each running on a separate virtual machine
(VM). See Methods and Supplementary Note 1 for details. b, Metrics flow
from all VMs into a time series database. The self-healing agent detects
anomalies and takes appropriate action. See Supplementary Note 1 for
details. Solid arrows indicate information flow; dashed arrows indicate
metrics flow; dashed-and-dotted arrows indicate configuration instructions.

running these monitoring systems may render Butler less practi-
cable than simpler workflows.

We assessed Butler’s ability to facilitate large-scale analyses of
patient genomes in the context of the PCAWG study, where Butler
was deployed on 1,500 CPU cores, 5.5 terabytes of random access
memory (RAM), 1 petabyte of shared storage and 40 terabytes
of local solid-state drive storage. Using Butler, we implemented
and successfully tested a genomic alignment workflow using
BWA®Y, germline variant calling workflows based on FreeBayes'
(Supplementary Fig. 5) and Delly”, as well as several tools for
somatic mutation calling, including Pindel'® and BRASS". We car-
ried out whole-genome variant discovery and joint genotyping of
90 million germline genetic variants (single nucleotide polymor-
phisms (SNPs), indels and structural variants) across a 725-tera-
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byte dataset comprising the full PCAWG cohort (including samples
that were later blacklisted) of 2,834 cancer patients’. Additionally,
we performed sequence alignment and called both germline and
somatic variants on 232 high-coverage prostate cancer tumor-nor-
mal sample pairs in the context of the PanProstate Cancer Group
(PPCG) Consortium. We executed and successfully completed over
2.5 million computational jobs using 546,552 CPU hours. The man-
agement overhead of employing Butler for these analyses was less
than 2% of the overall computational cost.

To assess Butler performance in the field, in comparison to other
large-scale workflow systems, we compare the actually observed
historical performance of Butler, recorded during PCAWG, against
the performance of the ‘core’ somatic PCAWG consortium pipelines
(Fig. 2), which represent the current state of the art in the field in
terms of cloud software’ (on the basis of recency of development,
scale of deployment, dataset size and analysis duration)—achiev-
ing nearly complete feature parity with several available cloud-
based scientific workflow frameworks**'° (Supplementary Table 1).
These PCAWG pipelines used the same information technology
infrastructure and computed over the same samples, but did not use
Butler. Our metric to estimate the highest achievable processing rate
for an analysis is defined as the smallest proportion of time required
for processing 5% of all samples, which we refer to as the ‘target pro-
cessing rate’ This is measured on the basis of the difference between
the calendar completion date and time of the samples and the analy-
sis start date, thus taking into account the time spent on failed and
repeated runs and cluster downtime, which are major contributors
to analysis duration. To establish how well a pipeline performs com-
pared to its potential, we calculated the ratio of the actual process-
ing rate to the target processing rate (Fig. 2a,b). Butler-operated
pipelines were markedly closer to the target processing rate (mean
actual/target rate ratio 0.696) than the core PCAWG pipelines
(mean actual/target rate ratio 0.490) (Fig. 2c). Consequently, Butler-
based analyses showed a duration 1.43 times the ideal target dura-
tion while core PCAWG pipelines showed a duration of 2.04 times
the ideal target duration—43% longer. Additionally, core PCAWG
pipelines exhibited a highly nonuniform processing rate (Fig. 2d)
deviating 23.1% on average (minimum 0.0%, maximum 57.8%, s.d.
15.0%) from the ideally uniform trajectory of processing 1% of sam-
ples in 1% of analysis time, while Butler-based pipelines (Fig. 2e¢)
performed in a substantially more uniform manner, deviating only
4.0% (minimum 0.0%, maximum 15.6%, s.d. 3.7%) over the same
sample set on average (Methods). These timesaving and controlled
execution abilities resulted in the adoption of Butler for genomics-
oriented analyses in the context of the European Open Science Cloud
(EOSC) Pilot (http://eoscpilot.eu) and its further adoption within
PPGC (http://melbournebioinformatics.org.au/project/ppgc).

Butler can be generally applied to any large-scale analysis and
could, for example, readily extend to studies such as GTEx (http://
gtexportal.org), ENCODE (http://encodeproject.org) and the
Human Cell Atlas Project (http://humancellatlas.org). A standard
Butler workflow generically parallelizes R script execution across
thousands of VMs, which will facilitate its use for other research
contexts and other data types (including single-cell ‘omics’ data and
microbiomes, for example).

We have developed Butler to meet the challenges of working
with diverse cloud computing environments in the context of large-
scale scientific data analyses. The operational management tools
provided with Butler help overcome the key challenge that impacts
analysis duration—the ability to autonomously detect, diagnose
and address issues in a timely manner—thus allowing researchers
to spend less time focusing on error conditions and considerably
reduce analysis duration and cost. The comprehensive nature of the
Butler toolkit sets it apart from current scientific workflow manag-
ers*'” (Supplementary Table 1) by offering an efficient and scalable
solution for modern global cloud-based big data analyses.
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Fig. 2 | Butler performance comparison. a,b, Comparing the ratio of actual to target progress rates for core PCAWG pipelines (a) vs. Butler pipelines (b).
See Methods for details. ¢, Mean actual/target progress rate ratio across pipelines for core PCAWG (mean 0.49) vs. Butler (mean 0.7) pipelines, each of
which were run once over the entirety of PCAWG samples available to us. d,e, Progress rate uniformity of core PCAWG pipelines (d) vs. Butler (e). See
Methods for details. In all panels the samples are arranged by their completion date. Runtime includes time spent on failed attempts. Comparison between
Butler and core pipelines was facilitated in the context of the PCAWG. Similar comparison between Butler and other frameworks is presently impractical at

this scale due to the high costs and complexity involved.
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Methods

The Butler system. Overall, the Butler system is composed of four distinct
subsystems. The Cluster Lifecycle Management is the first subsystem and deals
with the task of creating and tearing down clusters on various clouds, including
defining VMs, storage devices, network topology and network security rules. The
second subsystem, Cluster Configuration Management, deals with configuration
and software installation of all VMs in the cluster. The Workflow System is
responsible for allowing users to define and run scientific workflows on the cloud.
Finally, the Operational Management subsystem provides tools for ensuring
continuous successful operation of the cluster, as well as for troubleshooting error
conditions. Supplementary Note 1 contains an in-depth description of each of
these subsystems and how they work within Butler, while the Installation Guide
(http://butler.readthedocs.io/en/latest/installation.html) provides detailed
instructions for how to set up the software.

Butler deployment. Butler has been validated for production use on the EMBL-
EBI Embassy Cloud (http://www.embassycloud.org), an academic cloud computing
center that runs an OpenStack-based environment (Fig. 1). The Embassy Cloud
has played a key role in the PCAWG project by donating substantial storage and
cloud computing capacity over the course of 3 years. The total amount of resources
dedicated to the project by the Embassy Cloud was as follows:

« 1 PBIsilon storage shared over NFS
o 1,500 computational cores

« 55TBRAM

o 40 TB local solid-state drive storage
o 10-gigabit network

These resources have been used to host one of the six PCAWG data repositories
that exist worldwide, as well as performing scientific analyses for the project.

We have used Butler extensively on the Embassy Cloud to carry out the analyses
for the PCAWG Germline Working Group. To deploy Butler on the 1,500-core
cluster, we set up five different profiles of VMs, each playing several different roles
(Supplementary Table 2).

Each profile was defined separately via Terraform and uses Saltstack roles
for configuration. Users can check out the Butler github repository to their local
machine, and once they install Terraform locally, they can fully commandeer the
provisioning process from the local machine via Terraform.

The cluster is bootstrapped via the Salt-master VM. This VM is started first
whenever the cluster needs to be recreated from scratch. The monitoring-server
role is responsible for installing and configuring InfluxDB and other monitoring
components, as well as registering them with Consul so that metrics can start being
recorded. We also attach a 1-TB block storage volume for the metrics database so
that it can survive cluster crashes and teardowns. If the monitoring server needs
to be recreated, the block storage volume simply needs to be reattached to the new
Monitoring Server VM.

The tracker VM is responsible for running various Airflow components, such
as the Scheduler, Webserver and Flower. Additionally, we deploy the Butler tracker
module to this VM, and thus the tracker VM acts as the main control point of the
system from which analyses are launched and monitored. This VM additionally
has the Elasticsearch role that designates it as the location of the Logstash and
Elasticsearch components. To persist the search index, we attach an additional
1-TB block storage volume.

The job queue VM is responsible for hosting the RabbitMQ server, which
holds all of the in-flight workflow tasks. Because the resources of the job queue are
heavily taxed by communication with all of the worker VMs in the cluster, we do
not assign any additional roles to this host.

The db-server is responsible for hosting most of the databases used by Butler.
This VM runs an instance of PostgreSQL Server and hosts the Run Tracking DB,
Airflow DB and Sample Tracking DB. The 1-TB block storage volume serves as the
backing storage mechanism.

The worker VMs are the workhorses of the Butler cluster. For analyses by the
PCAWG Germline Working Group, we employed 175 eight-core worker machines
dedicated to running Butler workflows. The worker role ensures that Airflow client
modules are installed and loaded on each worker. The germline role also loads the
workflows and analyses that are relevant to the PCAWG Germline Working Group.

Because of the comprehensive nature of the Butler framework, which covers far
more scope than a traditional workflow framework (provisioning, configuration
management, operations management, anomaly detection, etc.), the setup and
deployment of a Butler system are more complex than those of other workflow
frameworks because multiple VMs need to be successfully set up and configured
to interact with each other in a secure environment that is fit for sensitive
information handling. Even though Butler features comprehensive documentation
(http://butler.readthedocs.io), usage examples and automated deployment and
configuration scripts, we recommend that the prospective user should ideally have
a working understanding of cloud computing, server administration, networking,
security, and other development operations (dev ops) concepts to make full use of
the system. And while smaller-scale projects may benefit less from Butler’s state-of-
the-art feature set owing to its increased complexity and learning curve, this feature
set is imperative for enabling the success of current and future generations of large-
scale bioinformatics computing on the cloud.
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PCAWG germline analyses. To assess Butler’s performance on real data,

we carried out several large-scale data analyses using Butler on the Embassy
Cloud and over the entirety of the 725 TB of raw PCAWG data, including the
following:

o discovery of germline single nucleotide variants (SNVs) and small indels in
normal genomes.

«  genotyping of common SNVs occurring at minor allele frequency (MAF) >1%
in the 1000 Genomes Project'®.

o  genotyping of germline SNVs and small indels in tumor and normal genomes
(Supplementary Fig. 6).

«  discovery and genotyping of structural variant deletions in tumor and normal
genomes (Supplementary Fig. 7).

o discovery and genotyping of structural variant duplications in tumor and
normal genomes (Supplementary Fig. 7).

Overall, most Butler workflows that carry out an analysis follow a similar
structure (Supplementary Fig. 1): an analysis run is started, access to the sample
is validated, the analysis steps are carried out (possibly with branching), and the
analysis run is completed. Because of the largely common structure between
workflows a large degree of code reuse is possible, and thus most of the methods
reside in the workflow_common submodule of the Analysis Tracker and are
invoked for each workflow.

Common variant genotyping was performed across the PCAWG cohort using
a site list of 12 million variants occurring with at least 1% minor allele frequency
within the 1000 Genomes Project'® phase 3 cohort, interrogating 34 billion sites
overall. 130,152 computing hours were used to complete 70,850 workflow tasks
for this analysis, with an additional 2,688 CPU hours used for cluster management
overhead. Thus, management overhead accounted for 2% of the overall
computational resource costs for this analysis. Using 1,000 cores, this analysis
took less than 6 d to complete. Supplementary Fig. 2 shows a distribution of job
runtimes by chromosome (runtimes highly correlate with chromosome length,
r=0.92). Using a site list of 60 million variants obtained from the FreeBayes
Variant Discovery analysis, we used the Butler FreeBayes Workflow in genotyping
mode to calculate genotypes at 170 billion genomic positions. 76,518 workflow
tasks were completed using 302,071 CPU hours over the course of the analysis
(10 d wall time), of which 5,040 CPU hours were cluster management overhead,
accounting for 1.6% of total resource utilization.

244,889 deletions were evaluated across 5,668 samples (tumor and normal)
for a total of 1,388,030,852 genomic sites genotyped. Overall wall time was 13 d,
using 265,200 CPU hours with 6,240 CPU hours going to cluster management
overhead—an overhead of 2.2%. 217,433 duplications were genotyped for each
sample across 5,668 samples, for a total of 1,232,410,244 genomic variants
genotyped. The wall time for this analysis was only 4.5 d, using 151,200 CPU hours
during this time, with a management overhead of 2,160h, for a total overhead of
1.4%. The comparatively low cluster management overhead has been accomplished
by scaling up the cluster to 1,400 cores without the need for more management
resources. Supplementary Fig. 3 shows a distribution of workflow run durations.

We carried out several analyses on a 725-TB dataset of 2,834 cancer patients’
genomic samples, consuming a total of 546,552 CPU hours. Each analysis took
no longer than 2 weeks to complete and used only 1.5%-2.2% of the overall
computing capacity for management overhead. On several occasions we were able
detect large-scale cluster instability and program crashes using the Operational
Management system and take corrective action with a minimal impact on overall
productivity.

Comparing Butler with the core PCAWG somatic pipelines. We evaluate the
relative effectiveness of Butler-based pipelines in comparison to a set of pipelines
operating under similar conditions and over the same dataset, namely the ‘core’
PCAWG somatic pipelines that have been used to accomplish genome alignment
and somatic variant calling for the PCAWG Technical Working Group’. The core
PCAWG pipeline set consists of five pipelines—BWA, Sanger, Broad, DKFZ/
EMBL and OxoG detection—run over the course of 18 months over all samples
in PCAWG. The Butler-based pipeline set consists of two pipelines—FreeBayes
and Delly, used to accomplish four analyses: germline SNV discovery, germline
SNV genotyping, germline structural variant deletion genotyping and germline
structural variant duplication genotyping—also running over all samples in
PCAWG (725 TB in total). We assessed and compared pipeline performance with
respect to an estimated optimal performance (based on available hardware), as well
as with respect to analysis progress uniformity in time.

For core PCAWG pipelines, we used the date of data upload to the official data
repository as the most reliable sample completion date. However, approximately
25% of the DKFZ/EMBL pipeline results were uploaded in two batches on two
separate days, and thus do not accurately represent the real analysis progress rate.
For this reason, we excluded this pipeline from the optimal performance analysis.
Butler sample completion dates are based on timestamps collected in Butler’s
analysis tracking database.

Our assessment of pipeline performance is based on establishing an ‘optimal’
progress rate for a pipeline given a hardware allocation. We divided the sample
set into 20 bins based on their completion time (each bin comprising 5% of all
samples) and defined the optimal progress rate for each pipeline to be the smallest
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proportion of overall analysis time required to process all samples of a bin (scaled
to a 1% rate).

fopt = min {duration; /durationei /5}
bebins
We observed that the mean r,,, was significantly higher for Butler-based pipelines

at 0.46 than for the core PCAWG pipelines at 0.13 (Supplementary Table 3). For
each pipeline and each 1% of the samples under analysis, we then computed a

metric e (for effectiveness) defined as the proportion of 7, actually achieved.
Tact
e=—
ropt

Comparing the core PCAWG and Butler pipelines with respect to e (Fig. 2a—c),
we observed that effectiveness was on average lower for PCAWG pipelines
(Mepee = 0-49) than for Butler pipelines (4, . = 0.70). Assessing the expected
analysis duration for the two sets of pipelines, we observed

100
dpcawg = = 2.04dopt
”EPCA\\’G
100
dButler == 1~43dopt

EButler

dpcawc = 1.43dpuytler

Thus, the estimated duration for PCAWG pipelines was 43% longer than that for
Butler-based pipelines.

We further compared core PCAWG pipelines with Butler pipelines on the basis
of uniformity of rate of progress through an analysis. Given a constant resource
allocation, an ideal analysis execution processes 1% of all samples in 1% of the
analysis runtime. We divided the sample set into 100 equal-size bins and measured
the percentage of overall analysis time spent processing each bin (Fig. 2d,e).
Deviations from the diagonal indicate inefficiencies in data processing. Measuring
this deviation, we observed that PCAWG pipelines deviated 23.1% from the
diagonal on average (minimum 0.0%, maximum 57.8%, s.d. 15.0%) while Butler
pipelines over the same sample set only deviated 4.0% (minimum 0.0%, maximum
15.6%, s.d. 3.7%) from the diagonal on average. This indicates that Butler pipelines
are considerably less affected by various causes that slow an analysis (for example,
job and infrastructure failures).

Adapting Butler to new projects and domains. Butler is a highly general
workflow framework, built on top of generic open source components that in
principle can work with any data in any scientific domain, deploy onto over 20
cloud types, and work on any operating system, and it comprises a rich set of tools
for installing and configuring software. Adapting Butler to a new application is
straightforward. This process is described below.

Butler has a prebuilt library of workflows that focus on handling genomic
data and can support a large variety of studies that are based on next-generation
sequencing applications, such as variant discovery, common and rare variant
association studies, cancer genome analysis, and expression quantitative trait locus
(eQTL) mapping. Using one of these workflows is simply a matter of providing
configuration values in JSON format for the underlying tools (such as, for example,
FreeBayes, Delly, samtools" or bcftools). Notably, Butler also supplies a generic
workflow that allows execution of arbitrary R scripts across the entire Butler
cluster. This powerful functionality can be used to facilitate a broad range of
studies across disciplines, communities and analysis types, given the wide cross-
community usage of R.

If the prebuilt workflows do not meet the users’ requirements as-is, they can be
customized to adapt to arbitrary needs or entirely new workflows can be written.
Each Butler workflow is a Python program, which typically contains only 100-200
lines of code. There are three principal avenues of developing new workflows that
are suitable to a wide variety of users’ needs.

The easiest involves adapting tools that are already available as Docker images.
Butler has prebuilt configurations for setting up all the infrastructure necessary
to run Docker containers. The user only needs to wrap the Docker command
line within existing boilerplate code that sets up access to the data that need to be
analyzed. Once appropriate configuration parameters are supplied, Butler will be
able to run the workflow seamlessly.

Only slightly more sophisticated is the setup of workflows that use CWL
(Common Workflow Language) as a description language. Butler already
has built-in functionality for installing and configuring cwl-runner, which is
the reference implementation of CWL. To set up a new workflow that uses
CWL within Butler, users need to prepare an appropriate JSON parameter file
according to the CWL definition. This is accomplished via Butler’s configuration
functionality. The genome alignment and somatic variant calling workflows that
accompany the Butler framework already provide full functionality in this regard
and can be used as examples by new users. Because a number of workflows from
varying scientific fields have already been described with CWL, this approach

opens up a relatively straightforward avenue for adopting Butler in a wide variety
of additional studies.

Potentially the most complex, but also the most powerful, way of authoring
new workflows is writing them using the native constructs of the underlying
Apache Airflow workflow framework. This approach provides the users with all
of the power of the Python language and extended library, as well as the prebuilt
Airflow components for interacting with a wide variety of distributed systems
and engines, such as HDFS, Apache Spark, Apache Cassandra, various databases
such as PostgreSQL and SQLite, email engines and many more. Several of the
prebuilt Butler workflows, such as the FreeBayes, Delly and R workflow, use this
approach, and users can employ these as templates for new workflows built in
this style.

Because of the wide variety of workflow authoring and customization styles
available, the existing examples, and the generic nature of the underlying open
source components, applying Butler to new projects and analysis domains can
be accomplished with minimal efforts and at a complexity level that is matched
to the requirements of the project. Individual steps of the workflow can be easily
debugged and tested on the local machine without the need to deploy to any cloud,
using Python’s extensive testing and debugging functionality. The typical life cycle
for developing a new workflow is a few hours to a few days long and is usually
much shorter than a week. Because new projects frequently require the installation
and configuration of new software packages, Butler has integrated a full-featured
configuration management solution called Saltstack that is used to set up and
configure Butler internals and also any additional software required by the user
for their project. Recipes for configuring dozens of software packages are already
included with the Butler system, and hundreds more are available as community
contributions to the Saltstack project. Arbitrary new configurations can be defined
by the user to meet their custom requirements. To support this the user would
typically set up a new Github repository that acts as a customization layer on top of
the core Butler configurations. Within this custom repository, users can define new
configuration recipes or override the behavior of the pre-existing Butler settings
depending on the needs of their scientific project. We provide several examples
of such repositories under ‘Code availability’ to help users become familiar
with Butler.

Statistics. No formal sample size and power calculations were performed as we
made use of all 5,668 of the samples available to us via the PCAWG consortium.
The analyses in Fig. 2, performed over the entirety of PCAWG samples available to
us, were run once (rather than multiple times) owing to the multi-year nature and
high costs of the PCAWG project.

Ethical compliance. The authors have complied with all of the relevant ethical
regulations with regards to the subjects described in this manuscript.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

PCAWGTs final callsets, somatic and germline variant calls, mutational
signatures, subclonal reconstructions, transcript abundance, splice calls and
other core data generated by the ICGC/TCGA Pan-cancer Analysis of Whole
Genomes Consortium is described in ref. 7 and available for download at https://
dcc.icge.org/releases/PCAWG. Additional information on accessing the data,
including raw read files, can be found at https://docs.icgc.org/pcawg/data/. In
accordance with the data access policies of the ICGC and TCGA projects, most
molecular, clinical and specimen data are in an open tier that does not require
access approval. To access potentially identifying information, such as germline
alleles and underlying sequencing data, researchers will need to apply to the
TCGA Data Access Committee (DAC) via dbGaP (https://dbgap.ncbi.nlm.nih.
gov/aa/wga.cgi?page=login) for access to the TCGA portion of the dataset and
to the ICGC Data Access Compliance Office (DACO; http://icgc.org/daco) for
access to the ICGC portion. In addition, to access somatic single nucleotide
variants derived from TCGA donors, researchers will also need to obtain dbGaP
authorization.

Code availability

The source code for Butler is freely available at http://github.com/llevar/butler
under the GPL v3.0 license.

The project-specific deployment settings, configurations, analysis definitions, and
workflows are available at the following:

PCAWG Germline Project: https://github.com/llevar/pcawg-germline

EOSC Pilot: https://github.com/llevar/eosc_pilot

Pan-Prostate Cancer Group: https://github.com/llevar/pan-prostate

The R source code for the analysis is available at https://github.com/llevar/butler_
perf_analysis.

The core computational pipelines used by the PCAWG Consortium for alignment,
quality control and variant calling are available to the public at https://dockstore.
org/search?search=pcawg under the GNU General Public License v3.0, which
allows for reuse and distribution.
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science papers and provides structure for consistency and transparency in reporting. Every life science submission will use this form; some list
items might not apply to an individual manuscript, but all fields must be completed for clarity.

For further information on the points included in this form, see Reporting Life Sciences Research. For further information on Nature Research
policies, including our data availability policy, see Authors & Referees and the Editorial Policy Checklist.

Please do not complete any field with "not applicable" or n/a. Refer to the help text for what text to use if an item is not relevant to your study.

For final submission: please carefully check your responses for accuracy; you will not be able to make changes later.

» Experimental design

1. Sample size

Describe how sample size was determined. The sample size corresponds to all whole cancer genomes that at the time of the
commencement of the Pan-Cancer Analysis of Whole Genomes (PCAWG) study had been
completed by deep massively parallel sequencing within the International Cancer Genome
Consortium (ICGC) and the Cancer Genome Atlas (TCGA).

2. Data exclusions

Describe any data exclusions. No data were excluded.

3. Replication

Describe the measures taken to verify the reproducibility ~ Not applicable. We analyzed all data available, namely, all whole cancer genomes that at the
of the experimental findings. time of the commencement of the Pan-Cancer Analysis of Whole Genomes (PCAWG) study
had been completed by deep massively parallel sequencing, by the ICGC and the TCGA.

4. Randomization

Describe how samples/organisms/participants were No randomization was necessary. We analyzed all data available, namely, all whole cancer

allocated into experimental groups. genomes that at the time of the commencement of the Pan-Cancer Analysis of Whole
Genomes (PCAWG) study had been completed by deep massively parallel sequencing, by the
ICGC and the TCGA.

5. Blinding
Describe whether the investigators were blinded to Not applicable. The entire set of data was analyzed by the respective methodologies
group allocation during data collection and/or analysis. presented in our manuscript.

Note: all in vivo studies must report how sample size was determined and whether blinding and randomization were used.
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6. Statistical parameters

For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the
Methods section if additional space is needed).

n/a | Confirmed

XX XXX X X X
o godogogd

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

Test values indicating whether an effect is present
Provide confidence intervals or give results of significance tests (e.g. P values) as exact values whenever appropriate and with effect sizes noted.

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)
Clearly defined error bars in all relevant figure captions (with explicit mention of central tendency and variation)

See the web collection on statistics for biologists for further resources and guidance.

» Software

Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this Butler (https://github.com/llevar/butler), R
study.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for
providing algorithms and software for publication provides further information on this topic.

» Materials and reagents

Policy information about availability of materials

8. Materials availability

Indicate whether there are restrictions on availability of No unique materials were used. All data are available to the community. Algorithms used are
unique materials or if these materials are only available ~ distributed as open source.
for distribution by a third party.

9. Antibodies

Describe the antibodies used and how they were validated No Antibodies were used.
for use in the system under study (i.e. assay and species).

10. Eukaryotic cell lines
a. State the source of each eukaryotic cell line used. No eukaryotic cell lines were used.

b. Describe the method of cell line authentication used.  No eukaryotic cell lines were used.

c. Report whether the cell lines were tested for No eukaryotic cell lines were used.
mycoplasma contamination.

d. If any of the cell lines used are listed in the database No commonly misidentified cell lines were used.
of commonly misidentified cell lines maintained by
ICLAC, provide a scientific rationale for their use.

» Animals and human research participants

Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals

Provide all relevant details on animals and/or No animals were used.
animal-derived materials used in the study.
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Policy information about studies involving human research participants

12. Description of human research participants

Describe the covariate-relevant population
characteristics of the human research participants.

The PCAWG marker paper presents the population-characteristics of these cancer patients in
great detail, see http://www.biorxiv.org/content/biorxiv/early/2017/07/12/162784 full.pdf.
In brief, demographically, the cohort included male (55%) and female (45%) donors, with a
mean age of 56 years (median 60 years; range 1-90 years). By using population ancestry-
differentiated single nucleotide polymorphisms (SNPs), we were able to estimate the
population ancestry of each donor. The continental ancestry distribution was heavily
weighted towards Europeans (77% of total) followed by East Asians (16%), as expected by
large contributions from European, North American, and Australian projects.
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