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Abstract: The coronavirus disease 2019 outbreak has become a huge challenge in the human sector for
the past two years. The coronavirus is capable of mutating at a higher rate than other viruses. Thus,
an approach for creating an effective vaccine is still needed to induce antibodies against multiple
variants with lower side effects. Currently, there is a lack of research on designing a multiepitope of
the COVID-19 spike protein for the Indonesian population with comprehensive immunoinformatic
analysis. Therefore, this study aimed to design a multiepitope-based vaccine for the Indonesian
population using an immunoinformatic approach. This study was conducted using the SARS-CoV-2
spike glycoprotein sequences from Indonesia that were retrieved from the GISAID database. Three
SARS-CoV-2 sequences, with IDs of EIJK-61453, UGM0002, and B.1.1.7 were selected. The CD8+
cytotoxic T-cell lymphocyte (CTL) epitope, CD4+ helper T lymphocyte (HTL) epitope, B-cell epitope,
and IFN-γ production were predicted. After modeling the vaccines, molecular docking, molecular
dynamics, in silico immune simulations, and plasmid vector design were performed. The designed
vaccine is antigenic, non-allergenic, non-toxic, capable of inducing IFN-γ with a population reach
of 86.29% in Indonesia, and has good stability during molecular dynamics and immune simulation.
Hence, this vaccine model is recommended to be investigated for further study.

Keywords: antigenic epitope; epitope prediction; spike glycoprotein; TLR-3; LR-4

1. Introduction

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has become a world-wide
issue. SARS-CoV-2 is a beta coronavirus in the Coronaviridae family and is believed to have
originated from bats. It is most closely related to BatCoV-RaTG13, with a sequence similarity
rate of approximately 96%, and to SARS-CoV, with a similarity rate of roughly 80% [1,2].
The SARS-CoV-2 virus has a positive, and single-stranded RNA with 29.8 kilobases (kb)
long. This genome encodes non-structural proteins (Open Reading Frames (ORFs) a and b)
and structural proteins (Envelope (E), Spike (S), Nucleocapsid (N), and Membrane (M)) [3,4].
The spike glycoprotein of SARS-CoV-2 is comprised of two subunits: S1 (residues 14 to
685) and S2 (residues 686 to 1273) and has a total length of 1273 amino acids (AA). The S1
subunit contains N-terminal and receptor-binding domains (RBD), which play a critical role
in the infection process as it binds to the ACE2 receptor in human cells [5,6]. Research has
revealed the potential of the spike glycoprotein as an antigenic region [7]. This discovery
makes it a promising focus for research and vaccine development.

Vaccines 2023, 11, 399. https://doi.org/10.3390/vaccines11020399 https://www.mdpi.com/journal/vaccines

https://doi.org/10.3390/vaccines11020399
https://doi.org/10.3390/vaccines11020399
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/vaccines
https://www.mdpi.com
https://orcid.org/0000-0002-5826-5904
https://orcid.org/0000-0001-8566-7960
https://orcid.org/0000-0002-2674-6295
https://orcid.org/0000-0002-7020-8582
https://orcid.org/0000-0001-6556-3160
https://orcid.org/0000-0002-4342-9718
https://orcid.org/0000-0001-5134-7264
https://doi.org/10.3390/vaccines11020399
https://www.mdpi.com/journal/vaccines
https://www.mdpi.com/article/10.3390/vaccines11020399?type=check_update&version=1


Vaccines 2023, 11, 399 2 of 21

Vaccines trigger the production of specific antibodies against a disease, but the devel-
opment of conventional vaccines made from the whole virus can lead to side effects [8], and
potential reverse virulence [9,10]. The presence of viral mutations can also change the infec-
tion mechanism so that a new vaccine is needed to induce the specific antibodies [9,11]. In
Indonesia, there are several types of COVID-19 vaccines available, including mRNA-based
vaccines (Pfizer and Moderna), adenovirus vector-based (AstraZeneca), and inactivated
virus vaccine (Sinovac). The main challenge in the development of the COVID-19 vaccine is
the high mutation rate and transmissibility of the virus [12]. Thus, a platform that can boost
vaccine design in a shorter time is crucial to minimize the adverse effect on public health
conditions. To address this, immunoinformatics is being used to design vaccines more
efficiently, providing a precise, rapid, and effective approach to vaccine development [13].
Utilizing large immunoinformatics databases can support multiepitope vaccine design,
which has been shown to induce an immune response against a specific virus without
side effects [14]. The use of peptide series in multiepitope vaccines can prevent and treat
viral infections by inducing an immune response from CTL, Th, and B cells [15]. Adding
a linker adjuvant between each epitope can also enhance the vaccine’s immunogenic ef-
fect [10]. Therefore, an immunoinformatic study to see the potential of a multiepitope
vaccine for SARS-CoV-2 can help to foresee alternatives in developing vaccines for the
global population.

In this study, we performed an immunoinformatic analysis to design a multiepitope
vaccine for three SARS-CoV-2 S proteins detected in Indonesia. A previous study by
Gustiananda et al. (2021) [16] revealed polyprotein sequences for vaccine candidates based
on the COVID-19 ORF1ab. They were validated using the physicochemical structure and
analyzed further through cross-reactivity, molecular docking, and immune simulation.
Meanwhile, Febrianti and Narulita (2022) [17] designed a multiepitope COVID-19 vaccine
using spike glycoprotein and validated its sequence using physicochemical structure, which
also continued to the design of a plasmid vector. Regarding these studies, our research
started by constructing a phylogenetic tree from the evolution of the target sequence
in Indonesia, searching the epitope of T and B cells, constructing and validating the
vaccines and their 3D structure, docking them with TLR-3 or TLR-4, performing a molecular
dynamics study, in silico immune simulations, and constructing a plasmid vector.

2. Materials and Methods
2.1. Study Design

The study started by retrieving Indonesia’s sequence of SARS-CoV-2 spike glyco-
protein from the database. These data were converted into amino acid sequences, then
phylogenetic tree was constructed Three sequences were selected for further analysis
against the original sequence (Wuhan-Hu-1). These sequences were used to predict CTL
epitopes, HTL epitopes, B-cell epitopes, and IFN-γ. The antigenicity, allergenicity, toxicity,
and population coverage were analyzed. A multiepitope vaccine was then designed, mod-
eled, and validated. Finally, molecular docking, molecular dynamics analysis, and in silico
immune simulations were performed. Figure 1 shows the design of this study.
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uary 2021) [18], on 19 January 2021. The sequences obtained were the viral sequences
that appeared in Indonesia. Meanwhile, the nucleotide sequences of SARS-CoV-2 Wuhan-
Hu-1 were retrieved from the National Centre for Biotechnology Information (NCBI)
(https://www.ncbi.nlm.nih.gov/, accessed on 16 January 2021) (Accession ID: NC_045512).
During this research, a new variant virus occurred in Indonesia in March 2021, the SARS-
CoV-2 B.1.1.7. Its sequence was retrieved from GISAID and included in the analysis. All the
nucleotide sequences retrieved were converted into amino acids using the MEGA-X soft-
ware package [19]. Then, multiple sequence alignment was performed using ClustalW [20].
The phylogenetic tree was constructed with maximum likelihood and the neighbor-joining
methods by MEGA-X [19–22]. The sequence at the outer clade of the phylogenetic tree was
chosen to be further analyzed as it represents the most common sequence that spread in In-
donesia (ID EPI_ISL_574613). Meanwhile, the sequences with the furthest clade were also se-
lected as the most distinct sequence and showed the lowest similarity (ID EPI_ISL_576116).

2.3. CTL Epitope Prediction

The CTL epitopes were identified through NetCTL 1.2 web server (https://services.
healthtech.dtu.dk/service.php?NetCTL-1.2, accessed on 2 February 2021) [23], using
A1, A2, A3, A24, A26, B7, B8, B27, B39, B44, B58, and B62 as the supertypes. The se-
lected epitope threshold was 0.95 with a specificity of 0.98, then validated for compati-
bility with the HLA allele of the Indonesian population (Table 1) using the NetMHC4.0
web server (https://services.healthtech.dtu.dk/service.php?NetMHCpan-4.0, accessed on
10 February 2021) [24]. The HLA alleles were collected using classical methods from The
Allele Frequency Net Database (AFND) and the gold standard population [25]. Epitopes
were selected based on the predicted IC50 score <10 µM and 0.06 percentile [26–29].

Table 1. HLA allele of the Indonesian Population used in the study.

Type of Analysis HLA Allele

CTL
A*11:01, A*24:02, A*02:01, A*02:03, A*02:06, A*01:01, A*03:01,
A*26: 01, A*30:01, A*32:01, B*15:02, B*44:03, B*18:01, B*58:01,

B*40:01, B*51:01, B*35:03, B*57:01, B*07:02, and B*15:17

HTL

DRB1*12:02, DRB1*15:02, DRB1*07:01, DRB1*15:01, DRB1*03:01,
DRB1*16:02, DRB1*09:01, DRB1*11:01, DRB1*04:05, DRB1*14:04,
DRB1*10:01, DRB1*01:01, DRB1*13:02, DRB1*04:03, DRB1*04:02,
DRB1*08:03, DRB1*14:01, DRB1*15:03, DRB1*12:01, DRB1*13:01,

DRB1*08:02, DRB1*11:04, DPA1*01:03–DPB1*04:01,
DPA1*02:01–DPB1*05:01, DPA1*01:03–DPB1*03:01,
DPA1*01:03–DPB1*04:02, DPA1*01:03–DPB1*02:01,
DPA1*02:01–DPB1*01:01, DPA1*02:01–DPB1*14:01,

DQA1*06:01–DQB1*04:02, DQA1*01:01–DQB1*05:01,
DQA1*01:02–DQB1*05:01, DQA1*01:02–DQB1*05:02,
DQA1*01:02–DQB1*06:02, DQA1*02:01–DQB1*02:02,
DQA1*02:01–DQB1*03:01, DQA1*02:01–DQB1*04:02,
DQA1*03:01–DQB1*03:01, DQA1*03:01–DQB1*03:02,
DQA1*01:03–DQB1*06:03, DQA1*05:01–DQB1*02:01,
DQA1*05:01–DQB1*03:01, DQA1*05:01–DQB1*03:02,

DQA1*05:01–DQB1*03:03, DQA1*05:01–DQB1*04:02, and
DQA1*04:01–DQB1*04:02

2.4. HTL Epitope Prediction

The HTL epitopes were identified using NetMHCIIpan4.0 (EL + BA) (https://
services.healthtech.dtu.dk/services/NetMHCIIpan-4.0/1-Submission.php, accessed on
13 February 2021) [30]. The threshold used was 0.1 and IC50 < 10 µM. The HLA alleles of
the Indonesian population were used as listed in Table 1.

https://www.ncbi.nlm.nih.gov/
https://services.healthtech.dtu.dk/service.php?NetCTL-1.2
https://services.healthtech.dtu.dk/service.php?NetCTL-1.2
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https://services.healthtech.dtu.dk/services/NetMHCIIpan-4.0/1-Submission.php
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2.5. B-Cell Epitope

Linear B cell epitopes were identified using the Bepipred2.0 web server (http://
www.cbs.dtu.dk/services/BepiPred/, accessed on 15 February 2021) [31]. Meanwhile, the
conformational prediction of B-cell epitopes was predicted using the ElliPro web server
(http://tools.iedb.org/ellipro/, accessed on 17 February 2021) [32]. The selected Ellipro
prediction was set by scoring >0.5 with 5–20 AA length.

2.6. IFN-γ Prediction

The IFN-γ stimulation test was performed using IFN-epitopes (https://webs.iiitd.
edu.in/raghava/ifnepitope/, accessed on 28 February 2021) for selected HTL and B-cell
epitopes. The parameters used were no-splitting at window length, the motif and SVM
hybrid algorithm, also the prediction model of IFN-γ versus non-IFN-γ.

2.7. Antigenicity, Allergenicity, Toxicity, and Population Coverage Analysis

The selected epitopes were analyzed for antigenicity using Vaxijen 2.0 (http://www.
ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html, accessed on 17 March 2021) with a
threshold of 0.5 [33]. The allergenicity testing was carried out using AllerTopv2.0 (https:
//www.ddg-pharmfac.net/AllerTOP/method.html, accessed on 20 March 2021) [34] and
the toxicity testing was conducted using ToxinPred (https://webs.iiitd.edu.in/raghava/
toxinpred/index.html, accessed on 23 March 2021) [35]. The expected vaccine coverage
for the Indonesian population was predicted using the IEDB population coverage (http:
//tools.iedb.org/population/, accessed on 31 March 2021) [36].

2.8. Multiepitope Vaccine Construction, Modeling, and Validation

The selected epitopes were utilized to design the multiepitope vaccine. Beta-defensin
(NCBI Accession ID: P81534) was used as an adjuvant at the N-terminal [37]. The linker
EAAAK was used to link the adjuvant to the CTL, and the linker AAY was used to link
the CTL–CTL epitopes. The linker GPGPG was used to connect CTL and HTL epitopes,
among HTL epitopes, HTL and B cell epitopes, and among B cell epitopes (Figure 1). The
3D structure of the predicted vaccines was built using TrRosetta (https://yanglab.nankai.
edu.cn/trRosetta/, accessed on 17 April 2021) [38]. Then, the structural accuracy of the
vaccine model was evaluated using PROCHECK (http://www.ebi.ac.uk/thornton-srv/
software/PROCHECK/, accessed on 22 April 2021) [39–41]. The structural quality of the
vaccine model was measured using ERRAT (https://saves.mbi.ucla.edu/, accessed on
23 April 2021) with a threshold > 50 (maximum value 100) [42].

2.9. Molecular Docking

The vaccine models were docked against TLR-3 and TLR-4 (PDB ID: 7C76 and
3FXI) using the HADDOCK2.4 web server (https://wenmr.science.uu.nl/haddock2.4/,
accessed on 1 May 2021) [43,44]. The binding sites selected were all epitopes and ad-
juvants (without linkers). The binding sites for TLR-3 were ASN541, HIS539, GLY360,
GLY361, SER362, THR363, LEU364, GLU368, GLU557, THR559, SER562, GLU564, GLU565,
and SER566 [45,46] while for TLR-4 were ARG264, ASP294, TYR296, LYS341, LYS362,
SER416, ASN417, GLY439, and GLN436 [47]. The binding affinity was measured using the
PRODIGY web server (https://wenmr.science.uu.nl/prodigy/, accessed on 3 May 2021)
with a temperature setting of 25 ◦C [48,49]. The types and distances of interactions between
the vaccine model and TLR-3 or TLR-4 were then visualized using the PDBSum Gener-
ate web server (http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/Generate.html,
accessed on 4 May 2021) [50,51].

2.10. Molecular Dynamics

Molecular dynamics simulation was performed using GROMACS and CHARMM36
force field for each vaccine model and its complex against TLR3 or TLR4. The simulation
was performed using TIP3P as a water model and with 0.15 NaCl by adding the appropriate

http://www.cbs.dtu.dk/services/BepiPred/
http://www.cbs.dtu.dk/services/BepiPred/
http://tools.iedb.org/ellipro/
https://webs.iiitd.edu.in/raghava/ifnepitope/
https://webs.iiitd.edu.in/raghava/ifnepitope/
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
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https://www.ddg-pharmfac.net/AllerTOP/method.html
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number of ions (sodium or chloride). Periodic boundary conditions (PBCs) were applied
to the system in all the spatial directions. LINCS algorithms were used, and all hydrogen
bonds were constrained. A 1.2 nm distance cutoff for the short-distance electrostatic and
Van der Waals interactions was used. Particle Mesh Ewald algorithm (PME) was used to
calculate the long-range electrostatic forces. The steepest descent algorithm was used to
minimize the system’s energy. The system was then allowed to reach an equilibrium state
through the NVT ensemble by using the V-Rescale thermostat at 300 K, then through the
NPT ensemble by using the Parrinello–Rahman barostat at 1 atm. A 50 ns simulation was
performed for the individual vaccine model and 10 ns simulation was performed for the
complex system.

2.11. In Silico Cloning and Immune Simulation

The designed vaccine was simulated using a C-ImmSim web server (https://kraken.
iac.rm.cnr.it/C-IMMSIM/, accessed on 3 August 2021) [52,53]. The simulation parameters
were kept default except for the time steps in 1, 84, and 170 with 1050 total simulation phases.
Hence, there were three injections at the interval of four weeks [54]. In order to optimize the
expression of the designed vaccine, codon optimization, and cloned vector were conducted.
Codon optimization was done using the VectorBuilder (https://en.vectorbuilder.com/
tool/codon-optimization.html, accessed on 7 August 2021). After optimization, the vaccine
sequence was inserted into the pET28a-EgC plasmid vector from the Addgene (https:
//www.addgene.org/, accessed on 8 August 2021) with XbaI and XhoI restriction sites
using Serial Cloner software.

3. Results and Discussion
3.1. Evolutionary Relationship of SARS-CoV-2 in Indonesia and Detection of Its Mutation Site

In this study, a phylogenetic tree was built to analyze the genetic changes of SARS-CoV-2
in Indonesia and understand how new virus variants may emerge. A total of 166 SARS-CoV-2
spike glycoprotein nucleotide sequences collected from GISAID and sampled from Indone-
sia were analyzed. The sequences shared a common ancestral lineage to the wild type
of SARS-CoV-2, Wuhan-Hu-1. Based on the constructed phylogenetic tree (Table S1) the
EIJK-61453 has the most similarity to the Wuhan-Hu-1, with 100% similarity, while the
UGM0002 has the least similarity, with 99.84% similarity. These two sequences along with
a later emerged sequence, B.1.1.7 were then used for further analysis. The mutation of
SARS-CoV-2 has occurred over time and led to changes in its properties, this may affect
the human antibodies’ recognition. Several studies have reported that any mutation in the
SARS-CoV-2 spike protein can affect neutralization.

Compared to Wuhan-Hu-1, there were mutations in UGM0002 and B.1.1.7 except EIJK-
61453. The mutated amino acids are listed in Table 2. The deletion of H69 and V70 results in
two-fold higher infectivity than the Wuhan-Hu-1 and decreases the sensitivity of antibodies
to neutralize the virus. The N501 mutation into Y increases the ability of the virus to bind
to ACE2. The D614 change into G that occurred in UGM0002 and B.1.1.7 also causes an
increase in the infectivity of the SARS-CoV-2 to neutralizing antibodies [55–58]. However,
Korber’s study revealed that this does not imply that the virus is antibody-resistant [59]. In
addition, the P681 mutation into R at the furin cleavage site has been shown to increase in
the membrane fusion ability, leading to enhanced transmission of the virus in the body [60].
The impact of other mutations remains unknown.

The mutation on SARS-CoV-2 spike glycoprotein changes the segments targeted by
antibodies. Several studies reported that these mutations can evade monoclonal antibod-
ies [56,61] and influence polyclonal antibody recognition [62,63]. These mutations have
been found to be present in the human population [61].

https://kraken.iac.rm.cnr.it/C-IMMSIM/
https://kraken.iac.rm.cnr.it/C-IMMSIM/
https://en.vectorbuilder.com/tool/codon-optimization.html
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https://www.addgene.org/
https://www.addgene.org/
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Table 2. The list of amino acid mutations against the Wuhan-Hu-1 ((NC_045512.2:21563-25384).

70 69 213 501 570 614 681 716 982 1118

Wuhan-Hu-1 (wild type) V H V N A D P T S D

EIJK-61453 V H V N A D P T S D

UGM10002 V H A N A G P T S D

B.1.1.7 - - V Y D D H I A H

3.2. Identification and Selection of T-Cell Epitopes

A total of 300 identified CTL epitopes have been identified. The final list of the
selected epitopes for each sequence is presented in Table 3. The epitopes were chosen
based on low percentile and the IC50 value. Antigenicity, allergenicity, as well as toxicity
were considered. As a result, seven epitopes from each Wuhan-Hu-1 and EIJK-61453,
six epitopes from UGM0002, and five epitopes from B.1.1.7 were shortlisted for further
multiple-epitope-based vaccine design.

Table 3. Selected epitopes from the CTL analysis.

Sequence ID CTL Epitope HLA Allele Percentile (%) IC50
(nM) Antigenicity Allergenicity Decision

Wuhan-Hu-1

SPRRARSVA HLA-B*07:02 0.01 4.17 0.7729 N Used

KIYSKHTPI HLA-A*32:01 0.02 10.98 0.7455 N Used
HLA-A*02:03 0.25 9.39

AEIRASANL HLA-B*40:01 0.05 11.05 0.7082 N Used
HLA-B*44:03 0.12 71.39

QLTPTWRVY HLA-B*15:02 0.03 62.69 1.2119 N Used

WTAGAAAYY
HLA-A*01:01 0.02 12.27 0.6306 N Used
HLA-A*26:01 0.03 11.63
HLA-B*15:17 0.04 2.6

IAIPTNFTI
HLA-B*51:01 0.06 302.84 0.7052 N Used
HLA-B*58:01 0.07 11.76
HLA-B*15:17 0.3 11.97

QYIKWPWYI HLA-A*24:02 0.01 13.22 1.4177 Y Not-used

STQDLFLPF
HLA-A*32:01 0.04 17.27 0.6619 Y

Not-usedHLA-A*26:01 0.3 437.88
HLA-B*15:17 0.5 26.56

TLLALHRS HLA-B*15:02 0.05 98.39 0.7859 Y Not-used

YEQYIKWPW HLA-B*18:01
HLA-B*44:03

0.01
0.05

4.19
38.77 0.869 Y Not-used

EIJK-61453

SPRRARSVA HLA-B*07:02 0.01 4.17 0.7729 N

Used

KIYSKHTPI HLA-A*32:01 0.02 10.98 0.7455 N

HLA-A*02:03 0.25 9.39 N

AEIRASANL HLA-B*40:01
HLA-B*44:03

0.05
0.12

11.05
71.39 0.7082 N

QLTPTWRVY HLA-B*15:02 0.03 62.69 1.2119 N

WTAGAAAYY HLA-A*01:01 0.02 12.27 0.6306 N

IAIPTNFTI

HLA-A*26:01
HLA-B*15:17
HLA-B*51:01
HLA-B*58:01
HLA-B*15:17

0.03
0.04
0.06
0.07
0.3

11.63
2.6

302.84
11.76
11.97

0.7052
N
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Table 3. Cont.

Sequence ID CTL Epitope HLA Allele Percentile (%) IC50
(nM) Antigenicity Allergenicity Decision

QYIKWPWYI
STQDLFLPF

TLLALHRS
YEQYIKWPW

HLA-A*24:02
HLA-A*32:01
HLA-A*26:01
HLA-B*15:17
HLA-B*15:02
HLA-B*18:01
HLA-B*44:03

0.01
0.04
0.3
0.5

0.05
0.01
0.05

13.22
17.27
437.88
26.56
98.39
4.19

38.77

1.4177
0.6619

0.7859
0.869

Y Not-used

UGM10002

SPRRARSVA
KIYSKHTPI

AEIRASANL

GVYFASTEK

QLTPTWRVY
WTAGAAAYY

IAIPTNFTI

HLA-B*07:02
HLA-A*32:01
HLA-A*02:03
HLA-B*40:01
HLA-B*44:03
HLA-A*11:01
HLA-A*03:01
HLA-A*30:01
HLA-B*15:02
HLA-A*01:01
HLA-A*26:01
HLA-B*15:17
HLA-B*51:01
HLA-B*58:01
HLA-B*15:17

0.01
0.02
0.25
0.05
0.12
0.07
0.12
0.5

0.03
0.02
0.03
0.04
0.06
0.07
0.3

4.17
10.98
9.39

11.05
71.39
15.17
23.87
98.99
62.69
12.27
11.63

2.6
302.84
11.76
11.97

0.7729
0.7455

0.7082

0.7112

1.2119
0.6306

0.7052

N Used

QYIKWPWYI
STQDLFLPF

ETKCTLKSF
TLLALHRSY

YEQYIKWPW

HLA-A*24:02
HLA-A*32:01
HLA-A*26:01
HLA-B*15:17
HLA-A*26:01
HLA-B*15:02
HLA-B*18:01
HLA-B*44:03

0.01
0.04
0.3
0.5

0.06
0.05
0.01
0.05

13.22
17.27
437.88
26.56
36.84
98.39
4.19

38.77

1.4177
0.6619

0.8720
0.8009
0.8690

Y Not-used

B.1.1.7

KIYSKHTPI HLA-A*32:01
HLA-A*02:03

0.02
0.25

10.98
9.39 0.7455 N Used

AEIRASANL HLA-B*40:01
HLA-B*44:03

0.05
0.12

11.05
71.39 0.7082 N Used

WTAGAAAYY HLA-A*01:01
HLA-A*26:01

0.02
0.03

12.27
11.63 0.6306 N Used

GVYFASTEK HLA-B*15:17
HLA-A*11:01
HLA-A*03:01

0.04
0.07
0.12

2.6
15.17
23.87 0.6506 N

Used

QLTPTWRVY HLA-A*30:01
HLA-B*15:02

0.5
0.03

98.99
62.69 1.2119 N Used

QSYGFQPTY

YEQYIKWPW

IAIPINFTI

STQDLFLPF

ETKCTLKSF
TLLALHRSY

IPINFTISV

HLA-B*15:17
HLA-B*58:01
HLA-B*15:02
HLA-B*18:01
HLA-B*44:03
HLA-B*58:01
HLA-A*11:01
HLA-B*15:17
HLA-A*32:01
HLA-A*26:01
HLA-B*15:17
HLA-A*26:01
HLA-B*15:02
HLA-B*51:01
HLA-B*07:02

0.03
0.17
0.4
0.01
0.05
0.06
0.07
0.5

0.04
0.3
0.5

0.06
0.05
0.06
0.4

2.2
30.54
489.26
4.19
38.77
10.26
376.73

30
17.27
437.88
26.56
36.84
98.39
296.2
91.82

1.1150

0.8690

1.5131

0.6619

0.8720
0.8009
1.7137

Y Not-used

The selected HTL epitopes are listed in Table 4. There were five selected HTL epitopes
for each Wuhan-Hu-1 and EIJK-61453, four epitopes for the UGM0002, and three epitopes
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for the B.1.1.7. The selection of epitopes was also based on the value of IFN-γ, a cytokine
mainly produced by Natural Killer (NK) cells. IFN-γ plays a vital role in inhibiting viral
replication. The presence of antiviral IFN-γ in APC can elevate the stimulation of the
adaptive immune response to the infection, resulting in the generation of memory in the
body to recognize, and neutralize the virus if a similar infection occurs in the future. The
presence of IFN-γ stimulation also increases the antigen presentation process during T-cell
priming, both in terms of efficiency, quantity, quality, and diversity of peptides loaded
into the MHC-I receptor [64,65]. Therefore, the epitope selected for vaccine construction is
preferably derived from an epitope capable of stimulating IFN-γ.

Table 4. Selected epitopes from the HTL analysis.

Epitope Seq.
Position

Percentile
(%)

Interaction
with Allele HLA

IC50
(nM) Antigenicity Allergenicity IFN-γ Decision

Wuhan Hu-1

GINITRFQTLLALHR 232–246 0.02 HLA-DRB1*04:02 96.22 0.5582

N

+

Used

0.03 HLA-DRB1*15:01 10.96
0.04 HLA-DRB1*04:03 182.16

HWFVTQRNFYEPQII
CTFEYVSQPFLMDLE

1101–1115
166–180

0.04
0.06

HLA-DRB1*04:05
HLA-DPA1*01:03-

19.97
12.76

0.5225
0.5700

−
+

DPB1*04:01
RFQTLLALHRSYLTP 237–251 0.07 HLA-DRB1*14:01 66.04 0.5470 −
IIAYTMSLGAENSV 692–705 0.07 HLA-DRB1*10:01 7.8 0.5350 −

KTQSLLIVNNATNVV 113–127 0 HLA-DRB1*13:02 6.37 0.6303

Y Not-used
AAEIRASANLAATKM 1015–1029 0.03 HLA-DRB1*04:02 101.18 0.7125

NCTFEYVSQPFLMDL 165–179
0.07
0.07

HLA-DRB1*04:03
HLA-DPA1*01:03-

DPB1*04:01

220.76
12.96 0.5206

AEIRASANLAATKMS 1016–1030 0.07 HLA-DRB1*04:02 122.53 0.8255
PINLVRDLPQGFSAL 209–223 0.07 HLA-DRB1*03:01 27.42 0.6086

EIJK-61453

GINITRFQTLLALHR 232–246 0.02 HLA-DRB1*04:02 96.22 0.5582 +

Used

0.03 HLA-DRB1*15:01 10.96
0.04 HLA-DRB1*04:03 182.16

HWFVTQRNFYEPQII
CTFEYVSQPFLMDLE

1101–1115
166–180

0.04
0.06

HLA-DRB1*04:05
HLA-DPA1*01:03-

19.97
12.76

0.5225
0.5700 N −

+
DPB1*04:01

RFQTLLALHRSYLTP 237–251 0.07 HLA-DRB1*14:01 66.04 0.5470 −
IIAYTMSLGAENSVA 692–705 0.07 HLA-DRB1*10:01 7.8 0.5350 −

KTQSLLIVNNATNVV 113–127 0 HLA-DRB1*13:02 6.37 0.6303
Not-usedAAEIRASANLAATKM

NCTFEYVSQPFLMDL

1015–1029

165–179

0.03
0.07
0.07

“HLA-DRB1*04:02
HLA-DRB1*04:03
HLA-DPA1*01:03-

101.18
220.76
12.96

0.7125

0.5206
Y

AEIRASANLAATKMS
PINLVRDLPQGFSAL

1016–1030
209–223

0.07
0.07

DPB1*04:01
HLA-DRB1*04:02
HLA-DRB1*03:01

122.53
27.42

0.8255
0.6086

UGM10002

GINIFQTLLALHRTR

HWFVTQRNFYEPQII
CTFEYVSQPFLMDLE

NCTFEYVSQPFLMDL

232–246

1101–1115
166–180

165–179

0.02
0.03
0.04
0.04
0.06

0.07

HLA-DRB1*04:02
HLA-DRB1*15:01
HLA-DRB1*04:03”
HLA-DRB1*04:05
HLA-DPA1*01:03-

DPB1*04:01
HLA-DPA1*01:03-

DPB1*04:01

96.22
10.96

182.16
19.97
12.76

12.96

0.5582

0.5225
0.5700

0.5206

N

+

−
+

−

Used

KTQSLLIVNNATNVV
AAEIRASAN-

LAATKM

IIAYTMSLGAENSVA
AEIRASANLAATKMS

113–127
1015–1029

692–705
1016–1030

0
0.03
0.07
0.07
0.07

HLA-DRB1*13:02
“HLA-DRB1*04:02
HLA-DRB1*04:03”
HLA-DRB1*10:01
HLA-DRB1*04:02

6.37
101.18
220.76

7.8
122.53

0.6303
0.7125

0.5426
0.8255

Y Not-used
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Table 4. Cont.

Epitope Seq.
Position

Percentile
(%)

Interaction
with Allele HLA

IC50
(nM) Antigenicity Allergenicity IFN-γ Decision

B.1.1.7

RAAEIRASANLAATK
KHTPINLVRDLPQGF
KGIYQTSNFRVQPTE

1014–1028
206–220
310–324

0.08
0.08
0.07

HLA-DRB1*04:02
HLA-DRB1*04:02
HLA-DPA1*02:01-

DPB1*05:01

125.96
193.31
1110.1

0.5709
0.5644
0.8838

Non-Al
Non-Al
Non-Al

+
−
+

Used

TGCVIAWNSNNLDSK
EKGIYQTSNFRVQPT
VEKGIYQTSNFRVQP

AAEIRASAN-
LAATKM

NDPFLGVYYHKNNKS

CNDPFLGVYYHKNNK

430–444
309–323
308–322

1015–1029

137–151

136–150

0.06
0.07
0.09
0.03
0.07
0.02

0.03

HLA-DRB1*15:01
HLA-DRB1*15:02
HLA-DRB1*15:02
HLA-DRB1*04:02,
HLA-DRB1*04:03
HLA-DPA1*02:01-

DPB1*05:01
HLA-DPA1*02:01-

DPB1*05:01

30.1
84.33
86.62

101.18
220.76
923.7

994.78

0.6531
0.9243
0.7959
0.7637

0.8199

0.6472

Al
Al
Al
Al
Al
Al

Not-used

+ means capable to stimulate IFN-γ.

3.3. Identification and Selection of B-Cell Epitopes

B-cell epitopes consist of linear and discontinuous (conformational) epitopes with
5–20 AA lengths. Its selections were based on an antigenicity score higher than 0.5 and
the IFN-γ stimulation ability. Table 5 shows selected linear B-lymphocyte (LBL) epitopes
that meet the criteria. There were five selected LBL epitopes from each Wuhan-Hu-1,
EIJK-61453, and B.1.1.7, also six selected LBL epitopes from UGM0002. Table S4 shows
two discontinuous B-cell epitopes shortlisted from each sequence.

Table 5. Predicted results of LBL epitope for each sequence.

Sequence ID Epitope Antigenicity IFN-γ

Wuhan-Hu-1

NNLDSKVGGNYNY 0.9437 +

FQPTNG 0.7429 +

AYTMSLGAENSVAYSN 0.6003 +

GQSKRVDFC 1.779 +

SCCKFDEDDSEPVLKGVKL 0.6085 +

EIJK-61453

NNLDSKVGGNYNY 0.9437 +

FQPTNG 0.7429 +

AYTMSLGAENSVAYSN 0.6003 +

GQSKRVDFC 1.779 +

SCCKFDEDDSEPVLKGVKL 0.6085 +

UGM0002

NNLDSKVGGNYNY 0.9437 +

SNKKFLPF 1.3952 +

VNCTEV 0.6529 +

TNTSNQ 1.6803 +

LTPTWRVYSTGSNVFQT 0.5474 +

GQSKRVDFC 1.779 +

B.1.1.7

GDEVRQIAPGQTGKIA 1.0202 +

SNKKFLPF 1.3952 +

VNCTEV 1.6803 +

LGQSKRVDFC 1.8685 +

SCCKFDEDDSEPVLKGVK 0.5409 +
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3.4. Indonesian Population Coverage from Selected Epitopes

Each epitope can bind to a specific HLA allele depending on the population coverage.
Therefore, in this study, the coverage of the Indonesian population was analyzed to de-
termine the specific epitope that might bind to the Indonesian HLA allele. The selected
epitopes of Wuhan-Hu-1 and EIJK-61453 have a coverage score of 78.26%, while the selected
epitope of UGM0002 and B.1.1.7 have 86.29% and 84.28% coverage scores, respectively.
Tables S1–S3 show at least one HLA from Austronesian Indonesian ethnicity can bind to
the selected CTL and HTL epitopes. The details of the coverage distribution of each epitope
are attached in Figure S2.

3.5. Epitope Analysis in Human Peptide

The mimicry of the epitope needs to be considered in the construction of a multi-epitope-
based COVID-19 vaccine as it can result in an auto-immune effect [66]. Clinical reports
suggest that no T-cell and B-cell epitopes for the SARS-CoV-2 vaccine candidate have been
found to be homologous or share similarities with proteins that cause auto-immune effects
or increase the severity of COVID-19 disease [67–69]. Another study found that there were
epitopes with similarities to human peptides on six or seven consecutive peptides based
on the results of CTL analysis using sequences from the IEDB database. KIYSKHTPI and
SPRRARSVA are among those epitopes [70]. However, no reports specifically mention the
effect of this peptide similarity, but this can be considered for further in vitro/in vivo analysis.

3.6. Vaccine Construction and Its Validation

The multi-epitope vaccine was constructed using all the selected epitopes by opti-
mizing the arrangement of multiple epitopes connected by linkers and an adjuvant. The
possible epitope combination was then evaluated by Ramachandran plot, TrRosetta, and
ERRAT score. Three vaccines that fulfill the criteria are presented in Table S5. During the
optimization, we found that the prediction score from TrRosetta can be optimized if the
sequence is arranged in such a manner that is familiar to the existing protein sequence
template, thus making the algorithm easier to recognize the vaccine structure. Moreover,
AA length also affects the quality of the vaccine structure. The increasing number of AA
will potentially reduce the structure’s quality in Psi–Phi stability and the TM-Score and
ERRAT (Table S5).

Table 6 displays the optimal result of the vaccine construction prediction. Wuhan-Hu-1
and EIJK-61453 were found to be identical, only the EIJK sequence will be subjected to
further analysis. The 3D visualization and Ramachandran plot of those are shown in
Figures 2 and 3, respectively. The use of linkers in multi-epitope vaccine development can
primarily minimize the probability of deformation in the vaccine structure [71]. We utilized
EAAAK, AAY, and GPGPG sequence linkers to build the complex vaccine and determine
the best quality of the produced vaccine. The use of different linkers may also impart a
specific role to the vaccine structure. For instance, the EAAAK linker avoids interference
from other proteins when an adjuvant binds to its receptor. The other linkers such as AY
and GPGPG were used to induce the immune response and provide a site for proteasomal
cleavage. Furthermore, glycine and proline are often present in a stable beta turn. Proline’s
cyclic structure is ideal for beta-turn, while glycine has the smallest side chain compared to
all other AAs making it the most sterically flexible linker [72].

We also use an adjuvant to enhance the efficacy of our designed vaccine. In compari-
son to inactivated or attenuated virus-based vaccine, a peptide-based vaccine has lower
immunogenicity, and therefore an adjuvant is needed. It can boost the immune response
and acts as a vehicle to deliver the vaccine structure [10]. Moreover, different adjuvants
can trigger varying immune responses. The Matrix-M™ adjuvant elicits TH1 immune
response, while the AS03 adjuvant elicits both Th1 and Th2 cytokine responses [10]. In our
study, Beta-defensin was used as an adjuvant and functioned as an immunomodulator and
anti-microbial agent [73].
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Table 6. List of the best multi-epitope vaccines for each sequence.

Vaccine Sequences Score Explanation

Wuhan-Hu-1

MRIHYLLFALLFLFLVPVPGHGGIINTLQ
KYYCRVRGGRCAVLSCLPKEEQIGKCS
TRGRKCCRRKKEAAAKSPRRARSVA
KKWTAGAAAYYGPGPGGINITRFQT
LLALHRGPGPGCTFEYVSQPFLMDL

EGP GPGGQSKRVDFC

Quality Factor ERRAT = 91.73
TM-Score = 0.383

Template = 1KJ6_A
Confidence = 97.0%

Using the template protein 1KJ6_A with
97.0% confidence

Vaccine length 146 aa

EIJK-61453

MRIHYLLFALLFLFLVPVPGHGGIINTL
QKYYCRVRGGRCAVLSCLPKEEQIGK
CSTRGRKCCRRKKEAAAKSPRRARS
VAKKWTAGAAAYYGPGPGGINITRF
QTLLALHRGPGPGCTFEYVSQPFLM

DLEGPGPGGQSKRVDFC

Quality Factor ERRAT = 91.73
TM-Score = 0.383

Template = 1KJ6_A
Confidence = 97.0%

Using the template protein 1KJ6_A with
97.0% confidence

Vaccine length 146 aa

UGM0002

MRIHYLLFALLFLFLVPVPGHGGIINTL
QKYYCRVRGGRCAVLSCLPKEEQIGK
CSTRGRKCCRRKKEAAAKSPRRARS
VAAAYKIYSKHTPIAAYGVYFASTEK

AAYWTAGAAAYYGPGPGGINIFQTLL
ALHRTRGPGPGGQSKRVDFC

Quality Factor ERRAT = 99.27
TM-Score = 0.358

Using a de novo folding approach
Vaccine length 151 aa

B.1.1.7

MRIHYLLFALLFLFLVPVPGHGGIINTLQ
KYYCRVRGGRCAVLSCLPKEEQIGKCS

TRGRKCCRRKKEAAAKKIYSKHTPI
AAYWTAGAAAYYGPGPGRAAEIRAS

ANLAATKGPGPGLGQSKRVDFC

Quality Factor ERRAT = 97.32
TM-Score = 0.405

Template = 6VSJ_C
Confidence = 100%

Using the 6VSJ_C protein template with
100% confidence

Vaccine length 128 aa
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3.7. Docking Study of the Constructed Vaccine Model against TLR-3

All three vaccine models were successfully docked with TLR-3, as shown in Figure 4.
The details of the binding interaction are shown in Table 7. The binding affinity indicates the
binding interaction of the two molecules. The docked complex of Wuhan-Hu-1-TLR-3 and
EIJK-61453-TLR-3 present the exact same model with the binding affinity of −18.7 kcal/mol,
and 0.5 ± 0.3 RMSD score. Meanwhile, the complex of UGM0002-TLR-3 and B.1.1.7-TLR-3
have binding affinities of −19.4 kcal/mol, and −15.6 kcal/mol.
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Table 7. The bond type and amino acid residues interacting between vaccine models and TLR-3.

Vaccine Model Binding Affinity
∆G (kcal/mol) RMSD Interaction with TLR-3

EIJK-61453
Total Interactions:

• 18 hydrogen bonds
• 3 salt bridges
• 210 nonbonded contacts

−18.7 0.5 ± 0.3

Hydrogen bond:
Vaccine Residues—TLR-3

TYR5-ASP575 (2.65 Å), LEU15-HIS539 (2.70 Å),
PRO17-ARG489 (2.86 Å), VAL18-ARG489 (3.10 Å),
GLY22-ARG488 (2.60 Å), GLU50-ARG331 (2.67 Å),
GLN51-LYS335 (3.00 Å), LYS54-ASN388 (2.65 Å),
LYS54-LYS416 (2.78 Å), ARG58-LYS418 (2.70 Å),

ARG78-ASN257 (2.73 Å), ARG78-GLN259 (2.89 Å),
THR85-TYR307 (2.71 Å), TYR91-LYS416 (2.68 Å),

LEU131-GLN618 (2.76 Å), GLU132-LYS619 (2.60 Å),
GLY133-GLU570 (3.25 Å), GLN139-ASP536 (2.64 Å)

Salt bridges:
GLU 50-ARG331 (2.67 Å), LYS 61-ASP366 (3.56 Å),

GLU132-LYS619 (2.60 Å)

UGM0002
Total Interactions:

• 11 hydrogen bonds
• 3 salt bridges
• 218 nonbonded contacts

−19.4 12.4 ± 0.2

Hydrogen bond:
Vaccine Residues—TLR-3

PHE14-HIS563 (2.69 Å), HIS21-HIS565 (2.73 Å),
GLY23-GLU533 (2.72 Å), ASN26-GLU533 (2.73 Å),
GLN51-TYR326 (2.77 Å), LYS67-GLU358 (2.88 Å),
ALA71-ARG251 (2.88 Å), LYS72-GLU301 (3.24 Å),

ILE124-ASN247 (2.75 Å), GLN128-TRP273 (2.85 Å),
ARG135-ALA295 (2.78 Å)

B.1.1.7
Total Interactions:

• 12 hydrogen bonds
• 4 salt bridges
• 138 non-bonded contacts

−15.6 2.3 ± 0.5

Hydrogen bond:
Vaccine Residues—TLR-3

PHE14-TYR307 (2.95 Å), VAL16-LYS330 (2.61 Å),
HIS21-GLU363 (2.58 Å), ARG36-GLU533 (2.92 Å),

LYS54-LYS382 (3.11 Å), LYS54-HIS410 (2.94 Å),
CYS55-TYR383 (2.90 Å), SER56-TYR462 (3.18 Å),

THR57-TYR383 (2.78 Å), ARG64-GLU533 (2.77 Å),
LYS72-GLU533 (2.70 Å), TYR84-GLU587 (2.61 Å)

Salt bridges:
HIS 21-GLU363 (2.58 Å), ARG 36-GLU533 (2.92 Å),
ARG 64-GLU533 (2.77 Å), LYS 72-GLU533 (2.70 Å)
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TLR is a type of Pattern Recognition Receptor (PRRs) that functions as an early detector
of pathogens. Signaling in the TLR will induce an innate and adaptive immune response
against specific antigens. TLR-3 can recognize the presence of viral infection, therefore the
existence of a strong complex between the vaccine model and TLR-3 is expected. Amino
acid residues GLY360, GLY361, SER362, THR363, LEU364, GLU368, HIS539, ASN541,
GLU557, THR559, SER562, GLU564, GLU565, and SER566 in TLR-3 can stimulate TLR-3
signaling. Among the residues, ASN541 facilitates the TLR-3 recognition to its target, while
HIS539 plays a role in TLR-3 activation.

Among all the docked models, only the EIJK-61453 vaccine–TLR-3 complex has inter-
actions with ASN541 (neutral), through PHE12 (aromatic) with non-bonded contacts. This
interaction may occur between the CG atoms, OD1, and ND2, with an average distance
of 3.57Å. Hydrogen bonds also occurred between TLR-3 HIS539 (positive) and LEU15
(aliphatic) with a distance of 2.70Å. The EIJK-61453 vaccine model also interacts with TLR-3
ILE566 at residues GLY137 and GLY138 in the form of nonbonded contacts. The interaction
with residue ILE566 triggers the interaction of TICAM-1 and the transduction of IFN-β and
NF-kB as an innate immune response. However, the docked complex UGM0002-TLR-3 and
B.1.1.7-TLR-3 have no residues bound to TLR-3 HIS539 or ASN541.

The EIJK-61453-TLR-3 complex model has the most hydrogen bonds (18 hydrogen
bonds) compared to the B.1.1.7-TLR-3 (11 hydrogen bonds) and UGM0002-TLR-3 model
(12 hydrogen bonds). The B.1.1.7-TLR-3 model has four salt bridge interactions while the
EIJK-61453-TLR-3 and UGM0002-TLR-3 have three salt bridge interactions. Intra-protein
interactions in these complexes are different from the surface interactions between proteins.
In intra-protein interactions, the increased number of hydrogen bonds contribute to the
stability of the protein structure, while salt bridges can enhance the folding stability of
the β-helix protein structure [74–77]. This bond’s degree of conformational freedom in
interactions between protein surfaces is more rigid, although not as large as intra-protein
interactions. Therefore, the analysis of these bindings is more inclined towards specificity
for the binding site than TLR-3. Nevertheless, hydrogen bonds and salt bridges contribute
to the stability of protein–protein interactions, but they do not bind specifically to the TLR-3
binding site. This interaction helps strengthen the bond between the spike glycoprotein
surfaces, making it more difficult to separate [78].

3.8. Docking Study of the Constructed Vaccine Model against TLR-4

All three vaccine models were successfully docked with TLR-4. The docked complex of
the EIJK-61453-TLR-4 model had the most hydrogen bonds (15 hydrogen bonds) compared
to the UGM0002-TLR-4 (13 hydrogen bonds) and B.1.1.7-TLR-4 models (12 hydrogen
bonds). The complex of EIJK-61453-TLR-4, UGM0002-TLR-4, and B.1.1.7-TLR-4 also had
two, three, and four salt bridge bonds, respectively. There was no significant difference
among the docked complex vaccine–TLR-4 in terms of binding affinity, which was in
the range of −16.3 to −15.5. Figure 5 shows the docking visualization of (a) EIJK-61453
(b) UGM0002 (c) B1.1.7 vaccine model against TLR-4. The overall interactions among
vaccines model–TLR-4 are presented in Table 8.
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Table 8. The bond type and amino acid residues interacting between vaccine models and TLR-4.

Vaccine Model Binding Affinity
∆G (kcal/mol) RMSD Interaction with TLR-4

EIJK-61453
Total Interactions:

• 15 hydrogen bonds
• 2 salt bridges
• 137 nonbonded contacts

−16.3 1.1 ± 0.3

Hydrogen bond:
Vaccine Residues—TLR-4

ARG34-ARG264 (2.79 Å), PRO116-ARG264 (2.77 Å),
ARG64-ASN265 (2.68 Å), GLU68-ASN265 (3.04 Å),
ARG76-GLU266 (2.76 Å), CYS118-TYR296 (3.23 Å),

CYS146-LYS341 (2.98 Å), HIS21-HIS41 (2.84 Å),
LEU13-ASN433 (2.84 Å), ALA9-LYS435 (2.73 Å),

ARG2-GLU439 (2.60 Å)
Salt bridges:

LYS72-GLU266 (2.98 Å), ARG2-GLU439 (2.60 Å)

UGM0002
Total Interactions:

• 13 hydrogen bonds
• 3 salt bridges
• 170 nonbonded contacts

−16.1 1.0 ± 0.3

Hydrogen bond:
Vaccine Residues—TLR-3

ARG2-GLU270 (2.95 Å), ARG2-ASP294 (2.55 Å),
LEU6-TYR296 (2.68 Å), ARG34-PHE387 (2.97 Å),
ARG39-LYS388 (3.20 Å), ARG34-LYS399 (3.20 Å),

ARG39-GLN436 (2.98 Å), LYS105-GLU439 (3.22 Å),
LYS66-GLU439 (2.60 Å), ARG147-ASP490 (2.59 Å)

Salt bridges:
ARG2-ASP294 (2.55 Å), LYS66-GLU439 (2.60 Å),

ARG147-ASP490 (2.59 Å)

B.1.1.7
Total Interactions:

• 12 hydrogen bonds
• 4 salt bridges
• 162 nonbonded contacts

−15.5 26.4 ± 0.2

Hydrogen bond:
Vaccine Residues—TLR-3

ALA9-ARG264 (2.79 Å), ARG2-ASN264 (2.68 Å),
ARG2-GLU266 (3.04 Å), ARG64-GLU439 (2.60 Å),

GLN51-ARG460 (2.85 Å), GLU50-ARG460 (2.72 Å),
GLN51-ARG460 (3.12 Å), GLU50-GLN484 (3.19 Å),

LYS66-GLU485 (2.66 Å)
Salt bridges:

ARG2-GLU266 (2.64 Å), ARG64-GLU439 (2.60 Å),
GLU50-ARG460 (2.72 Å), LYS66-GLU485 (2.66 Å)

3.9. Molecular Dynamics

Molecular dynamics analysis was performed to evaluate the stability of each vaccine-TLR
complex model. Figure 6 shows the RMSD of the complexes in the 10 ns molecular dynamics
simulation. As shown in Figure 6a, the UGM002 and EIJK vaccines showed an earlier stability
time than B117 when interacting with TLR-3, although there were some fluctuations in the
EIJK vaccine from 8 to 10 ns. In contrast, Figure 6b showed that the EIJK vaccine became stable
at a later time than UGM002 and B117 vaccines when interacting with TLR-4. Furthermore,
Figure 7 shows the RMSF of vaccine–TLR complex model. The interaction patterns with TLR-3
and TLR-4 were almost similar for all vaccine models. There were some fluctuations from the
initial residue which lasted around the 100th residue. However, among the vaccine models,
the B117 vaccine display the highest level of fluctuation.
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3.10. In Silico Cloning and Immune Simulations

From the immune simulation result (Figures 8–10), three candidate vaccines (EIJK-61453,
UGM0002, and B.1.1.7) showed similar patterns regarding the induction of immune cells (Fig-
ures 8–10). The EIJK-61453 vaccine showed slightly higher IgM and IgG antibody responses
after the second and tertiary injections than the other candidates, while the UGM0002 has
the highest active B cell production. The immune responses from candidate vaccines were
generally constructed from the initial injection and resulted in higher immune responses in
the second and tertiary injections. This was followed by higher B cell and Th cell populations.
The main distinct difference between the initial and the subsequent injections was the total
population of memory cells. From the picture, it was clear that memory cells existence is
higher after both secondary and tertiary injections than in the first one. Al Zamane et al.
(2021) [79] stated that the next injection after the initial phase will activate B cells and T
cells and they will create long-lasting protection and memory formation followed by antigen
clearance during exposures. Furthermore, from the immune simulation result, innate and
cytokine based immune regulation were also involved. Macrophages as an innate immune
system are responsible for creating an inflammatory response to antigen exposure. Thus, its
activation will release some cytokines such as IL-12 and IL-18 to stimulate adaptive immune
response and IFN-gamma production to enhance immune activation [80,81]. Therefore, these
candidates are capable of inducing good immune responses.
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Figure 8. In silico immune simulation of EIJK-61453 vaccine using C-ImmSim server. Antigen and immunoglobulins (a), B cell population (b), TH 
cell population (c), TC cell population (d), macrophage population (e), production of cytokine and interleukins with Simpson index (f). 
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Figure 8. In silico immune simulation of EIJK-61453 vaccine using C-ImmSim server. Antigen and
immunoglobulins (a), B cell population (b), TH cell population (c), TC cell population (d), macrophage
population (e), production of cytokine and interleukins with Simpson index (f).
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Figure 9. In silico immune simulation of UGM002 vaccine using the C-ImmSim server. Antigen
and immunoglobulins (a), B cell population (b), TH cell population (c), TC cell population (d),
macrophage population (e), production of cytokine and interleukins with Simpson index (f).
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macrophage population (e), production of cytokine and interleukins with Simpson index (f).

Alongside immune simulation, codon optimization was performed for the three vaccine
candidates. In this work, the codon optimization used was based on Escherichia coli strain
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K12 expression systems. E. coli expression systems are well-known systems and still
dominate in recombinant protein production. The use of E. coli as the recombinant vector
has several advantages, including fast growth, ease of achieving high cell density, and
the availability of components for rich complex media [82,83]. The important parameters
for codon optimization are GC contents (30–70%), and a codon adaptation index (CAI)
(>0.8). Table S6 showed that the %GC contents for all candidates were around 59% with
CAI above 0.95. CAI has been used for the assessment of highly expressed genes, the
closer the value of CAI to 1, the higher the chance of the genes being expressed [84]. From
the results, %GC contents and CAI from vaccine candidates represent the ideal sequence
for gene expression. To simulate vaccine expression, plasmid cloning vector pET28a-EgC
was constructed with XbaI and XhoI as restriction sites. The plasmid constructions result
revealed that EIJK-61453, UGM0002, and B.1.1.7 have 5636, 5652, and 5582 base pairs,
respectively (Figure 11).
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4. Conclusions

Our study has revealed a stable vaccine design that was created using the SARS-
CoV-2 spike glycoprotein from Indonesia, which also became our limitation of the study.
The evolution of the SARS-CoV-2 virus in Indonesia is not significantly different from its
wild type, Wuhan-Hu-1, with the furthest similarity value of 99.84%. Several amino acid
mutations occur and affect the construction of vaccine models. In this study, the sequences
of EIJK-61453, UGM0002, and B.1.1.7 were chosen and used to search for CTL, HTL, and
LBL epitopes. The selected epitopes from each sequence were then arranged with linkers
and an adjuvant to construct a vaccine model. Among all the vaccine models, the UGM0002
vaccine is antigenic, non-allergenic, non-toxic, capable of inducing IFN-γ with a population
reach of 86.29% in Indonesia, and activates the highest rate of B cells according to immune
simulations. Furthermore, molecular dynamics analysis revealed that the interactions of
the vaccines with TLR-3 or TLR-4 were stable. Therefore, the vaccine model of UGM0002 is
recommended for further investigations.
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recognized by HLA from Indonesia population for Wuhan-Hu-1 (a), EIJK-61453 (b), UGM0002 (c),
and B.1.1.7 (d); Figure S3: Ramachandran plot for (a) Wuhan-Hu-1-2 and EIJK-61453-2 with 454
aa, 88.2% in the most-favorable region, 59 Glycine residues, and 38 Proline residues; Figure S4:
3D structure prediction of (a) Wuhan-Hu-1-2 and EIJK-61453-2 vaccine, (b) Wuhan-Hu-1-3 and
EIJK-61453-3 vaccine (c) UGM0002-2, (d) UGM0002-3, (e) B.1.1.7-1-1, and (e) B.1.1.7-1-3; Table S1:
Wuhan-Hu-1 and EIJK-61453 epitopes population coverage; Table S2: UGM0002 epitopes population
coverage; Table S3: B.1.1.7 epitopes population coverage; Table S4: The predicted discontinuous
B-cell epitopes; Table S5: Top three list of vaccine construction sequences; Table S6: Optimized
vaccine sequences.
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